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Abstract

Stress partitioning in multiphase porous media is a fundamental problem of solid me-

chanics, yet not completely understood: no unanimous agreement has been reached on the

formulation of a stress partitioning law encompassing all observed experimental evidences

in two-phase media, and on the range of applicability of such a law.

A most celebrated stress partitioning law, based on the notion of ’effective stress’, is

known as ’Terzaghi’s principle’. However, while there is agreement on its reliability in

describing the behaviour of soils and soft hydrated biological tissues, experimental obser-

vations on certain porous media have been generally interpreted as deviations from such

law.

The objective of this study is to perform an analysis on the range of applicability of the

notions of effective stress and effective stress principles. This is carried out employing a
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variational macroscopic theory of porous media (VMTPM) derived in the companion Part I

of this study. Such theory predicts that the external stress, the fluid pressure, and the stress

tensor workassociated with the macroscopic strain of the solid phase are partitioned accord-

ing to a relation formally compliant with Terzaghi’s law, irrespective of the microstructural

and constitutive features of a given medium.

Herein, these laws are applied to the study of stress partitioning in three classes of ma-

terials: linear media, media with solid phase having no-tension response, and cohesionless

granular media.

It is shown that VMTPM recovers for the dynamics of isotropic media equations hav-

ing the same structure of Biot’s equations. Also, compliance with Terzaghi’s principle can

be rationally derived as the peculiar behavior of the specialization of VMTPM recovered

for cohesionless granular media, in absence of incompressibility constraints. Moreover, it

is shown that the experimental observations on saturated sandstones, generally considered

as proof of deviations from Terzaghi’s law, are predicted by VMTPM. In addition, a ra-

tional deduction of the phenomenon of compression-induced liquefaction in cohesionless

mixtures is reported: such effect is found to be a natural implication of VMTPM when uni-

lateral contact conditions are considered for the solid above a critical porosity. Finally, a

characterization of the phenomenon of crack closure in fractured media is inferred in terms

of macroscopic strain and stress paths.

Altogether these results exemplify the capability of VTMPM to describe and predict a

large class of linear and nonlinear mechanical behaviors observed in two-phase saturated

materials. As a conclusion of this study, a generalized statement of Terzaghi’s principle for

multiphase problems is proposed.
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1 Introduction

In fluid saturated porous media, the mechanism by which external stresses are partitioned be-

tween solid and fluid phases is complex and yet not completely understood [1–10].

In the first decades of the last century, Terzaghi introduced the concept of ’effective stress’,

which regulated observable effects in saturated soils, according to a so called ’effective stress

principle’ [1, 2]. Ever since its conception, the effective stress has stimulated a large body of

theoretical and applied researches in several fields dealing with the problem of stress partitioning

in multiphase media [8, 9, 11–19].

The effective stress expressions so far proposed can mostly be cast in the form of relations

equating the external stress applied to the medium to a linear combination of the elastic defor-

mation in the solid skeleton and of the interstitial pressure of the fluid saturating the mixture.

However, there is a certain disagreement on the coefficients to be adopted, and several different

expressions have been proposed [2, 3, 5, 11, 20–24]. Comparing different expressions of stress

partitioning to one another is difficult since they often derive from different multiphase poroelas-

tic theories which proceed from substantially different physical-mathematical, or engineering,

premises to introduce macroscopic stress measures [3,7,8,20,21,25–32] and from different gov-

erning balance equations [6, 11, 33–36]. Also, there is a certain disagreement on the theoretical

accuracy and domain of veracity of the Terzaghi’s relation. In fact, as discussed in [4, 5], no

theory of poroelasticity has been able to recover a stress partitioning law for two-phase media in

agreement with Terzaghi’s postulated one, which can be applied to any biphasic system in ab-

sence of specific microstructural or constitutive assumptions and to any experimental condition.

The fulfillment of medium independence for stress partitioning within two-phase continuum

poroelasticity theories, framed into the more general problem of the derivation of medium-

independent continum governing equations and boundary conditions, is examined in the com-

panion Part I of this study [37]. Therein, a rational derivation of medium-independent stress par-

titioning laws is obtained downstream of a purely-variational and purely-macroscopic deduction

of the complete set of momentum balance equations and boundary conditions for the two-phase

poroelastic problem in a minimal kinematic setting based on an extrinsic/intrinsic split of volu-

metric strain measures previously investigated by the authors [10,38–43]. The theoretical frame

adopted is termed Variational Macroscopic Theory of Porous Media (VMTPM). The stress par-
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titioning law obtained states that the external stress tensor is always partitioned between solid

and fluid phases by a relation formally coincident with the classical tensorial statement of Terza-

ghi’s effective stress principle. In such relation, the role of the effective stress tensor is played by

the solid extrinsic stress tensor σ̌(s). Notably, this stress law has been derived in absence of any

constitutive and/or microstructural hypothesis on the phases, and for this reason it has a general

medium-independent validity.

However, well-known experimental results deriving from testing of saturated porous media

[4, 5, 21] are usually interpreted as evidences of deviations from Terzaghi’s law for specific

classes of two-phase media. The primary objective of this contribution is to demonstrate that

VMTPM is capable of predicting such experimental results. The other objectives are: 1) to

show that VMTPM can recover results of consolidated use in poroelasticity, such as Terzaghi’s

stress partitioning principle and Biot’s equations; and 2) to show the validity of VMTPM beyond

the linear-elastic range.

Accordingly, stress partitioning laws are herein investigated for three classes of isotropic

media with volumetric-deviatoric uncoupling subjected to infinitesimal deformations: 1) linear

media; 2) media with no-tension response for the solid phase (yet, linear in compression); 3)

cohesionless granular media. This is done by analyzing VMTPM predictions for two-phase

mixtures in four thought-experiment compression tests, characterized by different loading and

drainage conditions.

The paper is organized as follows. Governing equations and boundary conditions defining

the two-phase medium-independent boundary-value poroelastic problem in linearized kinemat-

ics, as framed in VMTPM, are recalled from Part I in Section 2, together with the relevant

medium-independent stress partitioning laws. In Section 3 this boundary-value description is

specialized to isotropic media with volumetric-deviatoric uncoupling, presenting the relevant

elastic moduli (Section 3.1), the corresponding governing PDEs (showing the recovery of Biot’s

equations) (Section 3.2) and also reporting useful Composite Spheres Assemblage (CSA) ho-

mogenization estimates ( Section 3.4). The isotropic boundary-value description is deployed in

Section 4 to analyze the stress partitioning response in terms of strain and stress paths in the

planes of normalized strain and stress volumetric coordinates in four types of ideal compression

tests: a Jacketed Drained test (JD), an Unjacketed test (U), a Jacketed Undrained test (JU), and
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a (so-called) Creep test with constant confining stress and Controlled Fluid Pressure (CCFP),

for three classes of isotropic media assuming volumetric-deviatoric uncoupling and infinitesi-

mal deformations: 1) linear media; 2) media with solid phase having no-tension response; 3)

cohesionless granular media. Next, in Section 5, the elemental responses analyzed in Section

4 are employed to identify the specific set-up boundary conditions used in experimental com-

pression tests on porous water-saturated Weber sandstone [21], and analyze stress partitioning

in these experiments. In Section 6 the results of Sections 4 and 5 are reconsidered in a com-

prehensive discussion on the range of validity of Terzaghi’s effective stress principle and on the

meaningfulness of the concept of effective stress. Conclusive remarks are finally reported in a

final dedicated section. Details on the notation and the list of symbols used in the present paper,

with related descriptions are reported in Appendix, Section 8.

2 Two-phase medium-independent boundary value VMTPM prob-

lem

The statement of the boundary value problem as derived in Part I [37] is hereby recalled. The

framework adopted is medium-independent: it does not require any specific constitutive or mi-

crostructural hypotheses on the media, and neglects microinertia terms. The kinematically-linear

equations are considered to describe the problem for infinitesimal deformations. It is impor-

tant to remark that kinematic linearization is the only simplificative restriction applying to the

equations recalled in this subsection. Conversely, no restrictions are applied with respect to

constitutive nonlinearity: the equations remain ordinarily applicable to describe any nonlinear

constitutive response of constituent phases. Accordingly, the deformation is described by the

infinitesimal displacement fields of the solid phase ū(s), of the fluid phase ū(f), and by the in-

finitesimal intrinsic strain field ê(s). The scalar field ê(s) is a primary kinematic descriptor which

corresponds to the specialization to infinitesimal kinematics of the finite macroscopic field of

intrinsic volumetric strain Ĵ (s). Field Ĵ (s) is a finite-deformation primary descriptor in VMTPM

corresponding to the ratio ρ̂(s)/ρ̂
(s)
0 between true densities of solid before and after deforma-

tion. Such field can be also operatively defined by its experimental characterization in terms of
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changes of solid volume fractions before (Φ(s)
0 ) and after deformation (φ(s)), viz.:

Ĵ (s) =
ρ̂(s)

ρ̂
(s)
0

= J̄ (s) φ
(s)

Φ
(s)
0

(1)

with J̄ (s) = det ∂χ̄(s)/∂X denoting the Jacobian of the macroscopic placement field of the

solid phase. In linearized kinematics, relation (1) specializes to:

ê(s) =
dφ(s)

φ(s)
+
∂ū

(s)
i

∂xi
(2)

and links the characterization of ê(s) (see Part I of this study) to the measurement of infinitesimal

porosity changes dφ(s).

The kinematic descriptor fields ū(s), ū(f) and ê(s) are defined over the domain of the mixture

Ω(M) which, due to the infinitesimal kinematics, represents both undeformed and deformed

configurations. The undeformed configuration is also defined by the fields of solid and fluid

volume fractions (i.e., φ(s) and φ(f)). The domain Ω(M) is partitioned in two subsets defined

as follows: Ω(f) containing only fluid (φ(f) = 1), and the complementary subset Ω(s) ⊂ Ω(M)

where φ(s) 6= 0.

In the kinematically linearized theory, the macroscopic strain of the solid is defined by ê(s)

and by the infinitesimal extrinsic strain tensor:

ε̄(s) = sym
(
ū(s) ⊗∇

)
(3)

while infinitesimal volumetric strain measures are the extrinsic volumetric strains of solid and

fluid:

ē(s) =
∂ū

(s)
i

∂xi
= trε̄(s), ē(f) =

∂ū
(f)
i

∂xi
(4)

plus the intrinsic volumetric strains ê(s) and ê(f).

The complete saturation hypothesis reads in the infinitesimal case:

φ(s) + φ(f) = 1, dφ(s) + dφ(f) = 0 (5)

and, as shown in Part I, it implies the following dimensionless saturation relation between volu-
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metric infinitesimal strains:

φ(s)ê(s) + φ(f)ê(f) =
∂φ(s)ū

(s)
i

∂xi
+
∂φ(f)ū

(f)
i

∂xi
(6)

whereby ê(f) can be treated as a derived field depending from ū(s), ū(f) and ê(s).

The primary stress measures are the fluid pressure p, the extrinsic stress tensor of the solid

phase σ̌(s), and the intrinsic pressure of the solid phase p̂(s). These quantities are defined by

work association:

σ̌
(s)
ij =

∂ψ̄(s)

∂ε̄
(s)
ij

, p̂(s) = −∂ψ̄
(s)

∂ê(s)
, p = −∂ψ̂

(f)

∂ê(s)
(7)

where ψ̄(s) and ψ̄(f) are the macroscopic strain energy densities, and ψ̂(f) is defined by the

relation ψ̄(f) = φ(f)ψ̂(f).

Momentum balances are obtained by applying a kinematic linearization to the stationarity

conditions stemming from the least-Action principle. Hereby we consider the most general

medium-independent equations obtained ruling out microinertia terms:

Linear momentum balance of the solid phase:

∂σ̌
(s)
ij

∂xj
− φ(s) ∂p

∂xi
+ b̄

(sf)
i + b̄

(s,ext)
i = ρ̄(s) ¨̄u

(s)
i

(8)

Linear momentum balance of the fluid phase:

−φ(f) ∂p

∂xi
+ b̄

(fs)
i + b̄

(f,ext)
i = ρ̄(f) ¨̄u

(f)
i (9)

Intrinsic momentum balance:

p̂(s) − φ(s)p = 0 (10)

where b̄(sf) = −b̄(fs) are the volume forces representing the internal short-range solid-fluid

interaction, b̄(f,ext) and b̄(s,ext) are external volume forces, ρ̄(s) and ρ̄(f) are solid and fluid

apparent mass densities.

Equations (8), (9) and (10) express stationarity of the Action in relation to the displacement

fields of the solid phase, of the fluid phase, and to the intrinsic volumetric strain, respectively.
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When inertia terms are negligible Equations (8), (9) and (10) specialize as follows:

∂σ̌
(s)
ij

∂xj
− φ(s) ∂p

∂xi
+ b̄

(sf)
i + b̄

(s,ext)
i = 0 (11)

−φ(f) ∂p

∂xi
+ b̄

(fs)
i + b̄

(f,ext)
i = 0 (12)

p̂(s) − φ(s)p = 0 (13)

Boundary conditions with bilateral contact

The achievement of bilateral contact conditions at the boundaries can be determined by glu-

ing the external surfaces of the specimen with the internal surfaces of the environment, or by

applying a compressive prestress across the boundaries. Stress-type bilateral boundary condi-

tions over ∂Ω(M) are also obtained from a variational deduction [37], and turn out to be:

(
σ̌

(s)
ij − pδij

)
nj = texti over ∂Ω(M) (14)

where n denotes as usual the unit outward normal to the boundary. Boundary conditions of

displacement-type are:

ū(s) = ū(f) = u(ext) over ∂Ω(M) (15)

Conditions over free solid-fluid macroscopic interfaces

In several mixture problems, such as in unjacketed tests, it is necessary to consider the con-

dition which characterizes those interior macroscopic surfaces which, although not belonging

to the true boundary ∂Ω(M), are part of the boundary ∂Ω(s) of the macroscopic physical sub-

domain Ω(s) where φ(s) 6= 0. Such surfaces have been termed free solid-fluid macroscopic

interfaces, see [37]. Their mathematical definition is S(sf) = ∂Ω(s) \ ∂Ω(M). In points interior

to Ω(s) a mixture of solid and fluid is present (being both φ(s) 6= 0 and φ(f) 6= 0), while, in the

external points belonging to Ω(f), space is entirely occupied by the fluid alone, φ(f) = 1.

8



The following condition holds over S(sf) [37]:

σ̌
(s)
ij nj = 0 over S(sf) (16)

It is worth remarking that the condition σ̌(s)n = o over S(sf) does not entail absence of me-

chanical interaction between the solid phase interior to Ω(s) and the fluid external to Ω(s) in

the points of S(sf), since, in these points, coupling between the solid and the surrounding fluid

regions of Ω(f) still remains mediated by the intrinsic stress entering (10). Hence condition

(16), although formally similar, has not to be confused with the condition which in single-phase

elasticity involves the Cauchy stress tensor σ(s) holding in a point of the boundary surface of

a solid domain (i.e., σ(s)n = o). This last condition states instead that there is no mechanical

interaction between the interior solid and the external environment at that point.

Boundary conditions with unilateral contact

The typical condition for several tests on different classes of fluid saturated materials is more

properly described by unilateral contact since, in most experimental setups, specimens are ordi-

narily not bilaterally constrained to the walls of the confining chamber [44, 45].

Unilateral contact in a point x ∈ ∂Ω(M) is addressed by combining bilateral (closed contact)

boundary conditions, corresponding to full adhesion between the solid macroscopic external sur-

face and the container wall boundaries expressed, with open contact conditions, corresponding

to the solid phase boundary moving off the wall boundaries. Closed contact conditions are ex-

pressed by equations (14) and (15) (with u(ext) representing the displacement of the container-

wall boundary). In open contact conditions, the solid macroscopic external surface upon moving

off the wall boundaries after deformation, are converted into a free solid-fluid macroscopic in-

terface, of type S(sf) subjected to (16), with the wall boundaries remaining in contact only with

the fluid phase. The combination of these two conditions is achieved by extending the standard

description of contact in single-continuum problems by employing a set-valued law and a gap

function [46, 47]. Accordingly, the gap function, g, is defined over the boundary surface as:

g =
(
u(ext) − ū(s)

)
· n. (17)

In presence of closed contact conditions in x ∈ ∂Ω(M), which correspond to g = 0 in a
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boundary point x, the behavior of the boundary is stated by (14). Conversely, open contact in a

point x ∈ ∂Ω(M) corresponds to the attainment of condition g > 0 in such a point, with sepa-

ration of surfaces S(sf) (where (16) applies) and ∂Ω(M) (where (14) applies). In infinitesimal

displacements, the undeformed and deformed configurations are superimposed. Hence, although

S(sf) and ∂Ω(M) are distinct surfaces, they are superposed in a neighborhood of x. Thus, when

open contact is attained in a point x ∈ ∂Ω(M), both conditions (16) and (14) apply in such a

point. Consequently, in open contact, one has simultaneously that−pn = t(ext) and σ̌(s)n = o.

The first of these two relations implies that the external tractions are all transfered to the fluid

phase interposing between the solid and the wall. The second relation indicates that the solid

behaves as a free solid-fluid macroscopic interface. Note that this second condition is formally

similar to the condition of open contact for standard unilateral contact in Cauchy single-phase

continua: σ(s)n = o, where σ(s) is the Cauchy stress tensor [46], although it is different since

it involves the extrinsic stress tensor σ̌(s).

Summary of unilateral boundary conditions for stresses

closed contact: σ̌(s)n− pn = t(ext) if g =
(
u(ext) − ū(s)

)
· n = 0

open contact:
−pn = t(ext)

σ̌(s)n = o
if g =

(
u(ext) − ū(s)

)
· n > 0

(18)

Medium-independent general stress partitioning law

Two general stress partitioning laws of medium-independent character have been derived in

Part I [37].

The first one applies to regions Ω(h) where the stress state is macroscopically uniform and

with null relative solid-fluid motion at the boundary Ω(h). By denoting σ̌(s)
h and ph the constant

values of fields σ̌(s) and p inside Ω(h), the external traction field t(ext) (x, n) over ∂Ω(h), can

be represented by a single constant tensor σ(ext) associated with domain Ω(h):

t(ext) (x, n) = σ(ext)n, x ∈ ∂Ω(h) (19)

This external stress tensor σ(ext) is always partitioned in compliance with the following gen-

eral law, irrespective of the particular constitutive and microstructural features of the medium

10



considered [37]:

σ(ext) = σ̌
(s)
h − phI (20)

A second general stress partitioning law, formally similar to (20), applies to regions under-

going conditions of undrained flow. In such regions, hereby denoted as Ω(u), the macroscopic

relative solid-fluid motion is prevented across any surface. In this case, the traction in any point

x ∈ Ω(u) over a surface of unit normal n turns out to be expressed as:

t(ext) (x, n) = σ(ext)n, ∀x ∈ Ω(u), ∀n (21)

where the tensor field σ(ext), defined over Ω(u), has the expression:

σ(ext) = σ̌(s) − pI (22)

As previously observed [10, 37, 40], relations (20) and (22) coincide, from a formal point of

view, with the classical tensorial statement of Terzaghi’s principle upon identifying σ̌(s) with

the effective stress tensor.

3 Linear Isotropic formulation with volumetric-deviatoric uncou-

pling

This section examines the specialization of the linear formulation of the previous section under

hypotheses of isotropy and volumetric-deviatoric uncoupling. In Section 3.1, as a consequence

of these assumptions, suitable elastic moduli are introduced and general representations are de-

rived of the stess-strain law of the solid phase. The corresponding linear PDE governing the

response of isotropic media for negligible inertia forces are derived in Section 3.2. Finally,

in Section 3.4, bounds for the elastic moduli are estimated by deploying a simple Composite

Spheres Assemblage (CSA) homogenization approach [48, 49].

11



3.1 Linear elastic isotropic laws

As a consequence of the assumption of volumetric-deviatoric uncoupling for the solid phase and

linear elastic response, the strain energy density ψ̄(s) achieves the following quadratic form:

ψ̄(s)
(
ε̄

(s)
dev, ē

(s), ê(s)
)

=
1

2
K̄

(s)
dev

[
ε̄

(s)
dev

]
:
[
ε̄

(s)
dev

]
+

1

2

[
ē(s) ê(s)

] [
K̄

(s)
iso

] ē(s)

ê(s)

 (23)

where the volumetric-deviatoric split is introduced for strains and energy in the usual way:

ε̄(s) = ε̄
(s)
dev + ε̄

(s)
sph, ε̄

(s)
sph =

1

3
trε̄(s)I =

1

3
ē(s)I , ε̄

(s)
dev = ε̄(s) − 1

3
ē(s)I (24)

ψ̄(s)
(
ε̄(s), ê(s)

)
= ψ̄

(s)
dev

(
ε̄

(s)
dev

)
+ ψ̄

(s)
sph

(
ē(s), ê(s)

)
(25)

Standard variationally-consistent definitions for elastic coefficientsis are considered. These are

introduced as the second derivatives [40]:

[
K̄

(s)
iso

]
=

 K̄ ē(s)ē(s)
K̄ ê(s)ē(s)

K̄ ê(s)ē(s)
K̄ ê(s)ê(s)

 =


∂2ψ̄(s)

∂ē(s)∂ē(s)

∂2ψ̄(s)

∂ê(s)∂ē(s)

∂2ψ̄(s)

∂ê(s)∂ē(s)

∂2ψ̄(s)

∂ê(s)∂ê(s)

 , K̄
(s)
dev =

∂2ψ̄(s)

∂
∥∥∥ε̄(s)

dev

∥∥∥ ∂ ∥∥∥ε̄(s)
dev

∥∥∥ .
(26)

Owing to these definitions, the stress-strain relations for the solid phase are written as follows:

σ̌
(s)
dev = K̄

(s)
devε̄

(s)
dev (27) p̌(s)

p̂(s)

 = −
[
K̄

(s)
iso

] ē(s)

ê(s)

 (28)

where the primary volumetric and deviatoric stresses (introduced in the standard work-association-

compliant form) are:

σ̌
(s)
dev =

∂ψ̄(s)

∂ε̄
(s)
dev

, σ̌
(s)
sph =

∂ψ̄(s)

∂ε̄
(s)
sph

. (29)

The relations involved in the volumetric-deviatoric split for stresses are the usual ones:

σ̌(s) = σ̌
(s)
dev + σ̌

(s)
sph (30)
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σ̌
(s)
sph = −p̌(s)I σ̌

(s)
dev = σ̌(s) + p̌(s)I (31)

In particular, the auxiliary extrinsic pressure-like scalar stress p̌(s) is the stress quantity work

associated with −ē(s), and, owing to (24), it is one third of the trace of the extrinsic stress

tensor:

p̌(s) = −∂ψ̄
(s)

∂ē(s)
= −1

3
trσ̌(s) (32)

Elastic moduli

As shown in [40], a convenient representation of the solid linear elastic law can be achieved

in terms of standard Lamè and bulk moduli of the dry porous medium (i.e., in absence of the

fluid phase) when inertia forces are negligible:

k̄V = K̄ ē(s)ē(s) − (K̄ ê(s)ē(s)
)2

K̄ ê(s)ê(s)
, µ̄ =

K̄
(s)
dev

2
, λ̄ = k̄V −

2

3
µ̄ (33)

Upon introducing the three auxiliary moduli k̂r, k̄r, and k̂s:

k̂r =
K̄ ê(s)ē(s)

K̄ ê(s)ê(s)
, k̄r = φ(s)k̂r =

φ(s)K̄ ê(s)ē(s)

K̄ ê(s)ê(s)
, k̂s =

K̄ ê(s)ê(s)

φ(s)
(34)

the stiffness matrix
[
K̄

(s)
iso

]
can be expressed as:

[
K̄

(s)
iso

]
=


k̄V +

(
k̄r
)2
k̂s

φ(s)
k̄rk̂s

k̄rk̂s k̂sφ
(s)

 (35)

The resulting representation for the stress-strain law is the following:

σ̌(s) = 2µ̄ε̄(s) + λ̄ē(s)I − k̄r

φ(s)
p̂(s)I (36)

p̂(s) = −k̂s
(
k̄rē

(s) + φ(s)ê(s)
)

(37)

In particular, in view of relation (13), equations (36) and (37) achieve a convenient expression

in terms of fluid pressure [40]:
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σ̌(s) = 2µ̄ε̄(s) + λ̄ē(s)I − k̄rpI (38)

φ(s)

k̂s
p = −k̄rē(s) − φ(s)ê(s) (39)

The inverse of (35) provides the compliance matrix
[
C̄

(s)
iso

]
:

[
C̄

(s)
iso

]
=
[
K̄

(s)
iso

]−1
=


1
k̄V

− k̄r

φ(s)k̄V

− k̄r

φ(s)k̄V

1

φ(s)

(
1

k̂s
+

(k̄r)
2

φ(s)k̄V

)
 (40)

whereby the spherical stress-strain relation reads:

 ē(s)

ê(s)

 = −
[
C̄

(s)
iso

] p̌(s)

p̂(s)

 (41)

Using relations (24), (27), (31), (33), (40) and (41), the inverse strain-stress law can be

reconstructed:

ε̄(s) = ε̄
(s)
dev +

1

3
ē(s)I =

1

2µ̄
σ̌

(s)
dev +

1

3
ē(s)I =

1

2µ̄

(
σ̌(s) + p̌(s)I

)
+

1

3
ē(s)I (42)

ε̄(s) =
1 + ν̄

Ē
σ̌(s) − ν̄

Ē
trσ̌(s) I +

k̄r

3φ(s)k̄V
p̂(s)I (43)

ê(s) =
k̄r

3φ(s)k̄V
trσ̌(s) − 1

φ(s)

(
1

k̂s
+

(
k̄r
)2

φ(s)k̄V

)
p̂(s) (44)

where

ν̄ =
3k̄V − 2µ̄

2
(
3k̄V + µ̄

) , Ē =
9k̄V µ̄(

3k̄V + µ̄
) (45)

Relation (43) recovers the Lamé inverse elastic laws when p̂(s) = 0. Also, for static problems,

use of (10) allows expressing the relations (43) and (44) as functions of p:

ε̄(s) =
1 + ν̄

Ē
σ̌(s) − ν̄

Ē
trσ̌(s) I +

k̄r
3k̄V

pI (46)
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ê(s) =
k̄r

3φ(s)k̄V
trσ̌(s) −

(
1

k̂s
+

(
k̄r
)2

φ(s)k̄V

)
p (47)

For the fluid phase, the quadratic strain energy is written as:

ψ̄(f) = φ(f) 1

2
k̂f

(
ê(f)
)2

(48)

where k̂f is the fluid intrinsic bulk modulus, whose definition is recalled below together with the

fluid pressure-intrinsic strain relation:

k̂f =
∂2ψ̄(f)

∂ê(f)∂ê(f)
, p = −k̂f ê(f). (49)

3.2 Governing PDE for the isotropic linear problem

Governing equations (8)-(10) are hereby specialized on account of the isotropic constitutive laws

with volumetric-deviatoric uncoupling obtained in Section 2. For simplicity, henceforth, space

uniformity of porosities, densities and of elastic and inertial coefficients is assumed, and external

volume forces are excluded (i.e., b̄(f,ext) = o and b̄(s,ext) = o).

3.2.1 ū(s)-ū(f) PDE with inertial terms

The domain equations (5)-(10) are combined with the isotropic stress-strain laws (49), (27), (28)

and (35), and are solved to obtain a system of equations in the primary unknowns ū(s) and ū(f)

directly comparable with Equations (6.7) obtained by Biot in [50].

In particular, the system of (6), (49), the second of (28), and (10) can be written in the

following form:

 −k̂s k̂f

φ(s) φ(f)


 ê(s)

ê(f)

 =

 k̄r k̂s
φ(s) ē

(s)

φ(s)ē(s) + φ(f)ē(f)

 (50)
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Hence we have: ê(s)

ê(f)

 = − 1
k̂sφ(f)+k̂fφ(s)

 φ(f) −k̂f
−φ(s) −k̂s


 k̄r k̂s

φ(s) ē
(s)

φ(s)ē(s) + φ(f)ē(f)



=


−φ(f) k̄r k̂s

φ(s) ē
(s) + k̂f

(
φ(s)ē(s) + φ(f)ē(f)

)
k̂sφ(f) + k̂fφ(s)

k̄rk̂sē
(s) + k̂s

(
φ(s)ē(s) + φ(f)ē(f)

)
k̂sφ(f) + k̂fφ(s)


(51)

Substitution of (3) and (38) into (8), and substitution of (51) in (9) yield equations having a

ū(s)-ū(f) form easily comparable with equations (6.7) in [50]:

µ̄ (∇ · ∇) ū(s) +
(
λ̄+ µ̄

) (
ē(s)∇

)
+

+

[(
φ(s) + k̄r

)2
k̂sf

(
ē(s)∇

)
+
(
φ(s) + k̄r

)
φ(f)k̂sf

(
ē(f)∇

)]
+

+b̄(sf) = ρ̄(s) ¨ū(s)

(52)

[(
φ(s) + k̄r

)
φ(f)k̂sf

(
ē(s)∇

)
+
(
φ(f)

)2
k̂sf

(
ē(f)∇

)]
+

−b̄(sf) = ρ̄(f) ¨ū(f)

(53)

where k̂sf is a modulus defined as:

1

k̂sf
=

(
φ(s)

k̂s
+
φ(f)

k̂f

)
(54)

and which can be interpreted as a series-coupling of solid and fluid intrinsic stiffnesses k̂s and

k̂f .

It is interesting to observe that the general structure of Biot’s PDEs (6.7) is recovered, with

one important difference in the particular expressions of the elastic coefficients. Actually, upon

conveniently arranging the coefficients of the differential terms ē(s)∇, ē(f)∇, entering (52) and

(53) in the matrix form:

 λ̄+ µ̄ 0

0 0

+ k̂sf

 (
φ(s) + k̄r

)2 (
φ(s) + k̄r

)
φ(f)(

φ(s) + k̄r
)
φ(f)

(
φ(f)

)2
 (55)

these can be compared with the coefficients entering Biot’s equation (6.7) which are function of
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λ̄, µ̄, and of two elastic coefficients, Q and R introduced by Biot proceeding from the synthetic

consideration of a single strain energy for the whole mixture depending on both solid and fluid

strains. In VMTPM, we proceed istead from the consideration of individual strain energies of

the solid and fluid phases, and explicit relations are obtained for Q and R as functions of elastic

coefficients of individual phases:

Q =
(
φ(s) + k̄r

)
φ(f)

(
φ(s)

k̂s
+
φ(f)

k̂f

)−1

, R =
(
φ(f)

)2
(
φ(s)

k̂s
+
φ(f)

k̂f

)−1

(56)

The important difference with Biot’s equation (6.7) concerns the coefficient multiplying the term(
ē(s)∇

)
in (52). In Biot’s formulation, this is equal to λ̄+ µ̄. Conversely, in (52), this term turns

out to be equal to:

λ̄+ µ̄+
(
φ(s) + k̄r

)2
k̂sf (57)

with an added stiffness coupling term equal to
(
φ(s) + k̄r

)2
k̂sf . Also, in contrast with Biot’s

formulation, no added mass terms are present in (52) and (53).

3.3 PDE for static and quasi-static interaction

For static or quasi-static problems, the sum of (11) and (12) yields:

∂σ̌
(s)
ij

∂xj
− ∂p

∂xi
= 0 (58)

Substituting (3) and (38) into (58) yields:

(
µ̄+ λ̄

)
(∇⊗∇) ū(s) + µ̄ (∇ · ∇) ū(s) −

(
1 + k̄r

)
∇p = 0 (59)

Moreover, considering the following position introducing the relative solid-fluid velocity:

w(fs) = ū(f) − ū(s) (60)

according to which the following substitution can be performed:

(∇⊗∇) ū(f) = (∇⊗∇)w(fs) + (∇⊗∇) ū(s). (61)
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Upon excluding inertia terms, equation (53) provides:

k̂sf

(
φ(f)

)2
(∇⊗∇)w(fs) + k̂sfφ

(f)
(
1 + k̄r

)
(∇⊗∇)ū(s) − b̄(sf) = 0 (62)

The system of PDE (59) and (62) governing this class of quasi-static problems requires a

specification of the particular solid fluid interaction. Hereby, as a simplest possible choice, a

linear Darcy law is considered for b̄(sf):

b̄(sf) = −b̄(fs) = K
∂w(fs)

∂t
(63)

where the proportionality coefficient K, in
[
Ns/m4

]
, can be expressed as follows [51]:

K =
(φ(f))2µ(f)

κ
(64)

where µ(f) is the coefficient of effective fluid viscosity, in
[
Ns/m2

]
, and κ is the intrinsic

permeability of the porous material, measured in
[
m2
]
.

Account of (63) and of zero external volume forces in (12) provides the equation completing

the system of (59) and (62):

∇p =
b̄(fs)

φ(f)
= − K

φ(f)

∂w(fs)

∂t
(65)

Inclusion of (65) into (59) and (62) yields the system of governing equations for the isotropic

problem with Darcy interaction in the so-called u-w form:

(
µ̄+ λ̄

)
(∇⊗∇) ū(s) + µ̄ (∇ · ∇) ū(s) +

(
1 + k̄r

) K

φ(f)

∂w(fs)

∂t
= 0 (66)

k̂sf

(
φ(f)

)2
(∇⊗∇)w(fs) + k̂sfφ

(f)
(
1 + k̄r

)
(∇⊗∇)ū(s) −K∂w(fs)

∂t
= 0 (67)
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3.4 CSA estimates of elastic moduli

Estimates of the constitutive moduli k̂s and k̄r have been derived in [40], based on the simple

Composite Spheres Assemblage (CSA) homogenization technique established by Hashin [48,49,

52]. Derivation of CSA estimates is based on the assumption that the microstructural realization

of the solid medium consists of hollow spherical cells filling out space up to the limit of zero

volume of unfilled space [48, 49].

It is important to remark that the peculiarity of the CSA assumption on the microstructural

realization lay aside the sought feature of medium independence for the poroelastic theory since,

besides isotropy, a specific hypothesis is introduced on the realization of the microstructure of

the medium. For this reason, all relations making use of these estimates will be marked as ’(Ob-

tained with CSA)’. In the following, these relations will be only prudently invoked to have

subsidiary correlations between macroscopic and microscopic moduli, once microstructure-

independent isotropic laws of more general validity are first obtained.

However, CSA provides relations of practical use between the macroscopic moduli k̂s, k̄r,

and k̄V , and the elastic parameters which define the isotropic response at the microscale of the

material constituting the solid phase. These parameters are the microscale shear modulus µ, the

microscale bulk modulus ks, and the microscale Poisson ratio ν, related to ks and µ by the usual

relation ν = (3ks − 2µ)/[2 (3ks + µ)] holding for isotropic materials.

The relations provided by CSA between macroscopic and microscale elastic moduli are:

k̄r = − φ(s) 4
3µ

4
3µ+ ks(1− φ(s))

, k̂s =
1

1− φ(s)

[
4

3
µ+ ks(1− φ(s))

]
(68)

k̄V =
φ(s) 4

3µks
4
3µ+ (1− φ(s))ks

(69)

An alternate equivalent expression for k̄r as function of φ(s) and ν is [40]:

k̄r = − 2(1− 2ν)φ(s)

3− 3ν − φ(s)(1 + ν)
(70)

In view of the bounds 0 ≤ ν ≤ 0.5 and 0 ≤ φ(s) ≤ 1, the following bounds apply for k̄r:

−1 ≤ k̄r ≤ 0 (71)
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Specifically, the upper bound 0 is achieved in the limit of vanishing solid volume fraction φ(s) =

0, and when the solid constituent material is volumetrically incompressible (ν = 0.5); the lower

bound is attained at φ(s) = 1.

4 Stress partitioning in ideal compression tests

Stress partitioning is hereby investigated for the cases of four ideal static infinitesimal compres-

sion tests in oedometric conditions. The macroscopic physical domain Ω(M) of the boundary

value problems is the mixture contained inside a cylindrical compression chamber. The bound-

aries of the mixture are the walls of the compression chamber and the compressive plug, see

Figure 1. Cylindrical coordinates are introduced over Ω(M) with x being the direction of the

axis of the cylinder, and with r and θ being the radial and angular coordinates, respectively. The

origin of the reference frame is set at the bottom center of the specimen of length L, directed

upward along the radial axis. A compressive plug is positioned on the upper side of the specimen

at x = L, see Figure 1. Four experimental setups are considered: a jacketed drained test (JD); an

unjacketed test (U); a jacketed undrained test (JU); and a creep compression test with controlled

fluid pressure and constant stress at the plug (CCFP). It should be noted that no viscous creep

effects for the individual solid phase are considered in in CCFP.

For all the tests considered, isotropy and homogeneity of the initial configuration is assumed

together with hypotheses of negligible gravitational forces. Accordingly, the domain equations

and the boundary conditions hereby applied are those of Section 3, and the mixture is assumed

to have initially uniform porosity φ(f). A simple short-range solid-fluid interaction of Darcy

type is also considered.

4.1 Boundary conditions

For all the tests investigated, boundary conditions on the bottom surface ∂Ω(M)
b and on the

lateral surface ∂Ω(M)
l are the same, and correspond to unilateral contact with zero external

displacement u(ext), see (18) in Section 2. Accordingly, these surfaces are treated either as

closed contact or as open contact according to the sign of σ̌(s)n ·n. The solution of the problem

posed by this nonlinear constraint is operatively handled by initially considering trial closed

contact boundary conditions. For sake of simplicity, no friction is considered, so that the external
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Figure 1: Schematics of the four compression tests analyzed: a) Jacketed Drained (JD) test; b)
Unjacketed test (U); c) Jacketed Undrained (JU) test; d) Creep test with controlled Fluid Pressure
(CCFP).

traction t(ext) is normal to the confining walls: t(ext) = σ
(ext)
n n.

On the top boundary surface ∂Ω(M)
u , four different ideal contact and loading conditions are

considered for each of the four tests, whose descriptions are reported in the following.

Due to the quasi-static nature of the loads applied, equations (66) and (67) can be used as

domain equations. Herein, the analysis is limited to the final stationary equilibrium configura-

tion at time t = ∞ when consolidation phenomena have fully developed. Accordingly, time

rates of ū(f) and ū(s) are set to zero together with the rate of w(fs). Altogether, vanishing of

w(fs), the cylindrical symmetry of the system, and the uniformity of boundary conditions, en-

sure that the macroscopic displacement field of the solid, solving (66) and (67) is linear [40].

Such linearity implies that the strain and stress states inside the mixture are macroscopically ho-

mogeneous. Accordingly, the partial differential problem turns out to be conveniently converted

into an algebraic one, where the unknowns are the uniform stress quantities σ̌(s)
h , ph, and strains

ε̄
(s)
h and ê(s). Owing to space homogeneity of stresses, and in light of the medium-independent
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stress partitioning laws in Section 2, a physically meaningful external stress tensor σ(ext) can be

introduced, which is related to internal stresses by the Terzaghi-like relation (20).

On account of the cylindrical symmetry and homogeneity of the stress field in Ω(M), the

stress and strain matrices in the (x, r, θ) reference system all have the transversely isotropic

form:

[
σ̌(s)

]
=


σ̌

(s)
xx 0 0

0 σ̌
(s)
tt 0

0 0 σ̌
(s)
tt

 ,
[
σ(ext)

]
=


σ

(ext)
xx 0 0

0 σ
(ext)
tt 0

0 0 σ
(ext)
tt

 (72)

[
ε̄(s)
]

=


ε̄

(s)
xx 0 0

0 ε̄
(s)
tt 0

0 0 ε̄
(s)
tt

 (73)

with (·)tt = (·)rr = (·)θθ being the transverse normal components of the above tensors.

The quantities that can be directly measured during the compression tests are:

• the fluid pressure inside the specimen ph

• the external normal traction textx applied by the superior plate over ∂Ω(M)
u , and related to

the force Fo measured by the load cell by:

textx = σ(ext)
xx =

Fo
A
≤ 0 with Fo ≤ 0 (74)

where textx and σ(ext)
xx are equated on account of (19), and where A is the area of ∂Ω(M)

u ,

being textx negative for compressive tractions.

• the longitudinal strain of the specimen ε̄(ext)
x , which is the only nonzero component of the

externally applied macroscopic strain ε̄(ext), and turns out to be related to the displacement

applied at the plate Uo by:

ε̄(ext)
x =

Uo
L
,

[
ε̄(ext)

]
=


ε̄

(ext)
x 0 0

0 0 0

0 0 0

 (75)
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Taking advantage of the recognized algebraic nature of the problem at hand, the operative

criterion used in the following examples to cope with unilateral contact is the following: as a trial

step, bilateral undrained contact conditions (14) are first applied directly to strain components

with: [
ε̄(s)
]
trial

=
[
ε̄(ext)

]
(76)

which corresponds to setting

(ε̄(s)
xx )trial =

Uo
L

(77)

(ε̄
(s)
tt )trial = 0 ; (78)

Next, a trial solution of the stress tensor (σ̌(s))trial is computed from (ε̄(s))trial by applying

the isotropic stress-strain relation, and the sign of σ̌(s)
n,trial = σ̌(s)n · n is checked: if σ̌(s)

n > 0,

boundary conditions are switched to unilateral ones (i.e., relation (18)).

Although the response of the system is measured in terms of primary measured quantities

ph, textx and ε̄(ext)
x , the privileged coordinate set for tracking the volumetric mechanical state of

the solid porous material is represented by the Deviatoric strain and volumetric Extrinsic and

Intrinsic strain coordinates (DEI) ε̄(s)
dev, ē(s), and ê(s), and by the corresponding work-associated

stress and pressure coordinates (σ̌(s)
dev, p̌(s) and p̂(s)). Although measurement of DEI coordinates

is not as straightforward as for the directly measurable quantities ph, ε̄(s)
hx and textx , such coordi-

nate system represents, from a theoretical point of view, a basic choice within VMTPM pursuant

to work-association.

When loading conditions are such that contact is preserved everywhere across the container

walls, the stress path can be analyzed exclusively in terms of spherical extrinsic-intrinsic (EI) co-

ordinates. Actually, in such a case, one has ε̄(s) = ε̄(ext), and by virtue of volumetric-deviatoric

uncoupling (27)-(28) and of the Terzaghi-like variational partitioning law for homogeneous

stresses relation (20), the following relations hold:

ε̄
(s)
dev = ε̄

(ext)
dev ,

[
σ

(ext)
dev

]
=
[
σ̌

(s)
dev

]
= K̄

(s)
dev


2
3 ε̄

(ext)
x 0 0

0 −1
3 ε̄

(ext)
x 0

0 0 −1
3 ε̄

(ext)
x

 (79)
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Thus, the deviatoric part of stresses is immediately related to the external applied strain by (75).

For this reason, for each of the four tests examined, the response of the porous medium will

be analyzed in terms of both primary measurable quantities and EI coordinates, postponing a

separate evaluation of deviatoric stresses only in case of violation of closed-contact conditions.

For what concerns spherical coordinates, an external pressure pext can be standardly defined

on account of the cylindrical symmetry by taking one third of the trace of (20):

pext = p̌
(s)
h + ph (80)

with

pext = −1

3
trσ(ext) = −1

3

(
σ(ext)
xx + 2σ

(ext)
tt

)
(81)

The extrinsic and intrinsic constitutive laws for the solid phase provided by (36) and (37) are

respectively written:

σ̌
(s)
h = 2µ̄ε̄

(s)
h + λ̄ē

(s)
h I − k̄rphI (82)

φ(s)

k̂s
ph = −k̄rē(s)

h − φ(s)ê
(s)
h (83)

By taking one third of the trace of (82), one obtains:

p̌
(s)
h = −k̄V ē(s)

h + k̄rph (84)

When closed contact is preserved at the boundaries, it is inferred from (76) that ē(s)
h is also

directly observable, being ē(s)
h = ε̄

(ext)
x . Since the strain applied by the impermeable plate (ē(s)

h )

and the fluid pressure (ph) are quantities that can be measured more easily than the extrinsic

solid pressure (p̌(s)
h ), it is convenient to recast the previous equations in a form conveniently

involving only the directly observable quantities pext, ph, and ē(s)
h . Accordingly, equation (80)

can be solved for ph and substituted into (84). This yields:

pext = −k̄V ē(s)
h +

(
1 + k̄r

)
ph (85)
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Notably, relation (85) is in full agreement with the well known pext-ē(s)-p relations obtained

by experimental measures on sandstone [21]. In such contribution, Nur and Byerlee have exper-

imentally investigated the optimality of several strain-pressure relations of the form:

pext = −k̄V ē(s)
h + αph (86)

where α is a fitting coefficient generally referred to as the Biot’s coefficient [53]. Validated by

direct measurements of pext, ē(s) and p on sandstone specimens, the best fitting expression for

α is reported in [21]: α = 1 − k̄V /ks. The combination of this expression with (86) (which

corresponds to the combination of equations (3), (4), (6) and (7) in [21]) hence turns out to be

equal to

pext = −k̄V ē(s)
h +

(
1− k̄V

ks

)
ph. (87)

On the other hand, relation (87), which is of experimental origin in [21], turns out to be the

result of a pure theoretical deduction in VMTPM. Actually, it is noteworthy exactly the one

inferred from (85) when minimal CSA homogenization estimates are exploited to relate k̄r to

the microscale solid bulk modulus ks. As a matter of fact, (68) and (69) yield:

1 + k̄r = 1− k̄V
ks

(Obtained with CSA) (88)

which substituted in (85) provides (87). Hence, for CSA-microstructured media, such an identi-

fication also yields that k̄r is related to Biot’s coefficient by k̄r = α− 1.

4.2 Ideal jacketed drained test

In a jacketed drained test, compression occurs via a porous plate allowing for fluid exchange

between the specimen and the environment, see Figure 1a. Hence, when mechanical equilibrium

is reached, the fluid pressure in the sample is null (p = 0). Accordingly, the equation (36)

recovers the Navier law for a single continuum. Moreover, upon considering closed contact and

accounting for relation (74), compressive (negative) normal stress is recognized to exist on the

whole ∂Ω(M):

σ̌(s)
xx < 0, σ̌(s)

yy = σ̌(s)
zz =

λ̄

2µ̄+ λ̄
σ̌(s)
xx < 0 (89)
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The condition of closed contact is thus confirmed to hold everywhere in ∂Ω(M), so that the

stress states can be simply analyzed in EI coordinates, being the deviatoric stress σ(ext)
dev related

to ε̄(ext)
x by (79). Hence, relation (85) recovers the following expression as a special condition:

pext = −k̄V ē(s) (90)

and (13) provides:

p̂(s) = 0 (91)

so that the stress path in the plane of normal spherical coordinates (p̂(s), p̌(s)) is a horizontal

straight line, see Figure 2a. The inclination of the volumetric strain paths shown in Figure 2b is

inferred from equation (37) considering zero fluid pressure:

ê(s)

ē(s)
= − k̄r

φ(s)
(92)

The CSA estimates (68) and (70) provide expressions for k̄r in terms of φ(s), µ and ks, and

in terms of φ(s) and ν, respectively. Accordingly, the strain ratio reads:

ê(s)

ē(s)
=

4
3µ

4
3µ+ ks(1− φ(s))

=
2(1− 2ν)

3− 3ν − φ(s)(1 + ν)
(Obtained with CSA) (93)

Note that in the Limit of Vanishing Porosity (LVP) (i.e., φ(s) = 0), expression (93) achieves

a unit value. Hence, the slope of the strain vector in Figure 2 is 1 : 1. Also, in the Limit of

Incompressible Constituent Material (LICM) (i.e., ν = 0.5), the ratio is zero.

4.3 Ideal unjacketed test

In the unjacketed test, the compressing plug is impermeable, and the chamber is fully occupied

by the specimen and the fluid, see Figure 1b. The space between the plug and the specimen is

occupied by the fluid phase: there is no direct contact between the plug and the upper boundary

∂Ω
(M)
u . Under these mechanical conditions, the plug induces a stress state directly over the

fluid phase which, in its turn, compresses the porous specimen. Accordingly, ∂Ω(M)
u is a free
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Figure 2: Representation in EI coordinates of the volumetric mechanical response during a
Jacketed drained test. a) EI pressure path in the (p̂(s), p̌(s)) plane; b) EI volumetric strain path in
the (ē(s), ê(s)) plane. Dotted lines indicate the LVP and LICM limits.

solid-fluid macroscopic interface of type S(sf), where the surface condition (16) applies:

σ̌(s)
xx = 0, over ∂Ω(M)

u (94)

On the upper boundary of Ω(M), equilibrium between the plug and the fluid is expressed
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considering a null extrinsic stress tensor in (14):

σ(ext)
xx = −p (95)

Hence, relations (94) and (95) correspond, from a practical point of view, to an open contact

condition over ∂Ω(M)
u , and p can be regarded as the stress input for the specimen.

Response under bilateral contact

For the boundary ∂Ω(M)
l , if bilateral contact conditions are considered, we have:

ε̄
(s)
tt = 0 (96)

Hence, specialization of the equation (36) for the xx component yields:

(
2µ̄+ λ̄

)
ε̄

(s)
xx − k̄rp = 0 (97)

It follows that:

ē(s) = ε̄(s)
xx =

k̄r
2µ̄+ λ̄

p < 0 (98)

Given the above relations, the transverse normal stress component reads:

σ̌
(s)
tt = −k̄r

2µ̄

2µ̄+ λ̄
p > 0 (99)

The positive sign of σ̌(s)
tt indicates that, when bilateral contact is ensured, VMTPM predicts

that a tensile increment of extrinsic stress (or, in presence of prestress, a decrease of compres-

sive extrinsic stress) can be even induced as the effect of external compressive loadings. This

prediction of the onset of tensile extrinsic stress increments in response to compressive loading

is peculiar of VMTPM, as previously pointed out [40].

Moreover, since (98) and (39) yield:

ê(s) = −
(

k̄2
r

φ(s)
(
2µ̄+ λ̄

) +
1

ks

)
(100)
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from (2), the variation of solid volume fraction dφ(s) turns out to be:

dφ(s) = −φ(s)

[
1

ks
+

k̄r
2µ̄+ λ̄

(
k̄r

φ(s)
+ 1

)]
(101)

which can be negative depending on the relative values of the elastic moduli inside the square

brackets.

Both the insurgence of positive increments of extrinsic normal stresses, shown by (99), and

the possibility of negative dφ(s) are particularly significant in cohesionless mixtures. In these

materials where friction plays a primary role in the overall stability, these features can be respec-

tively put in direct relation with decrease of confining (effective) stress and with the (relative)

increment of intergranular space dφ(f) = −dφ(s) > 0. Such two features determine a decrease

in friction which can be put in relation with the insurgence of phenomena of liquefaction occur-

ring in low density saturated soils [54,55]. In this respect, it is important to remark that, although

liquefaction is mostly known to be associated with laboratory and in situ conditions as an effect

essentially induced by deviatoric undrained loading and excitations, there exist experimental ev-

idences indicating that sands can be also liquefied by isotropic compressive stress applied under

quasistatic drained conditions [56].

Response under unilateral contact

When the closed contact condition is violated according to (18), open contact has to be

considered also on ∂Ω(M)
l . Consequently, open contact conditions (18)2 apply across the whole

∂Ω(M):

σ̌(s)n = o, over ∂Ω(M) (102)

As a result, recalling that σ̌(s) is uniform, one infers σ̌(s) = O. Accordingly, one has:

p̌(s) = 0 (103)

In this case, due to (103), the normalized spherical stress path is a vertical line, as shown in

Figure 3a.

It is important to remark that, when contact is lost, (79) no longer holds since, due to equa-

tions (46) and (24), one has ε̄(s)
dev = O and hence ε̄(s)

dev 6= ε̄
(ext)
dev .

The configuration of the unjacketed compression test is characterized via (84) in terms of
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primary measured quantities by the following condition:

−k̄V ē(s) + k̄rp = 0 (104)

which yields:

p =
k̄V
k̄r
ē(s) (105)

Substituting (105) into (37), the intrinsic-to-extrinsic strain ratio for the U test is:

ê(s)

ē(s)
= −

(
1

k̂s

k̄V
k̄r

+
k̄r

φ(s)

)
(106)

For a medium with a CSA microstructure, using (68) and (69), the special form achieved by

(106) is:
ê(s)

ē(s)
= 1 (Obtained with CSA) (107)

Also, for such a medium, the stiffness coefficient in (105) coincides with the microscale solid

bulk modulus:

−ē(s) =
1

ks
p (Obtained with CSA) (108)

since (68) and (69) yield:

− k̄r
k̄V

=
1

ks
(Obtained with CSA) (109)

4.4 Ideal jacketed undrained test

Stress partitioning in the jacketed undrained (JU) test has been previously described [40]. Hereby,

the stress partitioning solution is recalled and expanded with considerations on the consequences

of unilateral contact, and analyzed in terms of volumetric strain and stress EI paths. An imper-

meable plug compresses the sample by displacing of U0 (< 0), see Figure 1c.

Response under bilateral contact

The trial condition of bilateral contact along the whole ∂Ω(M) is initially considered. Ac-

cordingly, as a first step, the trial boundary conditions expressed by the first of (18) are applied.
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Figure 3: Representation in EI coordinates of the volumetric mechanical response during an
ideal unjacketed compression test. a) EI pressure path in the (p̂(s), p̌(s)) plane; b) EI volumetric
strain path in the (ē(s), ê(s)) plane. Dotted lines indicate the LVP and LICM limits.

In particular, these conditions for displacements and stresses over ∂Ω(M)
u are respectively:

ū(s)
x = ū(f)

x = U0 (110)
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σ(ext)
xx = σ̌(s)

xx − p (111)

As shown in [40], strains in the mixture for a jacketed undrained test with closed contact at the

boundaries are such that:

ē(f) = ē(s) (112)

with ē(s) = ε̄
(s)
xx = Uo

L in the cylindrical configuration. Denoting by i the unit vector of the x

axis and by (i⊗ i) the associated projector, the corresponding trial stress solution to the system

composed of (6), (38), (39) and (112) is:

p = −
(
1 + k̄r

)
k̂sf

Uo
L

(113)

σ̌(s) = 2µ̄
Uo
L

(i⊗ i) +
[
λ̄+ k̂sf k̄r

(
1 + k̄r

)] Uo
L

I (114)

p̂(s) = −φ(s)
(
1 + k̄r

)
k̂sf

Uo
L

(115)

By computing from (114) the trial longitudinal and transverse extrinsic normal tractions σ̌(s)
xx

and σ̌(s)
tt , one has:

σ̌(s)
xx =

[
2µ̄+ λ̄+ k̂sf k̄r

(
1 + k̄r

)] Uo
L

(116)

σ̌
(s)
tt =

[
λ̄+ k̂sf k̄r

(
1 + k̄r

)] Uo
L

(117)

For bilateral boundary conditions, and when σ̌(s)
xx < σ̌

(s)
tt < 0, closed contact is preserved

all through ∂Ω(M). In this last case, the true stress state in the mixture is defined by (113)-

(115). The corresponding expression of Skempton’s coefficient B [57], defined as the ratio of

the induced fluid pressure p to the applied stress textx , has been computed in [40]:

B =
p

σ
(ext)
xx

= −
(
1 + k̄r

)
k̂sf

2µ̄+ λ̄+
(
1 + k̄r

)2
k̂sf

(118)

A similar coefficient Biso can be defined in terms of pressure ratio as:

Biso =
p

pext
=

(
1 + k̄r

)
k̂sf

2
3 µ̄+ λ̄+

(
1 + k̄r

)2
k̂sf

(119)
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The intrinsic-to-extrinsic pressure ratio can then be computed by recalling (13), (80), and (111):

p̂(s)

p̌(s)
= φ(s) Biso

1−Biso
=

φ(s)
(
1 + k̄r

)
k̂sf

2
3 µ̄+ λ̄+ k̄r

(
1 + k̄r

)
k̂sf

(120)

For non-liquefying mixtures, the volumetric strain ratio is obtained substituting (115) and ē(s) =

Uo
L into (37):

ê(s)

ē(s)
=

(
1 + k̄r

)
k̂sf

k̂s
− k̄r

φ(s)
(121)

Figure 4 illustrates the volumetric stress and strain paths for the JU test with unilateral contact.

Unilateral boundary conditions

The positivity of σ̌(s)
xx and σ̌(s)

tt determined by (116) is now studied to check the effective

closed/open contact conditions (18). Since Uo < 0, open contact corresponds to the negativity

of the expressions under square brackets in such relations. Also, recalling that k̄r is negative,

when µ̄ and λ̄ are small compared to k̂sf , then σ̌
(s)
xx and σ̌

(s)
tt can attain positive values (i.e.

tensile) even in presence of compressive loads. Since one trivially has:

2µ̄+ λ̄+ k̂sf k̄r
(
1 + k̄r

)
> λ̄+ k̂sf k̄r

(
1 + k̄r

)
(122)

a strong and a weaker condition of contact loss can be recognized, depending on the specific

values of the elastic moduli µ̄, λ̄, k̄r, k̂s, and k̂f of a given isotropic mixture.

Specifically, when the stronger condition holds:

2µ̄+ λ̄+ k̂sf k̄r
(
1 + k̄r

)
< 0 (123)

then σ̌(s)
tt > σ̌

(s)
xx > 0. This corresponds to the insurgence of open contact all throughout the

boundary in response to compression by the plug, with σ̌(s)n = o everywhere on ∂Ω(M). These

boundary conditions coincide exactly with those in (102) of Section 4.3. It is thus recognized

that, when condition (123) is fulfilled, the response of the system corresponds to the same of the

unjacketed test. On the other hand, when (123) does not apply but the weaker condition holds:

λ̄+ k̂sf k̄r
(
1 + k̄r

)
< 0 (124)

33



then σ̌(s)
tt > 0 > σ̌

(s)
xx and, in response to plug compression, contact opens only on the lateral

boundary.

It is worth recalling that, in case of contact loss, the relation σ(ext)
dev = σ̌

(s)
dev remains true

(since the fluid is incapable of carrying any deviatoric stress). However insurgence of open

contact determines ε̄(s)
dev 6= ε̄

(ext)
dev , so that all relations in (79) no longer apply, as previously

observed.

Cohesionless granular materials

For cohesionless media, conditions (123) and (124) achieve an even stronger mechanical

significance. Actually, in such materials, vanishing of extrinsic stress determines vanishing

of intergranular (effective) stress. Consequently the loss of frictional interaction produced by

opening contact is not limited to ∂Ω(M), but it affects all surfaces interior to the specimen. On

these surfaces, condition σ̌(s)n = o applies with n being the normal to the interior surface. As

a consequence, friction is prevented across these internal surfaces, and this determines potential

sliding in a way similar to liquids. Hence, conditions (123) and (124) discriminate the proneness

of a given cohesionless mixture to liquefaction. For this reason we define a cohesionless mixture

to be full liquefying when its elastic moduli are such that the stronger condition (123) holds, and

to be partially liquefying cohesionless mixture when only the weaker condition (124) is verified.

When neither condition is verified, the cohesionless medium is denominated a non-liquefying

cohesionless mixture. In particular, condition (123) is expected to be attained for mixtures such

as water-saturated loose sands. In such mixtures, the moduli k̂s and k̂f are expected to have

magnitude much higher than the macroscopic aggregate modulus 2µ̄+λ̄. Hence, k̂sf >> 2µ̄+λ̄

and, when k̄r retains a nonvanishing value, the second negative term in (123) prevails over the

first one.

For fully liquefying mixtures, even in the JU test, primary measured quantities comply with

the unjacketed relation (104), and ê(s)

ē(s) recover the other corresponding unjacketed relations also

reported in Section 4.3.

Media with CSA microstructure

All previously reported relations hold for generic isotropic media, since no assumptions for

their specific microstructural realization has been made. Special expressions, holding for media

with CSA microstructure, can be obtained substituting relations (68), (69), and (54) in (120) and
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−ē(s)
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Figure 4: Representation in EI coordinates of the volumetric mechanical response during an
ideal jacketed undrained compression test. a) EI pressure path in the (p̂(s), p̌(s)) plane; b) EI
volumetric strain path in the (ē(s), ê(s)) plane. Dotted lines indicate the LVP and LICM limits.

(121), and considering that, for the fluid phase, the macro- and microscale bulk moduli k̂f and

kf coincide:

p̂(s)

p̌(s)
=
kf
(

4
3µ+ ks

)
µ (ks − kf )

(Obtained with CSA) (125)
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ê(s)

ē(s)
=

4
3µ+ kf

4
3µ+ φ(s)kf + (1− φ(s))ks

(Obtained with CSA) (126)

Although the relations (125) and (126) are less general, they allow examining some limit be-

haviors of the system in relation to the microscale fluid stiffness. In particular, when the fluid

stiffness is zero, the JD response is recovered. When the microscale bulk stiffnesses of the two

materials coincide (i.e., when ks = kf ), the stress and strain ratios recover the response charac-

teristic of the unjacketed compression test. Also, at LVP (i.e., when φ(s) ' 1), the strain ratio

achieves unity as expected. This implies that, when porosity is low, the volumetric strain path

stays in close proximity of the LVP line.

4.5 Creep test with controlled pressure

In the CCFP test, an external pressure pext0 is kept constant via an impermeable plug. The fluid

pressure in the biphasic medium is quasi-statically decreased by controlling the fluid outflow

through a valve until reaching equilibrium (i.e., zero fluid pressure), see Figure 1d. The stress

path in volumetric coordinates is shown in Figure 5, and it is composed of two stages: the

first one consists of an unjacketed path up to p0 = pext0 , and ends up with a stress state in the

solid defined as σ̌0 = O and p̂(s)
0 = φ(s)p0; the second stage is determined by quasi-statically

decreasing p from p0 to 0 (allowing for controlled fluid exudation), while keeping constant the

external pressure pext0 .

In the transition between the first and the second stage, closed contact conditions between

the plug and ∂Ω(M)
u are restored with unaltered stress state in the mixture (i.e., σ̌ = O, p̂(s)

0 =

φ(s)p0, and p = p0). This condition ensures that no fluid is interposed between the specimen

and the compressive plug. During the second stage, the volumetric stress components read (see

relations (80) and (13)):

pext0 = p̌(s) + p, p̂(s) = φ(s)p = φ(s)
(
pext0 − p̌(s)

)
(127)

Differentiating relation (127), the relevant increments read:

dp̌(s) = −dp, dp̂(s) = φ(s)dp (128)
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The sign of the extrinsic stress increments σ̌(s)
xx and σ̌(s)

tt are evaluated to check the open/closed

contact conditions. During the second loading stage, pressure reduces and strain variations are

related by (84):

dp̌(s) = −k̄V dē(s) + k̄rdp (129)

and, accounting for (128)1, one infers:

dp =
k̄V

(1 + k̄r)
dē(s) (130)

having both dp < 0 and dē(s) < 0. Due to the zero condition for σ̌(s)
0 , the extrinsic stress

increments dσ̌(s)
xx coincide with their overall value, viz.:

σ̌(s)
xx = σ̌

(s)
0xx + dσ̌(s)

xx = dσ̌(s)
xx (131)

Similarly, we have dσ̌(s)
tt = σ̌

(s)
tt . Variations of trial normal stresses can then be computed

applying (36) to strain and stress increments accounting for the property dε̄(s)
xx = dē(s):

dσ̌(s)
xx =

(
2µ̄+ λ̄

)
dē(s) − k̄rdp, dσ̌

(s)
tt = λ̄dē(s) − k̄rdp (132)

Moreover, in consideration of relation (130), one has:

dσ̌(s)
xx =

(
2µ̄+ λ̄− k̄rk̄V

(1 + k̄r)

)
dē(s), dσ̌

(s)
tt =

(
λ̄− k̄rk̄V

(1 + k̄r)

)
dē(s) (133)

Since dē(s) is negative and the terms in round brackets are positive, it is recognized that closed

contact conditions are never violated during the CCFP test. Hence, an account of linear bilateral

boundary constraint is sufficient for the analysis of this test.

The ratio dê(s)

dē(s) is similarly computed by substituting (130) into (37), upon writing the latter

for strain and stress increments:

φ(s)

k̂s
dp = −k̄rdē(s) − φ(s)dê(s) (134)
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Substitution yields:
dê(s)

dē(s)
= −

(
1

k̂s

k̄V
(1 + k̄r)

+
k̄r

φ(s)

)
(135)

Media with CSA microstructure

The CSA estimates for relation (135) yield:

dê(s)

dē(s)
=

4
3 µ̄

4
3 µ̄+ ks

=
2 (1− 2ν)

3 (1− ν)
(Obtained with CSA) (136)

This ratio is always positive, so that the corresponding vector in the EI volumetric strain space

has a positive slope, albeit bounded by the LVP line, as indicated by the arrow in Figure 5b.

5 Analysis of Nur and Byerlee experiments

Hereby, VMTPM is applied to the analysis of the kinematics and mechanical state of water satu-

rated sandstone specimens as tested by Nur and Byerlee [21]. Specifically, based on an analysis

in EI coordinates of the reported experimental data, the hydro-mechanical conditions effectively

applied during experiments are identified. Subsequently, it is shown that EI coordinate analysis

also makes possible interpreting and inferring predictions on the nonlinear mechanical response

exhibited by this class of poroelastic media.

The tests reported in [21] were carried out by jacketing full water-saturated sandstone spec-

imens of porosity φ(f) = 0.06 in a copper sleeve, and compressing them by a steel plug at

controlled flow and pressure. The experimental data set consisted of the confining pressure pext,

the apparent macroscopic volumetric strain of the specimens ē(s), and the fluid pressure p. Table

1 reports a numerical digitalization of the data reported in Figure 2 of [21]: labels have been

added to reference each record of measurements, and the corresponding values of the extrin-

sic and the intrinsic pressures in EI coordinates have been included operating the coordinates

changes p̌(s) = pext − p and p̂(s) = φ(s)p, respectively. The corresponding plot of measured

extrinsic strain vs. confining pressure is shown in Figure 6. It can be observed that the exper-

imental points are lined up vertically by groups characterized by the same confining pressure

(groups are identified by the same letter).

Stress points in EI pressure coordinates p̌(s) and p̂(s) are reported in Figure 7a, and follow

a pattern similar to that theoretically deduced in Section 4.5 and reported in Figure 5a. Such
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Figure 5: Representation in EI coordinates of the volumetric mechanical response during an
ideal creep test with controlled fluid pressure. a) EI pressure path in the (p̂(s), p̌(s)) plane; b) EI
volumetric strain path in the (ē(s), ê(s)) plane. Dotted lines indicate the LVP and LICM limits.

pattern similarity and the constant value of the confining pressure suggest that these experiments

are identifiable as CCFP compression tests. The identification of a CCFP test is important since

it confirms that the solid stress can be analyzed in terms of simple EI coordinates. Actually,

in this test unilateral phenomena have been shown to be not relevant so that deviatoric strains

of the solid are easily obtained from their coincidence with the homogeneous deviatoric strain

produced in the compressive chamber (ε̄(s)
dev = ε̄

(ext)
dev ), and σ̌(s)

dev = σ
(ext)
dev .
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Primary measured quantities EI pressure coordinates

label ē(s) pext p p̌(s) p̂(s)

[-] [kb] [kb] [kb] [kb]

a1 0.000853 0.26 0.16 0.10 0.15
a2 0.001630 0.26 0.05 0.21 0.05
a3 0.001837 0.26 0.00 0.26 0.00
b1 0.001602 0.51 0.38 0.13 0.36
b2 0.002534 0.52 0.23 0.29 0.22
b3 0.003415 0.51 0.00 0.51 0.00
c1 0.001730 0.62 0.51 0.11 0.48
c2 0.002378 0.62 0.39 0.23 0.37
c3 0.003052 0.62 0.27 0.35 0.25
c4 0.004088 0.63 0.00 0.63 0.00
d1 0.001677 0.84 0.75 0.09 0.70
d2 0.002376 0.83 0.65 0.18 0.61
d3 0.002998 0.83 0.54 0.29 0.51
d4 0.004008 0.84 0.35 0.49 0.33
d5 0.005252 0.84 0.00 0.84 0.00

Primary measured quantities EI pressure coordinates

label ē(s) pext p p̌(s) p̂(s)

[-] [kb] [kb] [kb] [kb]

e1 0.002866 1.08 0.86 0.22 0.81
e2 0.003825 1.08 0.69 0.39 0.65
e3 0.004369 1.04 0.52 0.52 0.49
e4 0.005042 1.09 0.41 0.68 0.39
e5 0.006182 1.08 0.00 1.08 0.00
f1 0.004445 1.23 0.81 0.42 0.76
f2 0.005611 1.22 0.47 0.75 0.44
f3 0.006881 1.23 0.00 1.23 0.00
g1 0.005738 1.51 0.85 0.66 0.80
g2 0.006256 1.51 0.65 0.86 0.60
g3 0.007137 1.52 0.32 1.20 0.30
or 0.000000 0.00 0.00 0.00 0.00

Table 1: Confining pressure, pext, volumetric strain, ē(s), fluid pressure, p, measured in jacketed
compression tests on water saturated Weber sandstone specimens ( [21]) and corresponding EI
pressure coordinates.
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Figure 6: Plot of measured extrinsic strain vs. confining pressure for Weber sandstone specimens
(data taken from [21])

In order to represent the corresponding volumetric strain path in EI coordinates, it should be

considered that:

• the strain-to-stress response of sandstone exhibits a non negligible nonlinearity. Nur and

Byerlee recognized this to be an effect of crack closure, which is a typical feature of

compressed sandstones [58]. As originarily observed by the authors, the nonlinearity is

specifically pronounced in response to changes of pext when p is kept fixed, and it is

almost absent in response to variations of p alone. Accordingly, this nonlinear response

can be described as a secant bulk modulus k̄V [21], varying as function of the quantity

pext − p, viz.: k̄V = k̄V
(
p̌(s)
)
.
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Figure 7: a) Volumetric stress points plotted in the EI pressure coordinate space (p̌(s), p̂(s)) b)
Volumetric strain path in EI coordinates (ē(s), ê(s)), as estimated by relation (143) from data
in [21].

• the intrinsic strain ê(s) is not among the data reported in [21].

To address such deviations from linearity in EI coordinates, volumetric compliance functions

ē(s) = ē(s)
(
p̌(s), p̂(s)

)
, ê(s) = ê(s)

(
p̌(s), p̂(s)

)
(137)

are considered, which generalize to the nonlinear range the linear volumetric compliance rela-

tions in EI coordinates represented by equations (40) and (41). The experimental data in Table

1 are used to curve-fit the function ē(s) = ē(s)
(
p̌(s), p̂(s)

)
accounting for the above mentioned

nonlinear dependence on variable p̌(s). Moreover, since no measurement of ê(s) is reported

in [21], its values are extrapolated assuming that the missing information about ê(s) can be ob-

tained via CSA estimates.

5.1 Determination of ē(s)

An expression of ē(s) is provided by the first of (41), and reads:

ē(s) = − 1

k̄V
p̌(s) +

k̄r

φ(s)k̄V
p̂(s) (138)
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Aimed at capturing the nonlinear behavior of the rock material with the simplest interpolation, a

single quadratic term in the extrinsic pressure is added. Accordingly, the employed interpolating

function for ē(s) reads:

−ē(s) = aq

(
p̌(s)
)2

+ bqp̌
(s) + cqp̂

(s) (139)

where aq, bq, and cq are three coefficients. Curve-fitting of the above expression with the exper-

imental data provides:

aq = −0.00188 [kb−2], bq = 0.00782 [kb−1], cq = 0.00168 [kb−1], (140)

with a coefficient of determination R2 = 0.9979. The proximity of R to unity indicates the

agreement of the experimental data with the proposed model (139), and confirms that p̌(s) is

the sole stress variable regulating the stiffness changes of the specimens, as originarily observed

in [21].

By comparing (138) and (139), the following nonlinear secant expressions for k̄V and k̄r are

computed:

k̄V = k̄V

(
p̌(s)
)

=
1

aqp̌(s) + bq
, k̄r = k̄r

(
p̌(s)
)

= − φ(s)cq

aqp̌(s) + bq
(141)

and, as expected, they turn out to be both nonlinear functions of p̌(s) alone, and independent from

p̂(s). Within the range of stresses investigated by Nur and Byerlee, k̄V increases by a ratio of 42

% from 127.9 [kb] to 181.6 [kb], while k̄r changes from -0.2019 to -0.2867 as p̌(s) increases. In

particular, it can be observed that (141) yields:

k̄r

φ(s)k̄V
= −cq (142)

5.2 Estimates of ê(s)

Function ê(s) = ê(s)
(
p̌(s), p̂(s)

)
is similarly computed from the second scalar compliance equa-

tions provided by (40) and (41). Accordingly, we have:

ê(s) =
k̄r

φ(s)k̄V
p̌(s) − 1

φ(s)

(
1

k̂s
+

(
k̄r
)2

φ(s)k̄V

)
p̂(s) (143)
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where the previously evaluated nonlinear secant interpolations (141) of the experimental data

are employed for coefficients k̄r and k̄V .

Lack of experimental data on ê(s) for the determination of the remaining macroscopic mod-

ulus k̂s is supplied by a computation via CSA estimates. Accordingly, k̂s is related to k̄r and to

the microscale shear modulus µ using the estimates in (68):

1

k̂s
= −1− φ(s)

φ(s)

1
4
3µ
k̄r (Obtained with CSA) (144)

Regarding the evaluation of µ in (144), it has been reported that the mineralogical components

of sandstone (i.e., quartz, calcite and feldspar) are characterized by an almost constant value

of the shear modulus [58] for which µ = 4.6 · 106 [psi]= 317.16 [kb] is taken as an average

representative value. Hence, based also on the results of (141) and (140), the magnitude of

the term 1
k̂s

is estimated to be in the lower range of 10−5 [kb−1], making it negligible when

compared to the other terms in (143). This is expected since k̂s diverges in proximity to zero

porosity.

The other term k̄r
φ(s)k̄V

in (143) has been already computed in (142) to be equal to the constant

value −cq, which is independent from p̌(s). For this reason its computation does not require

subsidiary homogenization estimates. However, it is interesting to observe that its CSA estimate

provided by (68) and (69) turns out to be:

k̄r

φ(s)k̄V
= − 1

φ(s)ks
(Obtained with CSA) (145)

The above estimate corroborates the property found in (142) that k̄r
φ(s)k̄V

is a constant parameter

independent of p̌(s) and hence unaffected by the nonlinearities of the deformation history during

the experiments. Actually, the two terms φ(s) and ks are negligibly affected by the nonlinearity

of the strain-stress response. In particular, the microscale bulk modulus ks is a constant mi-

croscale parameter which is unaffected by crack closure, a nonlinear phenomenon taking place

at a mesoscale level. Also, for the loading conditions applied and the material considered, φ(s)

can be assumed to be constant.

The paths given by (143) are reported in Figure 7 in the volumetric EI coordinates: the

experimental data are all aligned along the same curve. This is due to the low porosity of the
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sandstone specimens: in the limit of low porosity, the matrix
[
C̄

(s)
iso

]
in (40) becomes singular at

LVP.

The alignment of the data highlights the difficulty in recognizing intrinsic and extrinsic

strains to be two independent coordinates from the only kinematic point of view in systems

having low porosity such as the sandstone specimens. On the other hand, the necessity of ad-

dressing the description of sandstone specimens in terms of two independent volumetric stress

and strain coordinates is undeniably recognized. Actually, the examined experimental data have

shown that, in these poroelastic systems, strain and stiffness depend on both p̌(s) and p̂(s) (see

(138), and (141)). Such dependency cannot be lumped into one single stress variable governing

both strain and stiffness. Moreover, the convenience of analyzing the strain response in terms

of two strain variables (ē(s), ê(s)) can be appreciated in Figure 7b: as the deformation increases,

the trend of the strain path is to incline towards the direction of the LVP line, which represents

an insuperable upper bound for the inclination of the curves in the space (ē(s), ê(s)) as discussed

in Section 4. Such tendency of the EI volumetric strain path to increase its slope towards the

direction of the LVP line can be interpreted as the effect of crack closures and, more generally,

as a characteristic nonlinear behavior of compacting materials.

6 Domain of validity of Terzaghi’s principle according to VMTPM

In the light of the results presented in Sections 4 and 5, it is possible to conduct an analysis in

EI coordinates on the range of validity of Terzaghi’s effective stress principle as a trustworthy

stress partitioning law generally applicable to fluid saturated porous media. The notion of sin-

gle effective stress is of great historical importance in application of porous media theories to

geomechanics [59–61]. Besides, it is also of substantial practical engineering convenience for

general constitutive modelling purposes since, when applicable, it allows to connect back the

behavior of a porous medium in a multiphase environment to the response of the solid phase

alone, treated as a single-phase continuum.

With specific reference to soils, Terzaghi refers to the effective stress as: "All the measurable

effects of a change of stress, such as compression, distortion and a change in the shearing

resistance are exclusively due to changes in effective stresses" [62]. Later on, the concept of

effective stress has been extended and examined in relation to specific observable effects such
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as strain [11–13] and strength [9, 14, 15] properties; also, it has been used for describing the

behavior of rocks and partially saturated soils [4, 21, 63], as well as bone [16] and cartilage [18]

tissues. In the following, it is shown how Terzaghi’s statement can be actually inferred as a

prediction of VMTPM for cohesionless frictional granular materials such as soils. Subsequently,

the implications of the recovery of the Terzaghi’s principle in relation to the mechanical response

observed in media different from soils (e.g., rocks) is discussed.

6.1 Recovery of Terzaghi’s law for cohesionless frictional granular materials

In granular materials, compressing deformation typically occurs at the expense of intergranular

pore space [61]. This implies that the extrinsic strain is much larger than the intrinsic one (i.e.,

ē(s) >> ê(s)). Hence, evaluation of k̄r by a JD test yields k̄r = −φ(s) ê(s)

ē(s) ' 0, see (92). In

the condition of a vanishing k̄r, the extrinsic and intrinsic strains become decoupled. This is

inferred from (43) for ē(s), and from (40) and (41) for ê(s) (see also (143)). So we have:

k̄r = 0, ε̄(s) =
1 + ν̄

Ē
σ̌(s) − ν̄

Ē
trσ̌(s) I , ê(s) = − 1

φ(s)k̂s
p̂(s) (146)

Most importantly, the extrinsic strain, which is normally the primary strain object of measure,

becomes dependent exclusively on the extrinsic stress tensor σ̌(s).

Furthermore, the results shown in this study indicate that, for those materials such as cohe-

sionless granular materials whose strength and/or stiffness properties are determined by contact

over interior surfaces, strain (ε̄(s)), strenght and stiffness are solely governed by the stress vari-

able σ̌(s), with p̂(s) having a negligible effect.

An experimental evidence of the insensitiveness of interior contacting interfaces to changes

of p̂(s) can be deduced from the stiffening in sandstone specimens. As shown in Section 5.2, p̂(s)

has no effect on stiffness. Accordingly, since stiffening in sandstones is known to be an effect

of crack closure [58], it is deduced that p̌(s) is the only stress variable responsible for increase

or decrease of contact across interior surfaces. This property finds also a rational justification

in light of the results of Section 4.3 concerning the response to an unjacketed test, where it

is deduced that an increment in the intrinsic stress alone induces a homothetic strain response

(ē(s) = ê(s)) in a two-phase medium. Since the homothety preserves a similitude between the

shapes of the solid domain before and after deformation takes place, it does not alter the quota
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of interior surfaces in open-contact or closed-contact conditions.

Hence, for cohesionless frictional granular materials for which both condition (146) and

insensitivity to p̂(s) apply (e.g., soils), the observed effects comply with Terzaghi’s statement

if ê(s) is excluded from the measured effects of stress changes. The corresponding relations

recovered by VMTPM between primary observed volumetric quantities and external spherical

loadings pext and p are collected from the previous sections (see (11), (32), (80), (141)1 and the

trace of (146)) in synoptic form:

p̌(s) = pext − p, p̌(s) = −1

3
trσ̌(s) (147)

ē(s) = − 1

k̄V
p̌(s), k̄V = k̄V

(
p̌(s)
)

(148)

∂σ̌
(s)
ij

∂xj
− φ(s) ∂p

∂xi
+ b̄

(sf)
i + b̄

(s,ext)
i = 0 (149)

To point out the significance of relations (147)-(149) within VMTPM, three important properties

must be remarked:

• The extrinsic stress tensor σ̌(s) in equation (147) is not just a stress variable introduced

for constitutive purposes, but it is actually the same stress quantity entering the linear

momentum balance of the solid phase (see equation (11)), recalled by the second equation

in (149) for statics.

• Relations (147)-(149) hold for media with finite volumetric compressibility of the solid

and fluid constituent materials. In this respect, it is important to recall that, as classi-

cally demonstrated (see for instance [11–13]), recovery of compliance with Terzaghi’s

statement can be also put in connection with the stronger hypothesis that the constituent

solid material is volumetrically incompressible. In such a limit of volumetrically incom-

pressible constituent solid material (LICM) (corresponding to
µ

ks
→ 0, or equivalenty to

ν → 0.5, it can be inferred from estimates (68)-(70) that 1
k̂s
→ 0 and k̄r → 0, while k̄V

retains a finite value. Under this hypothesis, a specialization even stronger than (146) is

obtained, which yields ê(s) = 0. Accordingly, for frictional granular materials, when an

ad-hoc LICM hypothesis is added, all macroscopically observable effects become truly

dependent only on p̌(s), since ê(s) is strictly zero and p̂(s) has a negligible effect on shear
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strength and stiffness. In contrast, within VMTPM, the property of low k̄r is completely

independent from the microscale stiffness parameters µ and ks, which can retain finite

values even when k̄r = 0. This makes possible an ordinary employment of VMTPM for

wave propagation analysis also in cohesionless granular materials, since singularities in

the wave speed are avoided.

• From a formal point of view, relation (147) exactly matches with Terzaghi’s stress parti-

tioning law. Nevertheless, while this formula was originarily introduced by Terzaghi with

the purpose of condensing all observed experimental mechanical effects over soils, the

significance of (147) in VMTPM is much more general and not confined to soils alone.

Actually, in VMTPM, equation (147) stems directly from (20), which is obtained based

on a derivation which is variationally consistent and medium-independent (i.e., in absence

of any hypothesis on the microstructure or of constitutive type) [37]. As such, relation

(147) is also independent from the microstructural realizaton of a given medium, and

from any constitutive hypothesis such as intrinsic volumetric incompressibility. Hence,

as observed in [10], compliance with (147) reflects a fundamental medium-independent

equilibrium property rooted in the least Action principle, and thus holding regardless of

the microstructure. In this respect, a parallel can be drawn with the property of symmetry

of the stress tensor, which similarly reflects the fundamental rotational equilibrium and

also holds irrespective of the microstructure.

6.2 Extensibility of Terzaghi’s effective stress and Terzaghi’s principle beyond

cohesionless granular materials

For classes of media other than cohesionless granular materials, the veracity of Terzaghi’s prin-

ciple, as expressed by (148)-(149), has to be assessed case by case. Similarly, the extensibility

of Terzaghi’s principle (i.e. the possibility of condensing the dependence of all observed effects

upon a single stress variable) has to be assessed considering the specific nature of the mechanical

response of the class of media examined.

For saturated sandstone rocks, as observed in Section 5.2, a significant deviation from (148) is

found. This is because the strain-confinement pressure-fluid pressure relation measured in [21]

results into the law pext = −k̄V ē(s)
b + αpb with α far from a unit value. Such a deviation is
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theoretically confirmed as an ordinary prediction of VMTPM, see relation (85) when k̄r is not

zero. Furthermore, this study reveals an even stronger agreement with the estimate obtained

by Nur and Byerlee for α, which they found to be experimentally well fitted by α = 1 −

k̄V /ks. Actually, as shown in Section 4, the combination of these last two relations can be

also theoretically inferred from (85) when CSA estimates are employed to relate microscale and

macroscopic stiffness moduli (see Eqs.(85) and (88)).

Turning to the search for a single effective stress regulating all observable effects in water

saturated sandstones, it can be recognized that a single volumetric stress coordinate regulating

both strain and stiffness in these media cannot be found. The choice most frequently encountered

in the literature (and also adopted in [21]) for generalizing the notion of effective stress in order

to accomodate the deviation from Terzaghi’s law is to replace it with the isostrain stress pē
(s)

.

This last stress quantity is defined as the confining stress that should be externally applied to

the same specimen, upon drying it, to induce the same macroscopic strain produced by the

concomitant action of p and p̌(s), viz:

pē
(s)

: ē(s) = − 1

k̄V
pē

(s)
(150)

This definition yields, on account of (10) and (138), the following expression for pē
(s)

:

pē
(s)

= p̌(s) − k̄rp = pext −
(
1 + k̄r

)
p (151)

which, as opposite to (147)1, is manifestly driven by the microstructure, since it contains k̄r.

While this modification of effective stress into pē
(s)

is capable of restoring the dependency

of volumetric strain upon a single stress variable, as already pointed out by Nur and Byerlee

and confirmed by the analysis carried out in Section 5.2 (see equation (141)), the stiffness of

the saturated speciments does not depend on pē
(s)

alone. In fact, it is solely regulated by the

other volumetric stress coordinate p̌(s), being insensitive to p̂(s). It is thus concluded that all

the macroscopically observable mechanical effects in sandstone cannot be regulated by pē
(s)

alone. In this respect, the inadequacy of the isostrain stress for assessing the strength of several

classes of saturated porous materials has been previously observed, and it has been specifically
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discussed (see for instance [9]).

In conclusion, for rock materials and other classes of biphasic porous media which do not

belong to the family of cohesionless granular materials, neither the extrinsic stress p̌(s) nor the

isostrain stress pē
(s)

can adequately be employed to lump the dependence of all mechanically

significant observable effects into a single effective stress variable.

A generalization of Terzaghi’s principle urges a dependency upon two volumetric stress co-

ordinates at least. Within the framework of VMTPM, the natural two-coordinate extension of

the classical statement of Terzaghi’s principle, encompassing all theoretical and experimental

results herein discussed, is represented by an extension of the dependency of all observable me-

chanical effects upon all DEI stress coordinates σ̌(s)
dev, p̂(s) and p̌(s). Actually, these coordinates

represent the privileged choice for defining a volumetric stress state in VMTPM, being p̂(s) and

p̌(s) the stresses work-associated with primary volumetric strain variables of the solid phase (ē(s)

and ê(s)). Accordingly, the following generalized statement is proposed:

Generalized Terzaghi’s principle:

"All the measurable mechanical effects over the solid porous phase produced by a change of

stresses in a multi-phase porous medium are exclusively due to changes in DEI coordinates, i.e.,

in the deviatoric stress tensor and in the extrinsic and intrinsic pressures."

The classical statement for soils, represented by (147)-(149), is only recovered as a special-

ization of the above statement for the subclass of cohesionless granular materials. In this case the

insensitivity to the intrinsic pressure makes the observable effects solely driven by the extrinsic

stress tensor.

7 Discussions and Conclusions

Stress partitioning between solid and fluid phases in fluid saturated porous media is complex and

yet not completely understood. In this study, the variational continuum poroelastic framework

VMTPM was adopted to derive general procedures and operative formulas for the analysis of

stress partitioning in biphasic systems subjected to compression in both drained and undrained

conditions. VMTPM provides a suitable ground for stress partitioning analysis since it only

employs stress variables which are ordinarily defined in terms of explicit work-association with

primary strain variables, with no use of Lagrange multipliers.
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In Part I [37], local strong form of boundary conditions and conditions holding at solid-fluid

interfaces were derived based on a variational analysis. These conditions have been combined in

Section 2 to address unilateral contact over a binary solid-fluid mixture (by Equations (18)) via a

simple extension of the use of a set-valued law and a gap function ordinarily employed in single-

phase contact theories. Such boundary conditions allow addressing, in a variationally-consistent

and medium-independent macroscopic continuum treatment, a large class of boundary value

poroelastic problems without invoking further mechanical arguments.

In Section 3.2 it is shown that, under hypotheses of isotropy, VMTPM momentum balance

equations recover the structure of Biot’s equations. Such a recovery is notable since VMTPM

proceeds from a purely variational statement of the poroelastic two-phase problem while pre-

vious works, see, e.g., [64], have argued the difficulty of obtaining Biot’s equations proceeding

from a variational principle, motivated by the presence of a nonequilibrium variable, the incre-

ment of fluid content, in Biot’s derivation of governing equations. The variational statement

of the problem considered in VMTPM does not contain, however, nonequilibrium variables in

the kinematic description. Explicit expressions for the elastic coefficient entering these Biot-like

equations, as function of the elastic moduli of individual phases, are also obtained in Section 3.2.

However, an important difference with Biot’s framework is the retrieval of a positive increment

of a stiffness coefficient entering the solid linear momentum balance with respect to the corre-

sponding term of Biot’s theory (added stiffness). The magnitude of this coefficient which seems

to have been overlooked in Biot’s theory, appears to be non-negligible in most applications. In

contrast, in the medium-independent equations herein considered, no added mass coefficients

appear. A further element of reciprocal corroboration between VMTPM and Biot’s theory is the

identification of the relationship k̄r = α − 1 between the constitutive dimensionless ratio k̄r of

VMTPM and Biot’s coefficient α.

The capability of VMTPM of addressing a comprehensive variety of boundary and surface

conditions was exploited to perform a comprehensive analysis of the mechanical responses of

biphasic specimens during JD, U, JU and CCFP static compression tests, see Section 4. This was

carried out with no limitation on porosity and/or other material properties (e.g. compressibility,

permeability, etc.). The four examined testing conditions offered a broad scope of compression

histories, which can be used for the mechanical identification of a wide range of experimental
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conditions. Hence, the deriving results can be deployed for investigating various porous media

applications.

These elemental responses were subsequently employed in Section 5 for identifying the

hydro-mechanical conditions determined by the experimental set-up of Nur and Byerlee dur-

ing their compression tests on Weber sandstone specimens [21], which is generally regarded as

a proof of deviation from Terzaghi’s effective stress principle. It was shown that the experimen-

tal conditions in which the specimen were tested corresponded to those of a CCFP compression

test, and that the peculiar behavior of this soil can be actually predicted by VMTPM. In par-

ticular, the Weber sandstone response to CCFP compression was analyzed in terms of primary

observed quantities (pext, p, and ē(s)) via relations (85)-(88), and also accounting for the non-

linear response of volumetric stress and strain paths, see Figures 7.

An appropriate selection of independent primary stress variables or single effective stress

is of special relevance for constitutive modeling of unsaturated soils [4, 63]. Within VMTPM,

privileged stress coordinates are naturally identified in DEI coordinates. Specifically, DEI strain

coordinates consist of the deviatoric strain ε̄(s)
dev plus the volumetric extrinsic and intrinsic strains

(ē(s)), (ê(s)), while DEI stress coordinates consist of the corresponding work-associated vari-

ables σ̌(s)
dev, p̌(s) and p̂(s).

DEI coordinates were used to track the poroelastic response to ideal JD, U, JU, CCFP com-

pression tests, and for predicting and interpreting the experimental data reported in [21], see

Section 5.2. In particular, when DEI coordinates were adopted to analyze the JU test, it was

shown how the phenomenon of compression-induced liquefaction, experimentally observed in

sands [56] and deemed responsible for blast-induced liquefaction, results to be a natural theoret-

ical prediction of VMTPM for cohesionless materials. Such prediction emerges naturally (i.e.,

without adding ad-hoc constitutive features to describe compression-induced liquefaction) when

the unilateral character of cohesionless materials is taken into account, see Section 4.4. Actually,

discriminated by the specific values of stiffness moduli of the solid phase and of the interstitial

fluid in a given cohesionless mixture, three distinct behaviors were identified and classified into

nonliquefying, partially liquefying and full liquefying cohesionless mixtures. In this respect, it

is important to remark that, although liquefaction is mostly known to be associated with labo-

ratory and in situ conditions, as an effect essentially induced by deviatoric undrained loading
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and excitations, there exist experimental evidences indicating that sands can be also liquefied by

isotropic compressive stress applied under quasistatic drained conditions. Moreover, DEI coor-

dinates were also deployed to predict the effective stress law experimentally determined in [21],

and when interpreting the nonlinear features of the experimental data set reported therein, see

Section 5.2. Specifically, the stiffening in sandstone specimen due to crack closure was recog-

nized to be reflected by a reorientation of the strain curve in EI coordinates, which tends to align

along the LVP line.

Finally, In Section 6, on the basis of the results of Sections 4 and 5, it was shown that:

• when VMTPM is specialized to describe media with granular microstructure and cohe-

sionless behavior of the solid phase, the resulting poroelastic theory is characterized by

full compliance with Terzaghi’s stress partitioning law: this theory actually predicts that

both macroscopic strain and stiffness are solely dependent on p̌(s), and insensitive to p̂(s),

so that σ̌(s) assumes the role of the effective stress (i.e., a stress quantity regulating all

macroscopically observable effects on the solid phase);

• such specialized poroelastic theory (i.e., under the hypotheses of granular microstructure

and cohesionless behavior) entails no incompressibility constraint; therefore, it can be

applied to wave propagation analysis in saturated granular solids, such as soils;

• when the hypotheses of granular microstructure and cohesionless behavior are removed,

as in the case of sandstone rocks, VMTPM predicts that a generalization of Terzaghi’s

principle, with a single stress coordinates regulating all observable effects, is not feasi-

ble; consequently, a generalization of dependence upon more than one stress coordinate

becomes mandatory;

• a generalized statement of Terzaghi’s principle was proposed for multiphase problems,

postulating that changes of DEI coordinates are responsible for all macroscopically mea-

surable mechanical effects on the solid phase produced by loading.

Altogether the applications shown in this contribution have exemplified the capability of

VTMPM to describe and predict a large class of linear and nonlinear mechanical behaviors ob-

served in two-phase saturated materials. Future applications of VMTPM will be directed towards

the assessment of its capability to describe, upon introducing suitable constitutive hypotheses,
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responses stemming from volumetric-deviatoric coupling such as dilatancy in geomaterials, as

well its predictive features in combination with elastoplastic constitutive laws.
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8 List of Symbols

Vector and tensor quantities are notated in bold. Null vector quantities and null tensor quan-

tities are indicated by o and O, respectively. Gibbs nabla vector ∇ is used, when necessary,

for implicit shorthand representation of differential operations. For all microscale quantities, of

kinematic, stress and stiffness type, no accent is used. In general, an overbar is used to denote

macroscopic kinematic quantities, except for kinematic quantities of intrinsic type which are de-

noted by a hat accent. Macroscopic stress quantities are all notated with accents different from

the overbar, with the only exceptions of macroscopic Cauchy stresses and of the fluid pressure

which have no accent. Intrinsic macroscopic stresses are denoted by a hat accent while extrinsic

macroscopic stresses are denoted by a check accent (a reversed hat). In general, subscripts indi-

cate the Cartesian indexes of scalar components. The phase to which a given quantity belongs

is denoted by bracketed superscripts s or f , if not otherwise stated. Specific items used in the

paper are listed in the following tables.

Symbol Description

Ω(M) macroscopic domain of the mixture
Ω(s) macroscopic subset domain of the mixture with nonvanishing solid phase
Ω(f) macroscopic subset domain of the mixture entirely occupied by the fluid
S(sf) free solid-fluid macroscopic interface in the current configuration
X generic point of the macroscopic reference domain of the mixture
x generic point of the macroscopic current domain of the mixture
χ̄(s) macroscopic placement vector of the solid phase
χ̄(f) macroscopic placement vector of the fluid phase
Φ

(s)
0 reference solid volume fraction

Φ
(f)
0 reference fluid volume fraction
φ(s) current solid volume fraction
φ(f) current fluid volume fraction
Ĵ (s) finite macroscopic intrinsic volumetric strain of the solid phase
J̄ (s) finite macroscopic extrinsic volumetric strain of the solid phase
J (f) finite microscale volumetric strain of the fluid phase
ρ̂

(s)
0 macroscopic true density of the solid phase in the reference configuration
ρ̂(s) macroscopic true density of the solid phase in the current configuration
ρ̄(s) apparent solid density
ρ̄(f) apparent fluid density

Table 2: List of symbols
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Symbol Description

ū(s) infinitesimal macroscopic displacement vector of the solid phase
ū(f) infinitesimal macroscopic displacement vector of the fluid phase
ê(s) infinitesimal macroscopic intrinsic volumetric strain of the solid phase
ê(f) infinitesimal macroscopic intrinsic volumetric strain of the fluid phase
ē(s) infinitesimal macroscopic extrinsic volumetric strain of the solid phase
ē(f) infinitesimal macroscopic extrinsic volumetric strain of the fluid phase
ε̄(s) infinitesimal extrinsic strain tensor
ψ̄(s) apparent solid potential energy density
ψ̄(f) apparent fluid potential energy density
ψ(f) microscale fluid potential energy density
ψ̂(f) true fluid strain energy density

b̄(s,ext) solid external volume forces
b̄(f,ext) fluid external volume forces

b̄(fs), b̄(sf) drag volume forces associated with solid-fluid interaction
σ̌(s) extrinsic solid stress tensor
p̂(s) intrinsic solid pressure
σ(s) Cauchy stress tensor
p interstitial fluid pressure

t(ext) external boundary traction vector (current configuration)
σ(ext) external stress tensor
σ̌

(s)
h value attained by the extrinsic stress tensor in a region with uniform stress state
ph value attained by the fluid pressure in a region with uniform stress state
Ω(h) macroscopic space region with uniform stress state
Ω(u) macroscopic space region undergoing undrained flow conditions
ε̄

(s)
dev deviatoric part of the infinitesimal extrinsic strain tensor
ε̄

(s)
sph spherical part of the infinitesimal extrinsic strain tensor

K̄
(s)
iso extrinsic-intrinsic coupling stiffness matrix for isotropic linear materials

C̄
(s)
iso extrinsic-intrinsic coupling compliance matrix for isotropic linear materials

ψ̄
(s)
dev deviatoric part of the strain energy of the solid phase in isotropic materials

ψ̄
(s)
sph spherical part of the strain energy of the solid phase in isotropic materials

K̄ ē(s)ē(s)
ē(s)-associated entry of K̄ (s)

iso

K̄ ê(s)ē(s)
off-diagonal entry of K̄ (s)

iso

K̄ ê(s)ê(s)
ê(s)-associated entry of K̄ (s)

iso

K̄
(s)
dev deviatoric stiffness modulus in isotropic materials

σ̌
(s)
dev deviatoric part of the extrinsic stress tensor
σ̌

(s)
sph spherical part of the extrinsic stress tensor

Table 3: List of symbols
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Symbol Description

p̌(s) pressure content of the extrinsic stress tensor
k̄V macroscopic bulk modulus of the dry solid phase
µ̄ macroscopic shear modulus of the solid phase
λ̄ macroscopic Lamè modulus of the dry solid phase
Ē macroscopic Young modulus of the dry solid phase
ν̄ macroscopic Poisson ratio of the dry solid phase
k̄V macroscopic bulk modulus of the dry solid phase
k̂r dimensionless extrinsic-intrinsic coupling modulus (hat version)
k̄r dimensionless extrinsic-intrinsic coupling modulus (bar version)
k̂s solid intrinsic stiffness
k̂f fluid intrinsic stiffness
k̂sf series coupling modulus of intrinsic solid and fluid stiffness
w(fs) relative solid-fluid velocity
K inverse permeability coefficient
κ intrinsic permeability
µ(f) effective fluid viscosity
µ microscale shear modulus of the material constituting the solid phase
ks microscale bulk modulus of the material constituting the solid phase
ν microscale Poisson ratio of the material constituting the solid phase

∂Ω
(M)
b bottom boundary surface of the macroscopic domain of the mixture contained in the compression chamber

∂Ω
(M)
u upper boundary surface of the macroscopic domain of the mixture contained in the compression chamber

∂Ω
(M)
u lateral boundary surface of the macroscopic domain of the mixture contained in the compression chamber
Fo compressive force applied in the test
Uo compressive displacement applied in the test
ε̄

(s)
h constant value of infinitesimal extrinsic strain tensor in a region with uniform deformation state
ē

(s)
h constant value of infinitesimal extrinsic volumetric strain tensor in a region with uniform deformation state
α Biot’s coefficient

ε̄
(ext)
dev deviatoric part of the external stress tensor
pext pressure content of the external stress tensor
B Skempton’s coefficient
Biso Skempton’s coefficient (pressure ratio)

aq, bq, cq coefficients for curve fitting the nonlinear extrinsic compliance of sandstone specimens

Table 4: List of symbols
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