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Abstract: Raw material heterogeneity, complex transformation processes, and divergent product 

flowsmake sawmilling operationsdifficult to manage. Most north-American lumber sawmillsapply a 

make-to-stock production strategy, some accepting/refusing orders according to available-to-promise 

(ATP) quantities, while a few uses more advanced approaches. This article introduces a simulation 

framework allowing comparing and evaluatingdifferentproduction planning strategies as well as order 

management strategies. A basic ERP system is also integrated into the framework (inventory 

management, lumber production planning algorithms, ATP and CTP calculation, etc). The user can 

configure the production planning and order management process, and evaluate how they will perform in 

various market contexts using the discrete event simulation model. 
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

1. INTRODUCTION 

Sawmilling is a process difficult to manage. Raw material 

(log) comes from the forests and shows a great diversity in 

terms of wood quality, diameter, length, etc. The sawmill 

must take into account this heterogeneity while trying to 

maximize produced value and/or meet customer expectations. 

Satisfying demand is difficult for the following reasons. First, 

sawing generates many products at the same time (i.e., 

divergentprocess with co-production), which cannot be 

avoided (Weryet al. 2012).Many researchers have proposed 

models to optimize lumber production. However, companies 

do not necessarily know the best way to integrate these 

optimization models within their management processes.  

This paper describes a simulation frameworkdeveloped to 

compare and evaluate different planningand order 

management strategies. Each strategy is defined by: the 

production planning models used, the size of the planning 

horizon, the re-planning frequency,and the order acceptation 

criteria (which can be based on stock levels, ATP, CTP, etc).  

These strategies can be evaluated for different market 

conditions in order to answer questions such as: What control 

strategy should be used for this market? What should be the 

planning horizon and the planning interval to improve the 

financial performance of the company? If reducing the lead-

time waspossible, what would be the rateof acceptance 

fornew orders? Should we re-schedule more often when 

business activities areincreased? 

This paper is organized as follows: Section 2 presents a 

reviewof existing tools used to support the decision-making 

process for different stages of a lumber production system. 

Section 3 introducesthe simulation framework. Section 4 

presentsa case study used to demonstrate how the framework 

can be used to compare different strategies.Very basic 

strategies are used in order to verify the model. In Section 5, 

results are presented and analysed. 

 

2. BACKGROUND 

Lumber production is a three phase manufacturing process. 

As described by Gaudreault et al. (2010), it involves three 

facilities. First, the sawing unit is responsbile forsawing 

logsinto green rough lumber according to different cutting 

patterns. At this step, produced lumber vary in quality 

(grade), length, and dimension. Then, the lumber must be 

dried using a kilnunit in order to reduce the moisture content. 

This step is necessary to use the lumber in construction 

industry (Wery et al. 2014). According to Yan et al. (2001), 

drying operation is crucial to ensure quality (by reducing 

biological damage, by increasing dimensional stability) while 

reducingtransportation cost. The final step is conducted by 

the planing unit to obtain the desiredsurface and thickness. 

Many optimizationmodels have been developed to support 

decision makingprocess in the lumber industry.They lead to 

optimalor near-optimal solutions. The aim of this type of 

optimization is often to maximize value or minimize costs. 

Marier(2011) and Marier et al.(2014) proposed a tactical MIP 

model integrating production (sawing, drying, finishing), 

sales, and distribution. A Sales and Operation Planning 

(S&OP)approach is usedto correlate sales, marketing, 

procurement, production, and finance, so as to create an 

annual plan that takes into consideration differentproduct 

families. A similar tactical planning model was proposed by 

Singer et al. (2007) for the Chilean sawmilling industry. 

At the operational level, Gaudreault et al. (2010) proposed 

three MIP models that can be used to plan/schedule sawing, 

drying, and wood finishing (planing) operations. The 
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objective function allows maximizing production value 

and/or minimizing orders lateness.A basic coordination 

mechanism (heuristic) is provided to synchronize those plans. 

Improved coordination mechanisms are proposed in 

Gaudreault et al. (2009) and Gaudreault et al. (2012). A 

stochastic version of the sawing operations planning was 

developed by Kazemi-Zanjani et al. (2013). An improved 

version of the drying model was also proposed in Gaudreault 

et al. (2011). 

Even though the previous optimization models show many 

benefits, they still involve many challenging issues such as 

how they should best be used by a specific company evolving 

in a specific market context. Each company/production unit 

should put in place an operation management system 

integrating (1) optimization models and algorithms; (2) 

business processes and policies. 

To deal with this issue, discrete-event simulation can be used 

to test different scenarios and show how the different changes 

in the operating environment will impact the performance of 

the organization. Discrete-event simulation can be used in 

such context. For example, El Haouzi et al. (2008)used 

discrete-event simulation to compare different manufacturing 

systemin a company implementing Demand Flow 

Technology (Costanza J. 1996).In Abdel-Malek et al (2005), 

the authors compareddifferent supply chain outsourcing 

strategies. The key performance indicatorsused were the 

inventory levels and the total cost. 

 

3. SIMULATIONFRAMEWORK 

The framework presented here allows comparing and 

evaluating different planningand orders management 

strategies. Each strategy is defined by: the production 

planning models used, the size of the planning horizon, the 

re-planning frequency, and the order acceptation criteria 

(which can be based on stock levels, ATP, CTP, etc.).  

These strategies can be evaluated for different market 

conditions (order arrival rate per product, order size, demand 

lead time, etc.) 

A discrete event simulation model is developed using SIMIO. 

The user can therefore definescenarios visually (i.e. configure 

its operations management framework and market 

conditions). The simulation model is also connected to a 

basic ERP system (inventory management, lumber 

production, planning algorithms, ATP and CTP calculation, 

etc) we developed.  

3.1-Simulation framework description 

A conceptual representation of the framework is provided in 

Figure 1. 

For each product, orders are generated in (1) according to a 

given arrival rate. Following Ben Ali et al. (2014), orders in 

the lumber industry typically follow a Poisson distribution. 

Other distributions are provided to model the size of the order 

and the demand lead-time. This parameter corresponds to the 

time between the order arrival and the delivery date D (Tony 

Arnold et al. 2010). 

Each ordercan be either accepted or rejected (2) according to 

a given policy. If the order is rejected, it leaves the system. If 

it is accepted, it waits until delivery date and material 

availability (3). The order is then shipped (4). 

The ERP system is in charge of the planning production (a) 

using a model from Marier et al. (2014). The ERP also offers 

services for computing volumes that are available to promise 

(ATP) (b) and capable to promise (CTP) (c), whilemanaging 

a list of accepted orders (d) and inventories (e). 

The simulation model “calls” the ERP each timea planning is 

needed, a new order is accepted, or when ATP, CTP or 

inventory information is needed. 

Parameters of the model specify the simulation horizon, the 

planning horizon, and the re-planning frequency. The user 

also needs to specify which policy should be used to 

accept/refuse an order. The order can be accepted based on 

current stocks, ATP, or CTP. 

3.2-Order acceptation policies 

Stock: a tentative order of size Q is accepted if current 

inventory I minus the sum of commitments (accepted orders 

not delivered yet) is greater than or equal to Q. 

ATP: an order is accepted if  

Q ≤ Minimum foreseen stock after order due date 

Q ≤ I +   Pt − Et 

D−1

t=now

− max
D≤t≤T

  (Ek − Pk)

t

k=D

  

Where D is the order due date, T is the simulation horizon 

and I is the current inventory, Pt the production at period t 

and Et the commitment at period t. 

CTP: When processing an order, a tentative production plan 

is computed in order to check if we can satisfy the new order 

without compromising the previously accepted orders.  

AcceptAll: For study/comparison purpose, the model can 

also be configured to accept all orders. 

Figure 1: Conceptual representation of the framework 



 

 

  

 

4. EXPERIMENTS / MODEL VERIFICATION 

The following experiment was carried out in order to perform 

model verification. We tested different scenarios 

(combination of order acceptation policies, market 

conditions, and planning parameters) for a case that was 

small enough for us to anticipate the results. 

The simulation horizon covers a full year, each day being 

divided into 2 production shifts (periods) of 7 hours of work. 

We consider that enough raw materialsare available for the 

production of finished goods (i.e., infinite supply 

availability). Each order is for one single product and there 

are ten different products. The initial state of the model is as 

follow: the quantity available for each product is set between 

50 and 200 MBFM. The starting quantity for each product 

was chosen to have a little inventory at the beginning of the 

simulation. Values are multiple of the order size and take into 

account the importance of each product (i.e., the number of 

sales of each product in one year).It is possible to have other 

starting values like previous commitments 

Table 1 below shows the full factorial design. It defines 

parameters values for orders acceptation policy, production 

planning policy, and market conditions. 

 

Table 1: Full factorial design 

 Parameters Level Value 

Orders 

acceptation 

policy 

Orders 

acceptation 

policy 

3 Stock, ATP, 

AcceptAll 

 

Production 

planning 

policy 

Demand 

lead time 

2 Randomtriangular(

1,2,3) 

Randomtriangular(

0.5,1,2) 

Re-planning 

frequency 

3 1,2,3 weeks 

Planning 

horizon size 

5 1,1.5,2,3,4 weeks 

Marketcond

itions 

DemandInte

nsity
1
 

5 90, 100, 110, 130, 

150 % 

Order Size 1 50 MBFM 

(capacity of a full 

truck load) 

 

A total of 450 scenarios are defined. We needed 

50replications to obtain a significant confidence interval 

(95%). The time needed to run one scenario considering the 

                                                 
1
Demand intensity is a parameter we defined to express the total 

number of orders received as a percentage of the production 

capacity. It is used to define the arrival rate. 

confidence interval was around 20 seconds, for a total of 150 

hours of computation time. 

Although CTP is supported by the framework, it is not part of 

the experiment/results as it was too computing intensive to 

provide results on time. When using CTP, one replication 

needs more than 30 minutes of computation time. That would 

have increase simulation time by approximately 187 days. 

However, we have access to a super computer (8000 

processors) that will allow us to provide the results in the 

future. 

 

5. RESULTS AND ANALYSIS 

To analyse the results, some key performance indicators have 

been considered: the simulation model then allows choosing 

the scenario that may maximize accepted orders, maximize 

orders delivered on time, minimize inventory, or simply 

highlight different parameters where an interaction between 

them occurs. 

5.1- Impact of the size of the planning horizon on the 

accepted volume of orders and inventory levels 

Figure 2 on the next page shows the impact of the planning 

horizon sizeon the total volume of ordersaccepted,as well as 

on the average inventory level. The parameters of the model 

are setfor a demand intensity corresponding to 130% of the 

production capacity, a triangular demand lead-time 

distribution (1,2,3), and a re-planning frequency of 1 week. 

We show results for ATP, Stock, and AcceptAll orders 

acceptation policies. 

AcceptAll is utopic because accepted volume exceeds the 

total capacity while generating backorders. On the other 

hand, it defines an upper bound for the total volume of 

accepted orders and a lower bound for the inventory level. As 

for the policy where we accept orders based on Stocks, it is 

our lower bound for the total volume of accepted orders and 

our upper bound for inventory levels. 

If we look at the volume of orders accepted for ATP, as 

expected,they are greater than for Stock. Volume of accepted 

orders for ATP increases with the size of the planning horizon 

(the smaller the horizon, the morewe need to refuse some 

orders because our production plan and ATP do not reach 

that point). In our specific case, with a cumulative lead time 

of 3 weeks and a re-planning frequency of 1 week, there 

would be no purpose having a planning horizon superior to 4 

weeks since no order can be received after the fourth week 

(although industry often use a longer planning horizon to 

have a better visibility, as mentioned by Tony Arnold et 

al.,2010).This result was expected (see Vollman et al. 1997) 

and contributed to establish the validity of the simulation 

model. 

Conversely, the inventory level associated to the ATP policy 

decreases when the size of the planning horizon increases, 

until we reach a planning horizon of four weeks.  This result 

is also coherent. 



 

 

  

 

 

 
 

 
Figure 3: Impact of the demand intensity 

 

Figure 2: Impact of the size of the planning horizon 



 

 

  

 

Finally, we note that for the ATPpolicy, even thoughthe 

accepted volume is only slightly higher than the Stockpolicy 

(as the total production capacity remains the same), the 

reduction of the average inventory is significant (48,5% for a 

planning horizon of three weeks). 

5.2- Impact of the demand intensity 

We first recall that demand intensity is the total demand 

expressed as a percentage of the total production capacity. 

Figure 3 on the previous page shows the total volume of 

accepted orders and the average inventory according to the 

demand intensity.  

As expected, the greater demand intensity is, the greater the 

total volume of accepted orderswill be. This is true until we 

reach a point where all the production can be sold. This 

pointis not represented in the figure;for the specific case 

reported, it was reachedat around 170% (the volume of 

accepted orders is then equalledto the global production 

capacity). An intensity of 100% of the production capacity 

would thus not be enough (due to the stochastic environment, 

demand for some specific products would be less than their 

production volumes; some orders would have due date 

outside the simulation horizon; too many orders could have 

the same due date, forcing the reject for some of them). 

Regarding the average inventory level, the greater the 

intensity of demand is, the smaller the average inventory has 

to be. This is true for any policy. However, the greater the 

intensity is, the bigger is the difference between ATPand 

Stock policies. 

We recall that AcceptAllpolicy may look attractive (less 

inventory and many orders accepted). However, there isa 

huge number of late deliveries and therefore the customer 

satisfaction is very poor. By comparison, on-time delivery 

reaches 39% for AcceptAll, against 100% for Stock strategy 

and ATP. 

6.  CONCLUSION 

This article proposed a simulation frameworkto compare and 

evaluate different planning and order management strategies. 

It also encompasses a basic ERP system that covers inventory 

management, lumber production, planning algorithms, ATP 

and CTP calculation. The user can configure the production 

planning and order management process directly on the 

framework and then evaluate how they will perform in 

various market contexts. This tool could be used ina company 

as a decision-making tool by allowingchoosing the right 

production planning and ordering management strategies. 

Even though this simulation model is at its first stage, the 

results of the experiments refer to recognized practicesin the 

literature(Vollman et al. 1997) andare verified. 

In future work, this framework will be used as the backbone 

of a more complex study. The goal is to propose guidelines 

for more agile operations management driven by demand. We 

need to propose an operation management framework 

describing how to combine algorithms, humans, and decision 

processes in order to maximize the overall performance of the 

organization (business process reengineering).Some work to 

integrate a complete tactical planning, differentiate the 

operation planning (sawing, drying, planing) and have 

stochastic event in the production and supply, are underway. 

Therefore, the framework will allow simulating different 

coordination mechanisms between the tactical and 

operational planning level, as well as between the different 

departments (ex: raw material procurement, production and 

sales). The goal will be to recommend configurations adapted 

to different market conditions. 
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