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This theoretical paper suggests a perspective for under-
standing university students’ proof construction based 
on the ideas of conceptual and procedural knowledge, 
explicit and implicit learning, behavioral schemas, au-
tomaticity, working memory, consciousness, and System 
1 and System 2 cognition. In particular, we will discuss 
proving actions, such as the construction of proof frame-
works, that could be automated, thereby reducing the 
burden on working memory and enabling university 
students to devote more resources to the truly hard parts 
of proofs.
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INTRODUCTION

This theoretical paper suggests a perspective for 
understanding university mathematics students’ 
proof constructions and how the ability and skill to 
construct proofs might be learned and taught. We 
are interested both in how various types of knowl-
edge (e.g., implicit, explicit, procedural, conceptual) 
are used during proof construction, and also in how 
such knowledge can be acquired. If that were better 
understood, then it might be possible to facilitate 
university students’ learning through doing, that is, 
through proof construction experiences. Although 
one can learn some things from lectures, this is al-
most certainly not the most effective, or efficient, way 
to learn proof construction. Indeed, inquiry-based 
transition-to-proof courses seem more effective than 
lecture-based courses (e.g., Smith, 2006). Here we are 
referring just to inquiry into proof construction, not 
into theorem or definition generation. These ideas 
emerged from an ongoing sequence of design exper-
iment courses meant to teach proof construction in a 
medium-sized U.S. PhD-granting university.

The Courses 
There were two kinds of courses. One kind was for 
mid-level undergraduate mathematics students and 
was similar (in purpose) to transition-to-proof cours-
es found in many U.S. university mathematics depart-
ments (Moore, 1994). In the U.S., such courses are often 
prerequisite for 3rd and 4th year courses in abstract 
algebra and real analysis. The other, somewhat un-
usual, kind of course was for beginning mathemat-
ics graduate students who felt that they needed help 
with writing proofs. The undergraduate course had 
from about 15 to about 30 students and the graduate 
course had between 4 and 10 students. Both kinds of 
course were taught from notes and devoted entire-
ly to students attempting to construct proofs and to 
receiving feedback and advice on their work. Both 
courses included a little sets, functions, real analysis, 
and algebra. The graduate course also included some 
topology. 

Psychological considerations
Much has been written in the psychological, neu-
ropsychological, and neuroscience literature about 
ideas of conceptual and procedural knowledge, ex-
plicit and implicit learning, automaticity, working 
memory, consciousness, and System 1 (S1) and System 
2 (S2) cognition (e.g., Bargh & Chartrand, 2000; 
Bargh & Morsella, 2008; Bor, 2012; Cleeremans, 1993; 
Hassin, Bargh, Engell, & McCulloch, 2009; Stanovich 
& West, 2000). In trying to relate these ideas to proof 
construction, we have discussed procedural knowl-
edge, situation-action links, and behavioral schemas 
(Selden, McKee, & Selden, 2010; Selden & Selden, 2011). 
However, more remains to be done in order to weave 
these ideas into a coherent perspective. In doing this, 
two key ideas are working memory and the roles that 
S1 and S2 cognition can play in proof construction. 
Working memory includes the central executive and 
makes cognition possible. It is related to learning and 
attention and has a limited capacity which varies 
across individuals. When working memory capacity 
is exceeded, errors and oversights can occur. The idea 
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behind S1 and S2 cognition is that there are two kinds 
of cognition that operate in parallel. S1 cognition is 
fast, unconscious, automatic, effortless, evolution-
arily ancient, and places little burden on working 
memory. In contrast, S2 cognition is slow, conscious, 
effortful, evolutionarily recent, and puts considerable 
call on working memory (Stanovich & West, 2000). Of 
the several kinds of consciousness, we are referring to 
phenomenal consciousness—approximately, report-
able experience. We turn now to the first of the two 
components of the proposed perspective.

THE PERSPECTIVE: MATHEMATICAL 
COMPONTENT

The genre of proofs
There are a number of characteristics that appear to 
commonly occur in published proofs. They tend to 
reduce unnecessary distractions to validation (read-
ing for correctness) and raise the probability that any 
errors will be found, thereby increasing the reliability 
of the corresponding theorems. Proofs are not reports 
of the proving process, contain little redundancy, and 
contain minimal explanations of inferences. They con-
tain only very short overviews or advance organizers 
and do not quote entire definitions that are available 
outside the proof. Symbols are generally introduced 
in one-to-one correspondence with objects. Finally, 
proofs are “logically concrete” in the sense that they 
avoid quantifiers, especially universal quantifiers, 
and their validity is independent of time, place, and 
author. (Selden & Selden, 2013).

Structure in proofs
A proof can be divided into a formal-rhetorical part 
and a problem-centered part. The formal-rhetorical 
part is the part of a proof that depends only on un-
packing and using the logical structure of the state-
ment of the theorem, associated definitions, and ear-
lier results. In general, this part does not depend on 
a deep understanding of, or intuition about, the con-
cepts involved or on genuine problem solving in the 
sense of Schoenfeld (1985, p. 74). Instead it depends on 
a kind of “technical skill”. We call the remaining part 
of a proof the problem-centered part. It is the part that 
does depend on genuine problem solving, intuition, 
and a deeper understanding of the concepts involved 
(Selden & Selden, 2009, 2011).

A major feature of the formal-rhetorical part is what 
we have called a proof framework, of which there are 

several kinds, and in most cases, both a first-level 
and a second-level framework. For example, given 
a theorem of the form “For all real numbers x, if P(x) 
then Q(x)”, a proof framework would be “Let x be a 
real number. Suppose P(x). … Therefore Q(x).” A sec-
ond-level framework would be obtained by “unpack-
ing” the meaning of Q(x) and putting the second-level 
framework for that between the beginning and end 
of the first-level framework. Thus, the proof would 

“grow” from both ends toward the middle, instead of 
being written from the top down. In case there are sub-
proofs, these can be handled in a similar way. A more 
detailed explanation with examples can be found in 
(Selden, Benkhalti, & Selden, 2014). 

THE PERSPECTIVE: PSYCHOLOGICAL 
COMPONTENT

In this second, psychological component of the per-
spective, we view the proof construction process as a 
sequence of actions which can be physical (e.g., writ-
ing a line of the proof or drawing a sketch) or mental 
(e.g., changing one’s focus from the hypothesis to the 
conclusion or trying to recall a relevant theorem). The 
sequence of all of the actions that eventually lead to 
a proof is usually considerably longer than the final 
written proof itself. This fine-grained approach ap-
pears to facilitate noticing which actions should be 
taken to write various parts of a proof correctly and 
how to encourage such actions on the part of students. 

Situations and actions
We mean by an (inner) situation in proving, a portion 
of a partly completed proof construction, perhaps 
including an interpretation, drawn from long-term 
memory, that can suggest a further action. The in-
terpretation is likely to depend on recognition of the 
situation, which is easier than recall, perhaps because 
fewer brain areas are involved (Cabeza, et al., 1997). An 
inner situation is unobservable. However, a teacher 
can often infer an inner situation from the corre-
sponding outer situation, that is, from the, usually 
written, portion of a student’s partly completed proof.

Here we are using the term, action, broadly, as a re-
sponse to a situation. We include not only physical 
actions (e.g., writing a line of a proof ), but also men-
tal actions. The latter can include trying to recall 
something or bringing up a feeling, such as a feeling 
of caution or of self-efficacy (Selden & Selden, 2014). 
We also include “meta-actions” meant to alter one’s 
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own thinking, such as focusing on another part of a 
developing proof construction.

Situation-action links and behavioral schemas
If, in several proof constructions in the past, similar 
situations have corresponded to similar actions, then, 
just as in traditional associative learning, a link may 
be learned between them, so that another similar situ-
ation yields the corresponding action in future proof 
constructions without the earlier need for deliberate 
cognition. Using situation-action links strengthens 
them and after sufficient practice/experience, they 
can become overlearned, and thus, automated. A 
person executing an automated action tends to (1) 
be unaware of any needed mental processes, (2) be 
unaware of intentionally initiating the action, (3) put 
little load on working memory, and (4) find it difficult 
to stop or alter the action. We call automated situa-
tion-action links behavioral schemas. Morsella (2009) 
has pointed out

Regarding skill learning and automaticity, it is 
known that the neural correlates of novel ac-
tions are distinct from those of actions that are 
overlearned, such as driving or tying one’s shoes. 
Regions [of the brain] primarily responsible for 
the control of movements during the early stag-
es of skill acquisition are different from the re-
gions that are activated by overlearned actions. 
In essence, when an action becomes automatized, 
there is a ‘gradual shift from cortical to subcorti-
cal involvement …’ (p. 13).

Because cognition often involves inner speech, 
which in turn is connected with the physical control 
of speech production, the above information on the 
brain regions involved in physical skill acquisition 
is at least a hint that forming behavioral schemas not 
only converts S2 cognition into S1 cognition, but also 
suggests that different parts of the brain are involved 
in access and retrieval. Something very similar to the 
above ideas on automaticity in proof construction has 
been investigated by social psychologists examining 
everyday life (e.g., Bargh & Chartrand, 2000). 

We see behavioral schemas as partly conceptual 
knowledge (recognizing the situation) and partly 
procedural knowledge (the action), and as related to 
Mason and Spence’s (1999) idea of “knowing-to-act in 
the moment”. We suggest that, in the use of a situa-
tion-action link or a behavioral schema, almost always 

both the situation and the action (or its result) will be 
at least partly conscious.

Here is an example of one such possible behavioral 
schema. One might be starting to prove a statement 
having a conclusion of the form p or q. This would be 
the situation at the beginning of the proof construc-
tion. If one had encountered this situation a number 
of times before, one might readily take an appropri-
ate action, namely, in the written proof assume not 
p and prove q or vice versa. While this action can be 
warranted by logic (if not p then q, is equivalent to, 
p or q), there would no longer be a need to bring the 
warrant to mind.

It is our contention that large parts of proof construc-
tion skill can be automated, that is, that one can facil-
itate mid-level university students in turning parts 
of S2 cognition into S1 cognition, and that doing so 
would make more resources, such as working mem-
ory, available for the truly hard problems that need 
to be solved to complete many proofs.

The idea that much of the deductive reasoning that 
occurs during proof construction could become 
automated may be counterintuitive because many 
psychologists, and (given the terminology) probably 
many mathematicians, assume that deductive reason-
ing is largely S2.

Sequences of behavioral schemas
Behavioral schemas were once actions arising from 
situations through warrants, but that no longer need 
to be brought to mind. So one might reasonably ask, 
can several behavioral schemas be “chained togeth-
er” outside of consciousness? For most persons, this 
seems not to be possible. If it were so, one would ex-
pect that a person familiar with solving linear equa-
tions could start with 3x + 5 = 14, and without bringing 
anything else to mind, immediately say x = 3. We expect 
that very few (or no) people can do this, that is, con-
sciousness is required.

Implicit learning of behavioral schemas
It appears that the entire process of learning a behav-
ioral schema, as described above, can be implicit. That 
is, a person can acquire a behavioral schema without 
being aware that this is happening. Indeed, such un-
intentional, or implicit, learning happens frequently 
and has been studied by psychologists and neurosci-
entists (e.g., Cleeremans, 1993). In the case of proof 
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construction, we suggest that with the experience 
of proving a considerable number of theorems in 
which similar situations occur, an individual might 
implicitly acquire a number of relevant behavioral 
schemas, and as a result, simply not have to think 
quite so deeply as before about certain portions of 
the proving process and might, as a consequence of 
having more working memory available, take fewer 

“wrong turns”.

Something similar has been described in the psy-
chology literature regarding the automated actions 
of everyday life. For example, an experienced driv-
er can reliably stop at a traffic light while carrying 
on a conversation. But not all automated actions are 
positive. For example, a person can develop a preju-
dice without being aware of the acquisition process 
and can even be unaware of its triggering situations. 
This suggests that we should consider the possibility 
of mathematics students developing similarly unin-
tended negative situation-action links, and behavioral 
schemas, implicitly during mathematics learning, and 
in particular, during proof construction.

Detrimental behavioral schemas
We begin with a simple and perhaps very familiar 
algebraic error. Many teachers can recall having a 
student write √(a2 + b2) = a + b, giving a counterexam-
ple to the student, and then having the student make 
the same error somewhat later. Rather than being a 
misconception (i.e., believing something that is false), 
this may well be the result of an implicitly learned det-
rimental behavioral schema. If so, the student would 
not be thinking very deeply about this calculation 
when writing it. Furthermore, having previously un-
derstood the counterexample would also have little 
effect in the moment. It seems that to weaken/remove 
this particular detrimental schema, the triggering 
situation of the form √(a2 + b2) should occur a number 
of times when the student can be prevented from au-
tomatically writing “= a + b” in response. However, this 
might require working with the student individually 
on a number of examples, mixed with nonexamples.

For another example of an apparently implicitly 
learned detrimental behavioral schema, we turn to 
Sofia, a first-year graduate student in one of the above 
mentioned graduate courses. Sofia was a diligent stu-
dent, but as the course progressed what we came to 
call an “unreflective guess” schema emerged (Selden, 
McKee, & Selden, 2010, pp. 211–212). After completing 

just the formal-rhetorical part of a proof (essentially 
a proof framework) and realizing there was more to 
do, Sofia often offered a suggestion that we could not 
see as being remotely helpful. At first we thought she 
might be panicking, but on reviewing the videos there 
was no evidence of that. A first unreflective guess 
tended to lead to another, and another, and after a 
while, the proof would not be completed.

In tutoring sessions, instead of trying to understand, 
and work with, Sofia’s unreflective guesses, we tried 
to prevent them. At what appeared to be the appropri-
ate time, we offered an alternative suggestion, such as 
looking up a definition or reviewing the notes. Such 
positive suggestions eventually stopped the unreflec-
tive guesses, and Sofia was observed to have consider-
ably improved in her proving ability by the end of the 
course (Selden, McKee, & Selden, 2010, p. 212).

USING THIS PERSPECTIVE

Decomposing the proving process
In order to facilitate students’ automation of certain 
parts of the proving process by developing helpful 
behavioral schemas, we have been decomposing the 
reasoning parts of the proving process, and focus-
ing on those that occur frequently. Such decomposi-
tions of parts of the proving process can be mainly 
mathematical in nature or mainly psychological in 
nature. We find the psychological decompositions 
to be more surprising because they include things 
one might expect university students to be able to do 
without instruction. Some more mathematical possi-
bilities are: (1) writing the first- and second-level proof 
frameworks which themselves can have parts (Selden, 
Benkhalti, & Selden, 2014; Selden & Selden, 1995); (2) 
noting when a conclusion is negatively phrased (e.g., 
a set is empty or a number is irrational) and early in 
the proving process attempting a proof by contradic-
tion; and (3) noticing when the conclusion asserts the 
equivalence of two statements, “knowing” there are 
two implications to prove, and actually originating 
the two subproofs. 

Here are some decompositions that may be more psy-
chological in nature. One can change one’s focus, for 
example by deciding to unpack the conclusion of a the-
orem, by finding or recalling a relevant definition, or 
by applying a definition. Such actions are sometimes 
part of constructing a second-level proof framework 
(Selden, Benkhalti, & Selden, 2014; Selden & Selden, 
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1995). Also developing a feeling of knowing or of 
self-efficacy can have a major effect (Selden & Selden, 
2014). A student may develop and have for a time a 
feeling of not knowing what to do next, that is, the 
student might be at an impasse. Upon reaching such 
an impasse, the student might decide to do something 
else for a while, and coming back later, might hope to 
get a new idea. Many mathematicians have benefitted 
from this kind of “incubation”. Nonemotional cogni-
tive feelings (Selden, McKee, & Selden, 2010), such as 
those mentioned above can play a considerable role 
in proof construction, but we do not have space to 
elaborate on them here.

Proving activities that we have tried to help students 
automate include converting formal mathematical 
definitions into operable interpretations, which are 
similar to Bills and Tall’s (1998) idea of operable defini-
tions. For example, given f: X →Y and A ⊆ Y, we define 
f -1(A) = { x ∊ X | f(x) ∊ A}. An operable interpretation 
would say, “If you have b ∊ f -1(A), then you can write 
f(b) ∊ A and vice versa”. One might think that this sort 
of translation into an operable form would be easy, but 
we have found that for some students it is not, even 
when the definition can be consulted. We have also 
noted instances in which students have had availa-
ble both a definition and an operable interpretation, 
but still did not act appropriately. Thus, actually im-
plementing the action is separate from knowing that 
one can implement it. We are not sure whether, in 
implementing such actions, automaticity is difficult 
to achieve, but not acting appropriately can clearly 
prevent a student from proving a theorem.

Seeing similarities, searching, and exploring
How does one recognize situations as similar? 
Different people see situations as similar depending 
both upon their past experiences and upon what they 
choose to, or happen to, focus on. While similarities 
can sometimes be extracted implicitly, teachers may 
occasionally need to direct students’ attention to rel-
evant proving similarities. On the other hand, such 
direction should probably be as little as possible be-
cause the ability to autonomously see similarities can 
be learned.

For example, it would be good to have general sugges-
tions for helping students to “see”, without being told, 
that the situations of a set being empty (i.e., having 
no elements), of a number being irrational (i.e., not 
rational), and of the primes being infinite (i.e., not 

finite) are similar. That is, the three situations—empty, 
irrational, and infinite—may not seem similar until 
one rephrases them to expose the existence of a neg-
atively worded definition. Unless students rephrase 
these situations, it seems unlikely that they would 
see this similarity and link these situations (when 
they occur as conclusions of theorems to prove) to the 
action of beginning a proof by contradiction. 

In addition to automating small portions of the prov-
ing process, we would also like to enhance students’ 
searching skills (i.e., their tendency to look for helpful 
previously proved results) and to enhance students’ 
tendency to “explore” possibilities when they don’t 
know what to do next. In a previous paper (Selden & 
Selden, 2014, p. 250), we discussed the kind of explor-
ing entailed in proving the rather difficult (for stu-
dents) Theorem: If S is a commutative semigroup with 
no proper ideals, then S is a group. Well before such 
a theorem appears in course notes, one can provide 
students with advice/experience showing the value 
of exploring what is not obviously useful (e.g., start-
ing with abba = e to show a semigroup with identity e, 
where for all s ∊ S, s2 = e, is commutative, as discussed 
in Selden, Benkhalti, and Selden, 2014).

Understanding students’ proof attempts
Here is a sample student’s incorrect proof attempt of 
the Theorem: Let S be a semigroup with identity e. If, for 
all s in S, ss = e, then S is commutative. The student’s ac-
companying scratchwork consisted of the definitions 
of identity and commutative. Here, the line numbers 
are for reference only.

1  Let S be a semigroup with an identity element, e.

2  Let s ∊ S such that ss = e.

3  Because e is an identity element, es = se = s.

4  Now, s = se = s(ss).

5  Since S is a semigroup, (ss)s = es = s.

6  Thus es = se.

7  Therefore, S is commutative. QED.

Line 2 only hypothesizes a single s and should have 
been, “Suppose for all s ∊ S, ss = e.” With this change, 
Lines 1, 2, and 7 are the correct first-level framework. 
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There is no second-level framework between Lines 2 
and 7. This was a beneficial action not taken and should 
have been: “Let a ∊ S and b ∊ S.  … Then ab = ba.” between 
Lines 2 and 7. Line 3 violates the genre of proof by in-
cluding a definition easily available outside the proof. 
Lines 3, 4, 5, and 6 are not wrong, but do not move the 
proof forward. Writing these lines may have been 
detrimental actions that subconsciously primed the 
student’s feeling that something useful had been ac-
complished, and thus, may have brought the proving 
process to a premature close.

TEACHING AND RESEARCH CONSIDERATIONS

The above considerations can lead to many possi-
ble teaching interventions. This then brings up the 
question of priorities. Which proving actions, of the 
kinds discussed above, are most useful for mid-level 
university mathematics students to automate, when 
they are learning how to construct proofs? Since such 
students are often asked to prove relatively easy the-
orems—ones that follow directly from definitions re-
cently provided—it would seem that noting the kinds 
of structures that occur most often might be a place 
to start. Indeed, since every proof can be constructed 
using a proof framework, we consider constructing 
proof frameworks as a reasonable place to start. 

Also, helping students interpret formal mathematical 
definitions so that these become operable might be 
another place to start. This would be helpful because 
one often needs to convert a definition into an opera-
ble form in order to use it to construct a second-level 
framework. However, eventually students should 
learn to make such interpretations themselves. 

Finally, we believe this particular perspective on 
proving, using situation-action links and behavioral 
schemas, together with information from psychology 
and neuroscience, is mostly new to the field and is 
likely to lead to additional insights.
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