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We discuss here the notion of mathematical fit, a con-
cept that might relate to mathematical explanation 
and mathematical beauty. We specify two kinds of fit 
a proof can have, intrinsic and extrinsic, and provide 
characteristics that help distinguish different proofs of 
the same theorem. 
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INTRODUCTION

Mathematics, as a subject, stands out from other fields 
in several ways. Even if proofs derive from axioms, 
there is a sense – which is grounded in the rigorous 
process of proving – that certain claims can be shown 
to be true or false. This is part of what makes math-
ematics satisfying. There are answers that can be 
shown to be, beyond a shadow of a doubt, true. Similar 
to the feeling one gets from establishing the truth of 
a claim, one can often experience a feeling in mathe-
matics that a claim is right, that a certain proof fits a 
theorem, or that a particular argument is exactly the 
one needed. This is a stronger and somewhat more 
mysterious requirement than that a particular claim 
is true. There might be many arguments that establish 
the truth of a claim, but what is that makes us feel that 
some arguments are right? Is this just a subjective 
feeling or is there some objective grounding for this 
feeling? The purpose of this paper is to sketch some 
criteria for what it might mean for the (somewhat 
more limited and hence manageable) question of what 
it means for a proof to fit a theorem. While the crite-
ria grew originally from empirical data (polling data 
and discussions with mathematicians) we present the 
paper as a theoretical one, with the idea of building, 
or at least starting to build, a framework that could 
be tested more broadly.

FIT IN THE LITERATURE

The notion of fit has been discussed in both sci-
ence and mathematics communities. For instance, 
Wechsler (1978) compares the experience of “fit” to 
more aesthetic experiences often considered to be 
more artistic (and less scientific):

Scientists talking about their own work and that of 
other scientists use the terms “beauty,” “elegance,” 
and “economy” with the euphoria of praise more 
characteristically applied to painting, music, and 
poetry. Or there is the exclamation of recognition 

— the “Aha” that accompanies the discovery of a 
connection or an unexpected but utterly right re-
alization in art and science. These are epithets of 
the sense of “fit” — of finding the most appropriate, 
evocative and correspondent expression for a re-
ality heretofore unarticulated and unperceived, 
but strongly sensed and actively probed.

Sinclair (2002) has discussed the role of fit in the pro-
cess of mathematical discovery. She discusses several 
different kinds of fit. One kind of fit has to do with 
recognizing a particular theorem in a larger class of 
theorems (a case of a square was a specific case of the 
more general category of polygon.) Another kind of 
fit has to do with a corporeal sensation of physically 
putting together a vertex and an edge in a diagram 
to get a desired result. Sinclair connects these expe-
riences of fit to a more general aesthetic sensibility. 
She quotes Beardsley who said that the first feature 
of aesthetic experience was “a feeling that things are 
working or have worked themselves out fittingly” 
(Sinclair, 2002, p. 288).

Fit, or the related notion of fitting (more on this dis-
tinction in the discussion), are natural, but somewhat 
vague terms to describe an aesthetic experience in 
mathematics, of something being appropriate or right, 
or something sharing some sort of family member-
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ship or having some kind of inner coherence. In this 
paper we try to clarify what some of the character-
istics of fit might be (we do not claim that the list of 
characteristics is exhaustive, but it is at least a start). 
We illustrate our analysis with two contrasting proofs 
of the Pythagorean theorem.

THEORETICAL MODEL

Here we discuss two ways that a proof can be fitting in 
mathematics, which we will refer to as intrinsic and 
extrinsic fit. Proofs are not the only mathematical ob-
jects that can possess fit. Definitions, diagrams, even 
theories, might be fitting, but in this paper we will 
limit the discussion to proofs. In this section we list 
some criteria for determining if a proof has intrinsic 
or extrinsic fit.

Criteria for intrinsic fit
Intrinsic fit refers to the relationship between a the-
orem and the underlying ideas in a proof of the the-
orem. It is what gives one a sense of what is going on 
in a proof, and how accessible the underlying ideas 
are. There are (at least) three criteria for intrinsic fit.

I1: Economy. The underlying ideas are represented 
as concisely as possible. We say a proof is economic 
(or not economic).

The number of words is not really what determines 
economy. Sometimes a proof can be too terse to see 
what is going on. The proof should be as short as 
possible, but a knowledgeable reader should still 
be able to follow it, filling in the missing details as 
appropriate. 

I2: Transparency. The proof allows the underlying 
idea to be easily grasped. The structure of the ar-
gument is clear. We say a proof is transparent (or 
not transparent).

This criterion deals with the question of how easy 
is it to see what is going on in a proof. This has two 
components: that the general logical structure of 
the proof is clearly presented, and that the underly-
ing idea that makes the proof work is clearly stated. 

I3: Coherence. The proof is stated in the same terms 
as the theorem. We say that a proof is coherent (or 
not). 

A proof that coheres has a clear underlying idea 
that is explicitly put to use in proving the theorem. 
The terms with which one would naturally state 
the proof idea (such as areas or graph cycles or 
eigenvalues of matrices) are the same terms which 
are stated in the theorem, allowing one to easily see 
why that particular idea is essential to the theorem. 

Criteria for extrinsic fit 
Extrinsic fit refers to the relationship between a par-
ticular proof and a family of proofs. The single case 
and the family might be related via an idea, but what 
stands out is not as much the idea as the family mem-
bership. When you realize that a proof is in the family 
you think, “Oh it is one of those!” There are (at least) 
three criteria for extrinsic fit:

E1: Generality. The idea of the proof generalizes 
to a larger class of theorems. We say that a proof 
is general (or not), though we often mean that the 
idea of the proof is general. 

This criterion deals with how well an underly-
ing idea generalizes to prove a class of theorems. 
The proof at hand is seen as a specific instance of 
a more general claim. Generality is not the same 
as explanation. For instance in category theory, 
theorems might be perfectly general but not at all 
explanatory. See Steiner (1978) for other examples.

E2: Specificity. The proof requires a specific tool, or 
a particular technical approach, to make it tracta-
ble. We say that a proof is specific (or not). 

This criterion also deals with how well a proof fits 
into a class of theorems, but not through the idea, as 
with the criterion of generality above, but through 
the specific choice of technical tool that makes the 
proof work. Whereas with the criterion of general-
ity the focus is on the family membership (This is 
one of those kinds of proofs!), here the focus is on 
the appropriateness of the specific technical tool 
for the job (We found a tool that works!). The tool 
itself is not as much of interest as is the fact that 
the proof is now within reach.

E3: Connectedness. The proof idea connects to 
proof ideas of other theorems. We say a proof is 
connected (or not). 
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We see this particular proof as one of family of 
proofs. This criterion is at the heart of what is 
meant by family membership. The idea in one 
proof is the same as the idea in a family of proofs, 
and the common idea is what makes the proofs 
hang together as a family. 

AN EXAMPLE 

We take as an example a classic, and much discussed 
theorem — the Pythagorean theorem. We will show 
two proofs of the theorem and use the model described 
above to discuss the extent to which each proof fits 
the theorem. The first proof comes from Euclid (300 
B.C./2008, VI. 31) and has been discussed, for instance, 
in Polya (1954), as a particularly nice proof of the the-
orem. We suggest this proof is a clear example of a 
proof that really fits the theorem. It has been suggest-
ed that this proof captures exactly what the theorem 
is about (e.g., Steiner, 1978). The second proof, which 
uses a clever argument based on trigonometry, does 
not fit. Our model helps clarify why this is the case. 

Theorem: In a right triangle with sides a and b and 
hypotenuse c, a2 + b2 = c2.

Proof 1: We are given a triangle with sides a and b 
and hypotenuse c. Also line h ^ line c.

We can see that the sum of the areas of the smaller 
triangles is the same as area of the large triangle 
(by construction). We can also see (you can im-
agine folding out each of the three triangles over 
its longest side), that the sum of the areas of the 
triangles on sides a and b is equal the area of the 
triangle on side c. This relationship will hold for 
any similar figures on those sides, in particular 
squares, so a2 + b2 = c2. QED

Why does this proof exhibit fit? Let us consider the 
criteria:

I1: Economy. The proof is economic. It gives rele-
vant information simply and concisely. It could 
also be made more concise assuming more knowl-

edge of the reader. (In this paper we have added 
some details for ease of reading.)

I2: Transparency. This proof is transparent. The 
proof consists of two main ideas, clearly presented, 
namely the dissection of the triangle into similar 
triangles, and that the equality of the areas carries 
over to arbitrary shapes.

I3: Coherence. The proof is coherent because the 
proof and the theorem are in the same terms, name-
ly area. The theorem is a statement about the rela-
tionship of certain areas, and the proof directly re-
lates these areas using properties of the triangles.

We also note that the idea of preserving areas is in line 
with the more famous proof in Euclid, where the areas 
of the squares constructed on either side are shown 
to be equal by area-preserving steps. A “Greek” proof 
that two areas are equal should ideally show that the 
one shape can be transformed into the other shape, 
using only area-preserving steps. The area-preserv-
ing step in the present proof is the reflection of either 
small triangle in the corresponding side of the large 
triangle. The scaling argument can also be traced to 
Euclid, and the present proof is also (less famously) 
given in Euclid.

E1: Generality. The proof is general. Steiner (1978) 
gives an account for this generality. This proof hap-
pens to be, according to Steiner, the proof that is 
most explanatory and most general. The general-
ity comes from the fact that the proof works for 
arbitrary similar shapes constructed on the sides 
of the triangle.

E2: Specificity. The proof fulfils the criterion of 
specificity. The technical tool that works in this 
case is dividing the original triangle into sim-
ilar triangles. Put more generally, this could be 
described as dissection. This division allows us 
to see the crucial relationship, namely that all 
three triangles are similar and their areas add up. 
The move to arbitrary similar figures, including 
squares, is a relatively small one.

E3: Connectedness. This criterion is not as easy 
to apply here as the other criteria, but we are in-
clined to say that this proof is connected. The class 
of proofs to which the proof can be seen to belong 
(other classes may be possible) might be taken to 

Figure 1
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be proofs by area preservation, for instance the 
one referred to as “Greek” above.

Now consider the second proof, from Zimba (2009), 
which uses trigonometry.

Proof 2: Suppose we are given the subtraction 
formulas for sine and cosine:

cos(α − β) = cos(α) cos(β) + sin(α) sin(β), and 
sin(α − β) = sin(α) cos(β) − cos(α) sin(β)

Let α be the angle opposite to side a, and β be 
the angle opposite to side b, and without loss of 
generality, assume that 0 < α ≤ β < 90°. 

We now have: 
cos(β) = cos(α − (α − β)) = cos(α) cos(α − β) +  
+ sin(α) sin(α − β) = cos(α)(cos(α) cos(β) +  
+ sin(α) sin(β)) + sin(α)(sin(α) cos(β) −  

− cos(α) sin(β)) = (cos2 (α) + sin2 (α))cos(β)

from which it follows that cos2 (α) + sin2 (α) = 1, 
since cos(β) is the ratio between one leg and 
the hypotenuse of a right triangle, and as such 
is never zero. The theorem now follows from the 
definitions of sine and cosine and scaling. QED

To what extent does this proof fulfill the criteria for 
intrinsic and extrinsic fit?

I1: Economy. The proof is economic. It gives rele-
vant information simply and concisely, and here 
some details are left out.  

I2: Transparency. This proof is not transparent. 
There is no clear sense of direction in the calcula-
tions performed. The structure of the proof is clear 
enough, and each step can easily be verified, but 
it seems that there is little in the way of a natural 
sequence of ideas, and the introduction of trigo-
nometric quantities seems extraneous. Also, it is 
hard to see, for instance, why one would initially 
want to rewrite cos(β) as cos(α − (α − β)).

I3: Coherence. The proof is not coherent. The trigo-
nometry used in this proof is not in the same terms 
as the theorem, which is about areas. The work of 
the proof, that is to say the algebra, takes place in 
the language of trigonometry. We translate in and 

out of that language to see that the trigonometric 
manipulations establish the theorem.

E1: Generality. The proof as it stands is not gener-
al. It is true that once cos2 (α) + sin2 (α) = 1 is estab-
lished, one can add the scaling argument to show 
that the result holds for arbitrary similar shapes, 
but the scaling argument is not an integral part 
of the proof.

E2: Specificity. The proof exhibits specificity, in that 
the tool used (the subtraction formulas), surpris-
ingly works out to be adequate for the conclusion 
to be drawn.

E3: Connectedness. The proof is not connected. It 
is, as far as we know, the only trigonometric proof 
of the Pythagorean theorem, so there is no obvious 
family of proofs it would belong to.

Comparison
Here is how the two proofs compare in terms of fit, 
according to the six criteria. An X indicates that the 
proof satisfies the given criterion.

Criterion I1 I2 I3 E1 E2 E3

Proof 1 X X X X X X

Proof 2 X X

 
We conclude from this analysis that Proof 1 fits the 
Pythagorean theorem better than Proof 2 does. Notice 
that our notion of fit appears to be gradable. It seems 
natural to say that one proof fits better than another 
without all the criteria being fulfilled (or not fulfilled). 
What is less clear is how many criteria must be ful-
filled to say that a proof exhibits fit at all. Further, 
the criteria are not equally weighted. It seems more 
central to the notion of fit to be coherent than to be 
economic. 

DISCUSSION

We will now take up a few issues relating to fit that 
have a more general nature than those discussed 
above. First, we will discuss the relation between the 
terms ‘fit’ and ‘fitting’. Next we will discuss the relation 
between fit and two other concepts, explanation and 
beauty. Finally we will discuss the applicability of the 
model given here.
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Fit, Fitting, Fitness
There are several words related to fit which differ in 
meaning and use. With the examples above in mind 
of what it means for a proof to fit a theorem, or to fit 
into a class of theorems, we will explore the relation 
between these words. First, fit and fitting: Fit appears, 
commonly, to be a relation between two objects. A 
glove fits a hand. A model fits the data. The objects 
may be abstract, such as: The experience of going to 
Rome fits my expectations. The term can also be used 
metaphorically: Anna is a good fit for Roberto. In all of 
these cases, the objects that fit work like puzzle pieces. 
One set of objects has features that complement the 
features of the other object. When the match is found, 
we get a sense of satisfaction from having made and 
accomplished that match.  However the fit might be 
more or less good, as in the case of a glove fitting a 
hand, or might be a perfect match, as in the case of a 
key fitting a lock.

Fitting, which has similar meaning to ‘fit’ has a slightly 
different connotation. Fitting often means ‘appropri-
ate’, such as “that behavior was fitting for a man of his 
stature”. Unlike fit, fitting often has a connotation of 
being socially appropriate. One would not say that a 
square is a fitting choice for this particular tessella-
tion. ‘Fit’ refers more broadly to patterns found in 
nature, mathematics, etc. while ‘fitting’ is more re-
stricted to the human sphere.

Fitness might not seem as obviously related to fit, but 
we mention it here to raise a question about whether 
the notion of ‘fit’ in mathematics might be at all related 
to the notion of ‘fitness’, say, in natural selection. One 
use of the term fitness has to do with physical aptitude. 
One trains to stay fit. When one is fit, one has achieved 
some level of fitness. In Darwinian terms, fitness is re-
lated to adaptability. The more adapted a species is for 
the environment the better it will fit. This reading of 

‘fit’ or ‘fitness’ is not so different from what we call ex-
trinsic fit above. The features that make a proof fit into 
a family of other proofs might be the ones that make 
it ‘survive’ in some sense, that it is more likely to be 
remembered, cited, and/or developed in mathematics. 
(This discussion bears resemblance to Gopnik (2000) 
who links understanding with sexual reproduction.)

Relation to explanation
Intrinsic fit and extrinsic fit have some parallels with 
contemporary treatments of mathematical explana-
tion. We make no attempt here to summarize the lit-

erature in this area, and we do not try to spell out in 
detail any of the main models of mathematical expla-
nation, but simply point to a few places in some of the 
more prominent theories where there are similarities 
with our account of mathematical fit.

Steiner (1978) provides an account of mathematical 
explanation in terms of ‘characterizing property’. He 
described this as “a property unique to a given entity 
or structure within a family or domain of such enti-
ties or structures”. This description of characterizing 
property has an obvious parallel with our notion of 

‘coherence’. Familial membership is central, both in 
identifying an entity as one that could explain, as 
well as in finding the grounds for the explanation. 
As Steiner continues, “an explanatory proof makes 
reference to a characterizing property of an entity or 
structure mentioned in the theorem, such that from 
the proof it is evident that the result depends on the 
property.” Similar, but not identical, with our notion 
of coherence, the relationship between the entity or 
structure and the result is central for determining if 
a proof explains (or has fit). A proof that has the same 
terms as a theorem, which is how we have character-
ized coherence, seems similar to a proof that evidently 
gives rise to a particular result.

We will mention very briefly Steiner’s notion of ‘de-
formation’ because it is essential to his view of ex-
planation (though it has been criticized elsewhere, 
e.g., Hafner & Mancosu, 2005). To Steiner, a proof that 
explains can be modified for members of a particu-
lar family (e.g. the set of all polygons) while keeping 
the proof idea the same. An explanatory proof can 
be deformed to produce a new theorem [3]. While 
problematic, the idea behind ‘deformation’, that an 
explanatory proof contains an idea that is invariant 
to certain inter-family sorts of transformations, is 
not completely counter-intuitive. The focus on char-
acterizing properties and deformation seems to build 
on an intuition similar to that which underlies our 
distinction between intrinsic and extrinsic fit. In both 
Steiner’s account of explanation and our account of 
fit there is some aspect that is internal and related 
to proof idea (and its accessibility, in the case of fit), 
and there is some aspect that is external and related 
to situating a proof as a member of a larger family.

Contemporary philosophy of mathematics has 
reached no consensus on mathematical explanation, 
but we will consider two more theories, one of which 
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is more aligned with our notion of connectedness, and 
the other with our notion of coherence. These two as-
pects of fit correlate most closely related with current 
accounts of explanation.

Kitcher (1989) offers a view of explanation that is 
considered to be a counter proposal to Steiner’s view, 
based on the notion of unification. Kitcher says that 
explanation arises from the use of arguments that 
have the same form (see Lange (in press) for a sum-
mary of this view). These explanations can be found 
in what Kitcher calls “the explanatory store” and the 
main task of a theory of explanation is to “specify 
conditions on the explanatory store” (Kitcher, 1989, p. 
80). While the details of what gives rise to an explana-
tion differ greatly in Kitcher’s and Steiner’s account, 
one similarity seems to be the emphasis on familial 
membership, or what we would call connectedness. 
In Steiner’s account the membership comes about via 
characterizing properties, and in Kitcher’s account it 
comes about via the explanatory store. The fact that 
there is some kind of unification or some sort of family 
traits that naturally carry over to similar entities or 
structures seems central both in these two accounts 
of mathematical explanation and in our account of 
mathematical fit.

In contrast to Steiner and Kitcher, whose views of 
explanation seem to have some component similar 
to that of connectedness, Lange (in press) suggests 
a view with three components (unity, salience, and 
symmetry), the first of which seems to be related to co-
herence. To Lange, “A proof is unified when it exploits 
a property that all of the cases covered by the theorem 
have in common and treats all of those cases in the 
same way” (personal communication). Unlike Kitcher 
and Steiner, whose unification and characterizing 
property ideas involve family membership, Lange’s 
notion of unity is one that is intrinsic to the proof. 
Lange’s concept of salience might also overlap with 
our criteria for intrinsic fit. Salience is a feature that 
is “worthy of attention” (Lange, p. 27). Transparency 
includes a feature that makes a certain idea accessible. 
While not exactly the same concept, the idea that cer-
tain features of a proof make it more readily processed 
by the mind seem to be a commonality between our 
account of mathematical fit and Lange’s account of 
mathematical explanation.

Relation to beauty
Less clear than the relation between fit and explana-
tion is the relation between fit and beauty. The open-
ing quote by Wechsler hints at a connection, as does 
the quote by Beardsley (that the aesthetic experience 
arises from things working themselves out fittingly). 
Could there be any motivation in mathematics for 
aesthetic experiences to arise from some sense of fit 
or fittingness? 

We have gathered a small amount of pilot data relat-
ed to this question. The proofs of the Pythagorean 
theorem, given above, were shown to a group of six 
mathematicians and three mathematics educators, 
along with several other proofs of the theorems. 
Participants were asked to rank the proofs according 
to which was most aesthetically pleasing. All of the 
mathematicians ranked the first proof higher than 
the second. The two math educators who chose the 
second proof stated that they did so because they felt 
they did not fully understand the first proof, but they 
could follow the steps of the second proof. The words 
given by the mathematicians to describe the first proof 
included “simple”, “beautiful” and “conceptually cor-
rect”. The words given for the second proof included 

“ugly”, “clever” and “unnatural”. Note that a proof can 
be clever without it being beautiful.

While far from conclusive, this data seems to suggest 
that there might be reasons to believe that fit has some-
thing to do with beauty. The criteria of economy and 
coherence seem to be similar what the mathemati-
cians meant by simplicity and conceptual correctness.

Some applications of the model
The model proposed here for mathematical fit is only 
a sketch, but it may be a small step toward clarify-
ing a few open questions related to the philosophy 
and aesthetics of mathematics. First, it helps identify 
some ways that current theories of explanation are at 
odds with each other. Steiner’s account of explanation, 
which overlaps with our category of coherence, and 
Kitcher’s account, which is more related to our catego-
ry of connectedness, might be, like the parable of the 
blind men and the elephant, in which the men describe 
different parts of the beast, characterising different, 
but not necessarily contradictory, aspects of fit.

Second, our model takes a modest step towards clar-
ifying what beauty in mathematics might have to do 
with explanation. If Wechsler is right that beauty 
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involve some sort of fit, we have sketched two differ-
ent kinds of fit that might play a role in our aesthetic 
judgments. This may also be a way to identify whether 
beauty is an objective quality.
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ENDNOTES

1. Algebraic details: Let A, B, and C be the areas on the 
sides a, b, and c, respectively. Then A/a2 = B/b2 = C/c2, 
which implies A+B=a2C/c2+b2C/c2. Since A + B = C, it fol-
lows that (a2+b2)/c2 = 1 which implies a2+b2= c2.

2. Note that for angles between 0 and 180 degrees, the 
subtraction formulas can be proven without recourse 
to the notion of distance, and are hence not dependent 

on the Pythagorean theorem. This proof is therefore 
not circular.

3. Counterexamples to this claim have been suggested, 
e.g. in Lange (in press).


