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Proof evaluation tasks as tools for teaching?

Kirsten Pfeiffer and Rachel Quinlan

National University of Ireland, Galway, Ireland, kirsten.pfeiffer@nuigalway.ie 

This article reports on our experience, arising from an 
earlier research study, of incorporating proof evaluation 
tasks into a university mathematics curriculum. In par-
ticular, we discuss a task in which students were asked 
to evaluate and rank five different proposed proofs of a 
statement from elementary linear algebra. The students’ 
responses to this task prompted rich learning oppor-
tunities on the nature and functions of mathematical 
proofs, as well as revealing some interesting features of 
their thinking. We argue that proof evaluation tasks can 
afford rich learning opportunities as well as enabling 
novice students to participate in authentic mathemat-
ical practice.
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BACKGROUND

A CERME 7 article by Kirsten Pfeiffer (2011a) presents 
a conceptual schema that provides a frame of refer-
ence for consideration of what needs attention in a 
proof evaluation exercise. In accordance with Hemmi 
(2008), Pfeiffer regards proof and proofs as artefacts of 
mathematical practice. She adapts ideas of Hilpinen 
(2004) on evaluation of artefacts in general and spe-
cializes them to the case of mathematical proofs. In this 
context an artefact is a (physical or conceptual) object 
that is designed and made by an author (or authors) in 
order to fulfil a specific purpose (or purposes). Thus 
the quality of an artefact can only be judged in terms 
of its success at achieving its purpose(s). In the case 
of a proof of a mathematical statement, a primary 
and non-negotiable purpose is that the argument es-
tablishes the truth of the statement. Other purposes 
might include provision of a satisfying explanation, 
enhancing understanding of the concepts involved, 
and so on. Motivated by Hilpinen, Pfeiffer suggests 
that a proof can be evaluated in relating the three fea-
tures of an artefact, its intended character, its actual 
character, and its purposes. Therefore evaluating a 
proposed proof might involve three considerations: 

that the author’s intention or “proof design” is appro-
priately matched to the purpose of the proof, that the 
author’s intention is appropriately realized in the 
actual written proof, and that the written proof appro-
priately achieves its purpose. The point of Pfeiffer’s 
schema is to provide some context and terminology 
for discussion of what proof evaluation entails and 
for discussion of specific evaluations of particular 
proofs. It is intended not as a rigid framework but as 
a helpful  theoretical construction. 

The outcomes of Pfeiffer’s research study (Pfeiffer, 
2011b) included strong indications that proof evalu-
ation tasks, including those involving more than one 

“proof ” of the same statement, have the potential to 
prompt students to consider the mechanism and fit-
ness-for-purpose of a proof in a serious way. Some stu-
dents in the study even recognised a change in their 
own thinking stimulated by the task of comparing 
different proofs of the same statement. These obser-
vations encouraged us to include proof evaluation 
tasks in the curriculum alongside learning activities 
of other types. 

Over the last decade several investigations into 
students’ performances when validating or read-
ing mathematical proofs have shown that students 
have difficulties in determining whether a proof is 
valid (Selden & Selden, 2003; Alcock & Weber  2005). 
Other studies describe the behaviour of experienced 
mathematicians when validating proofs (Weber & 
Mejia-Ramos, 2011) or the differences between nov-
ice and experienced readers (Inglis & Alcock, 2013). 
Techniques or teaching methods to improve students’ 
proof comprehension have been suggested, for exam-
ple unpacking proofs or proof frameworks (Selden & 
Selden, 1995), inclusion of instructional sequences in 
mathematics courses (Stylianides & Stylianides, 2008),  
e-proofs (Alcock & Wilkinson, 2011) or self-explanation 
(Hodds, Alcock, & Inglis, 2014). We consider proof eval-
uation exercises as another possible teaching practice 
to accomplish proof reading skills. In our experiences 
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proof validation activities provide a rich teaching and 
learning tool provoking fruitful discussions and ulti-
mately making a wide range of features and purposes 
of mathematical proof visible to learners. We aim to 
test the efficiency of proof evaluation exercises incor-
porated into a University level mathematics course 
and also to prepare resources for use by teachers.

In this paper we report on one particular proof eval-
uation exercise performed in a linear algebra course 
for first year students run by the second author of 
this article, who is a research mathematician and a 
lecturer in a university mathematics department. We 
will show that the students’ responses to proposed 
proofs potentially stimulate a considerable variety 
of themes to discuss in a teaching/learning environ-
ment. As students have engaged with the relevant 
mathematical context and the suggested proofs in 
advance, and as they are encouraged to discuss their 
own feedback rather than experts’ proofs and evalu-
ations, students are inclined to participate actively 
and appreciate these discussions. We will also report 
on our experiences with the construction of suitable 
partly flawed ‘proofs’ and show how Pfeiffer’s schema 
is useful to assure opportunities to highlight various 
aspects of proof.

EXAMPLE OF A PROOF EVALUATION EXERCISE 

The task described below was included in the first 
written homework assignment in an introductory 
course on Linear Algebra for first year students. The 
students were familiar with the concept of a linear 
transformation of R2 as a function that respects ad-
dition and multiplication by scalars, and they were 
familiar with the matrix representation of a linear 
transformation and with the procedure of using ma-
trix-vector multiplication to evaluate a transforma-
tion at a particular point.

The proof evaluation task 
Students were presented with the following text.

Alison, Bob, Charlie, Deirdre and Ed are thinking 
about proving the following statement.

If the function T:R2→R2 is a linear transformation, 
then T fixes the origin, i.e. T(0,0)=(0,0). 

Alison’s Proof
Suppose that T(1,1)=(a,b). Then 

T[(1,1)+(0,0)]=T(1+0,1+0)=T(1,1)=(a,b).

But on the other hand since T respects addition

T[(1,1)+(0,0)]=T(1,1)+T(0,0)=(a,b)+T(0,0)=(a,b) from 
above.

So T(0,0)=(a,b)-(a,b)=(0,0).

Bob’s Proof
We know that for any element u of R2 and for any 
real number k we have T(ku)=kT(u).

Then applying T to (0,0) and multiplying the result 
by any real number k must give the same result as 
multiplying (0,0) by k first and then applying T. But 
multiplying (0,0) by k always results in (0,0) no mat-
ter what the value of k is. So it must be that the im-
age under T of (0,0) is a point in R2  which does not 
change when it is multiplied by a scalar. The only 
such point is (0,0). So it must be that T(0,0)=(0,0).

Charlie’s Proof
Think of T as the function that moves every point 
one unit to the right. So T moves the point (0,0) to 
the point (1,0). Then T is a linear transformation 
but T does not fix the origin. This example proves 
that the statement is not true. 

Deirdre’s Proof 
Suppose that (a,b) is a point in R2 for which 
T(a,b)=(0,0). Then 

T[2(a,b)]=T(2a,2b)=2T(a,b)=2(0,0)=(0,0).

Thus T(2a,2b)=T(a,b), so (2a,2b)=(a,b), so 2a=a and 
2b=b. Thus a=0, b=0 and T(0,0)=(0,0).

Ed’s Proof
Since T is a linear transformation it can be repre-
sented by a matrix. Suppose that the matrix of T is

Then the image of (0,0) under T can be calculated 
as follows:

So T(0,0)=(0,0).



Proof evaluation tasks as tools for teaching? (Kirsten Pfeiffer and Rachel Quinlan)

180

The students were asked the following questions 
about the text above.

(a) Does Alison’s answer prove that the statement 
is true? If not, why not?

(b) Does Bob’s answer prove that the statement is 
true? If not, why not?

(c) Does Charlie’s answer prove that the statement 
is not true? If not, why not?

(d) Does Deirdre’s answer prove that the statement 
is true? If not, why not?

(e) Does Ed’s answer prove that the statement is 
true? If not, why not?

(f ) Please rank the five answers in order of your 
preference (according to your own opinion). 
Include some comments to explain your ranking. 

The five proposed proofs provide a sufficient variety 
of different approaches to provoke learning and dis-
cussion about the nature and features of mathemat-
ical proof and about the process of proof evaluation. 
Alison’s proof is sufficient to prove the statement, it 
actually proves a more general statement. An evalu-
ator might question the unexplained introduction of 
the point (1,1) and whether there is a reason for this 
choice. Bob’s proof is written in text and also proves 
a wider statement than required. Charlie mistakenly 
proposes a counterexample to prove that the state-
ment is incorrect. Deirdre’s approach is written in 
a style which is familiar to students in the context 
of mathematical proof. However, her proof contains 
significant logical errors and does not establish the 
truth of the statement. Using Pfeiffer’s terminology, 
the evaluator may find mismatches between the in-
tended character and purpose of the proof, and be-
tween the actual and intended characters. Ed’s proof 
establishes the truth the statement, but other purpos-
es of proof such as enhancing understanding of the 
content and context of the statement are not met, i.e. 
the intended character of Ed’s proof does not match 
these wider purposes.

DISCUSSION OF THE RESPONSES 
AND OPPORTUNITIES FOR 
DISCUSSION AND LEARNING

The 28 students whose responses are discussed here 
are those who fully answered all six parts of the ques-
tion and included comments (many other students 
answered only some parts or gave “yes/no” answers 
without explanation). This account is intended to 
highlight some features of these students’ thinking 
about proof and some opportunities for learning 
(for both the students and instructor) that arise. We 
followed the task with a lecture-based discussion ses-
sion focussing on the themes mentioned below and 
prompted by the students’ work. This session, though 
conducted with a large group, was notable for the stu-
dents’ interested attention and for an unusually high 
level of interaction. This may be due to the fact that 
many of the themes of the discussion arose directly 
from the students’ written comments. 

Alison’s proof – responses and 
learning opportunities 
Of the 28 respondents, 17 expressed the view that 
Alison proves that the statement is true. One was 
non-commital, and the other 10 stated that Alison’s 
answer does not prove that the statement is true. 

Five students objected to the introduction of the point 
(1,1), apparently believing that focussing attention 
on this chosen point constituted a restriction of the 
statement to a particular example. Another accepted 
Alison’s proof as correct, but commented:

Student: I would prefer if she used a point (c,d) 
in R2 instead of (1,1).

This last comment prompted a discussion about pur-
poses of proofs. The student approves the proof but 
suggests altering it to avoid the choice of a particular 
vector. This alteration may make the argument more 
accessible for some readers, for example for the five 
of our students who were misled by the introduction 
of (1,1) to the extent that they rejected Alison’s proof. 
On the other hand, some readers might see Alison’s 
specification of a particular vector as simplifying the 
presentation and might prefer this to the alternative 
of cluttering the text with “general” notation that is 
not strictly necessary. The comment quoted above 
gave us the opportunity to highlight the fact that 
readers may have different mathematical tastes and 
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that alternative presentations of essentially the same 
argument may appeal differently to different readers. 

Bob’s proof – responses and 
learning opportunities
21 students accepted Bob’s proof as correct. One stu-
dent described it as partially correct, and 6 considered 
it to be incorrect. It was the second most popular of 
all the proposed proofs, being ranked first (or joint 
first) by 8 students.  

The six students who rejected Bob’s proof stated two 
reasons for doing so. Two students objected to the as-
sertion in Bob’s proof that  (0,0) is the only element of 
R2 that “does not change when multiplied by a scalar” 
pointing out that (for example) “(2,3) does not change 
when multiplied by the scalar 1”.  This misinterpreta-
tion of Bob’s intention highlights the importance of 
precision in mathematical proof.

The other four students who rejected Bob’s proof (as 
well as three who accepted it) complained that it only 
used part of the definition of a linear transformation, 
namely the property of respecting scalar multiplica-
tion. All seven of these students criticized Alison’s 
proof on the same grounds; the following is a repre-
sentative comment.

Student: Bob supplies the other half of Alison’s 
proof, he proves the statement for scalar 
multiplication. He is also half right.

The students who reject or criticize Bob’s and Alison’s 
proofs on these grounds appear to  recognize the strat-
egy of reasoning from a definition towards a desired 
conclusion, but their verdict that the argument can-
not be complete if it uses only part of the definition 
seems to be automatic. Their written comments do 
not indicate attempts to assess the significance to the 
argument of the “missing” part of the definition; their 
conclusions appear to be founded purely on an inspec-
tion of features of the proof without consideration of 
its logical structure.

No student cited as a reason to favour the proof of 
either Bob or Alison that both of these arguments 
prove a more general statement that they are directly 
concerned with. Alison’s argument proves that every 
additive function fixes the origin, and Bob’s proves 
that every function that respects scalar multiplication 
fixes the origin.  

In the ensuing discussion, attention was drawn to 
the logical structure of Bob’s proof and to the more 
general statement that it establishes. Students were 
reminded that a proof evaluator must consider the 
full content of what is achieved or omitted in a line of 
reasoning, and not hastily accept or dismiss an argu-
ment on the basis of superficial inspection. From the 
instructor’s point of view, the student responses to 
Bob’s proof highlight the important point that novice 
students are sometimes more attentive to the internal 
details of an argument than to its deductive quality.

Charlie’s proof – responses and 
learning opportunities
Charlie’s proof was considered incorrect by 25 stu-
dents, and correct by three. It was ranked last by 21 
students.

Of the 25 students who rejected Charlie’s proof, only 
11 did so on the grounds that the proposed counter-
example is not or may not be a linear transformation. 

Not all of the remaining 14 students who rejected 
Charlie’s proof gave clear reasons. It is possible that 
the conflict between Charlie’s conclusion and those 
of the other authors prompted some to object, but 
only two students cited this as a reason. Six students 
objected to the restriction of attention to a particu-
lar function. There is no sign in the work of these six 
students of acknowledgement that Charlie’s goal is 
exceptional amongst the five, that he is trying to dis-
prove the statement by exhibiting a counterexample. 
In the context of Pfeiffer’s schema, their evaluations of 
Charlie’s proof do not appear to include consideration 
of the relationship between the content of the proof 
and its main purpose. 

A possibly surprising feature of the responses to 
Charlie’s argument is that of the three students who 
considered it to be correct, each also accepted at least 
one of other four proofs. For example, one commented 
as follows on Charlie’s proof:

Student: As he notes, the linear transformation 
could possibly move every point one 
unit to the right. Therefore T does not 
fix the origin.

The same student accepted (for example) Bob’s 
proof, and recognized the conflict between Bob’s and 
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Charlie’s positions, commenting on ranking Charlie’s 
proof 3rd:

Student: Even though Charlie disproves the 
statement, it’s a very valid reason to 
disprove it.

The three students who approved Charlie’s proof 
did not appear to be troubled by the inconsistency 
of their own positions, and apparently believed that 
the statement could simultaneously be validated by a 
correct proof and contradicted by a counterexample. 
The intriguing phenomenon of such beliefs is inves-
tigated and thoughtfully discussed by Stylianides and 
Al-Murani (2010). 

Our in-class discussion of the responses to Charlie’s 
proof focussed on the exceptional character of his 
argument among the five, on the roles of examples 
and counterexamples in mathematical reasoning, and 
on the inappropriateness of rejecting an argument 
solely on the grounds that it consists of a single ex-
ample, without considering what it claims to establish. 
The opportunity arises also to discuss the question of 
whether a statement which has a valid proof can ever 
admit “exceptions”, a question whose answer seems to 
be less clear to inexperienced students than to prac-
tising mathematicians.

Deirdre’s proof – responses and 
learning opportunities
Deirdre’s proof was considered correct by 19 students, 
and ranked 1st or 2nd by 11 of these. It was considered 
incorrect by 8 students, with one reporting no verdict.

Deirdre’s argument begins with a linear transforma-
tion T and a hypothesized point (a,b) whose image 
under T is the origin. (There is no a priori guarantee 
that such a point exists.) From the fact that T respects 
multiplication by scalars, it is established that (a,b) 
and (2a,2b) have the same image under T. It is then 
erroneously deduced that these two points must be 
the same and hence that a=b=0. This is a specific error 
in the line of reasoning documented in Deirdre’s ar-
gument. The argument also suffers from a structural 
error in its logic: what it attempts to establish is not 
that T(0,0)=(0,0) for every linear transformation T, but 
that if a point is mapped by a linear transformation 
to (0,0), then that point must be (0,0). In the context 
of the schema of Pfeiffer, this error corresponds to 
an opposition between the author’s proof strategy 

(the intended character of her proof ) and her purpose 
(establishing that T(0,0)=(0,0) for a linear transforma-
tion T). The “internal” error in Deirdre’s proof, (that 
T(a,b)=(0,0)=T(2a,2b) means (a,b)=(2a,2b)) corresponds 
to a failure in the author’s implementation of her 
strategy, a mismatch between the intended character 
and actual character of her proof. That such an error 
must exist is inevitable in this instance, since the au-
thor’s intention is to prove an untrue statement.

Obviously notable is the fact that two-thirds of the 
students accepted an argument that has (at least) two 
serious flaws, one in its overall logical structure and 
one in its internal deductions. Many identified simi-
larities between Deirdre’s proof and Bob’s, which may 
partly explain their readiness to accept this funda-
mentally flawed proof. 

The 8 students who rejected Deirdre’s proof did so for 
a variety of reasons. Two of them (as well as two who 
accepted the proof ) criticized the use of the scalar 2 
instead of a general k. Two of these students suggest-
ed that this specialization amounted to restriction to 
a special case and constituted a reason to reject the 
proof, the other two only that it compromised the 
quality of the argument (as opposed to its correctness). 

Two students rejected Deirdre’s proof on the basis of 
the erroneous deduction that T(a,b)=T(2a,2b) means 
(a,b)=(2a,2b). For example,

Student: Her second line contains a mistake, when 
she states T(2a,2b)=T(a,b) (2a,2b)=(a,b). 
This is not necessarily true. She is in-
correct.

For us, the most remarkable feature of the data on 
our students’ responses to Deirdre’s proof is that not 
one student noted its significant logical flaw. The 
only possible reference to the unexpected structure 
of Deirdre’s argument is an oblique one from a student 
who accepted the proof and commented:

Student: she works backwards to reach her con-
clusion.

From their comments it is not evident that any of the 
students gave careful critical attention to the ques-
tion of “fitness-for-purpose” of Deirdre’s strategy. In 
the context of Pfeiffer’s schema, none of the students’ 
written comments indicate consideration of the rela-



Proof evaluation tasks as tools for teaching? (Kirsten Pfeiffer and Rachel Quinlan)

183

tionship between the intended or actual characters 
of this argument and its purpose. A key learning 
outcome for the instructor here is that the mathema-
tician’s practice of constantly testing the connection 
between the text of an argument and the statement 
that it purports to prove is not automatically adopted 
by students. Our discussion on Deirdre’s proof fo-
cussed on this mental discipline and its essential role 
in mathematical practice and in the development and 
validation of mathematical knowledge. The validity of 
a mathematical argument cannot be assessed without 
analysis of the deductive process from the hypotheses 
to the conclusion. To conduct such analysis, a reader 
of proofs needs to have a measure of confidence in her 
ability to extract the logical thread from  a passage of 
text, and to assess whether it does what it claims. As 
students progress through mathematical education 
at university, we expect their sense of their own reli-
able mathematical authority to evolve. Alertness to 
the possibility of logical failures in an argument is a 
habit of mind whose development may need explic-
it attention from both teachers and students. It is a 
key feature of mathematical practice, which might 
plausibly be encouraged by critical study of proofs, 
including some that are incorrect or inadequate in 
different ways. 

Ed’s proof – responses and 
learning opportunities
Ed’s proof was accepted as correct by all 28 students, 
and was by far the most popular of the five proofs, 
being ranked 1st by 18 students and 2nd by 5 students. 

Few students commented in detail on Ed’s proof. 
Typical remarks included that it was clear, simple, 
short and easy to understand. Overall the group 
demonstrated a clear preference for Ed’s transla-
tion of the problem into an easy matrix calculation 
over Alison and Bob’s processes of reasoning from 
the defining properties of a linear transformation. 
The matrix representation of a linear transformation 
had been discussed in detail in lectures, and manipu-
lations with matrices featured in several other tasks 
on the homework assignment that included this proof 
evaluation exercise. 

Our discussion of Ed’s proof and the responses to it fo-
cussed on the wider purposes of proof and on the rea-
sons that a reader might have for preferring Alison or 
Bob’s proof to Ed’s, despite the fact that more effort is 
required to understand them. Students were invited 

to consider whether any of these proofs enhanced 
their appreciation of the significance of the defining 
properties of a linear transformation, or their under-
standing of why the statement is true.  

CONSTRUCTION OF PROOF 
EVALUATION TASKS

Composing a suitable collection of “proofs” for a proof 
evaluation task can be an absorbing but time-consum-
ing challenge for an instructor. It is not essential that 
such a task involves multiple proposed proofs, but our 
experience suggests that the invitation to compare 
different attempts to prove the same statement can 
stimulate meaningful learning opportunities. A first 
step in constructing a task of the type described here 
is to identify a statement is relevant to the discipli-
nary learning context, and admits different proofs 
that students have the requisite knowledge to under-
stand. In the preparation of “proofs”, there are at least 
two areas of potential scope for variability. One is the 
manner in which the proof is presented – whether it 
primarily consists of text or of algebraic formulation; 
whether it includes diagrams, either as a support or 
as the main content; whether the style of text content 
is formal and technical or more conversational. The 
presentation style can often be varied independent-
ly of considerations of the correctness of the proofs, 
and we have found it useful to give different styles 
of writing and presentation to our fictitious authors.

Another important dimension of variability is in the 
nature of errors or imperfections that appear in the 
range of proposed proofs. In this context the schema 
of Pfeiffer provides a useful framework for prepa-
ration of variously erroneous proof attempts. A task 
designer might decide to include one or more “proofs” 
in which the author’s intention is mismatched to the 
stated aim, for example because of inappropriate log-
ical structure (as in Deirdre’s proof ), inadvertent re-
striction to special cases, or unjustifiable deductions. 
A proof whose intended character is appropriate for 
the purpose but poorly conveyed in the actual charac-
ter might also be included. Such a mismatch might be 
manifested through an insufficiently explained (but 
justifiable) line of reasoning, through the omission of 
some routine but necessary ingredient, or through 
imprecise or unclear statements.  Proof evaluation 
tasks are flexible and adaptable and a number of de-
grees of freedom exist for their design. Instructors 
wishing to include such tasks in curricula will find 
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opportunities to highlight essential points relating 
both to the nature and purposes of proofs and to rel-
evant disciplinary knowledge. 

A shared repository of adaptable proof evaluation 
tasks relating to different subject areas and levels 
would be a very useful resource.

CONCLUDING REMARKS

As anticipated by the research study of Pfeiffer (2011b), 
our incorporation of the activity of proof evaluation 
into a linear algebra course led to positive learning 
opportunities for our students as well as giving us 
some insights into their thinking about proof. We 
were surprised by the range of discussion opportu-
nities that arose from students’ responses to the task. 
Examples include the importance of precision, the 
role of counterexamples, and attention in proof-read-
ing to overall structure as well as internal features. 
Proof evaluation activities with an advanced course 
in group theory have been similarly encouraging. All 
of these experiences motivate us to extend our re-
sources for the use of proof evaluation tasks and to 
conduct comprehensive tests of their effectiveness 
for the development of proof-reading skills. 

As a further argument for the incorporation of tasks 
of this nature in learning activities, we remark that 
a great deal of the professional activity of research 
mathematicians is concerned, directly or indirectly, 
with the validation and evaluation of proofs. However, 
in our experience it is rarely the subject of explicit at-
tention in curricula. We propose that proof evaluation 
tasks, as well as providing meaningful opportunities 
in teaching and learning, also provide opportunities 
for students at all stages of expertise to participate in 
authentic mathematical practice.

Finally, we remark that our classroom experience with 
proof evaluation tasks demonstrates the potential of 
collaboration between researchers in mathematics ed-
ucation and academic mathematicians to deliver rich 
learning opportunities for students. Cooperation and 
mutual support of this nature is essential if insights 
arising from research in mathematics education are 
to have a significant impact on curricula and on the 
learning of mathematics at university level. 
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