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DEVIATION INEQUALITIES FOR BANACH SPACE VALUED

MARTINGALES DIFFERENCES SEQUENCES AND RANDOM FIELDS

DAVIDE GIRAUDO

Abstract. We establish deviation inequalities for the maxima of partial sums of a martin-
gale differences sequence, and of a strictly stationary orthomartingale random field. These
inequalities can be used to establish complete convergence of normalized maxima of partial
sums.

1. Introduction and main results

Probability inequalities play an important role in the study of properties of partial sums of

random variables. A particular attention has been given to martingales. In Burkholder’s paper

[Bur73], distribution function inequalities for maximum of martingales are established, and

moment inequalities are derived from them. Sharp results has been obtained for martingales

with bounded increments [Hoe63, Azu67]. When the increments of the considered martingale

are unbounded but square integrable, it is possible to control the tail function of the martingale

by that of the increments and of the sum of conditional variances, like in [Bur73,Hae84,dlP99,

FGL12,FGL15]. When the tail of increments have a polynomial decay, it seems that Nagaev’s

inequality [Nag03] gives the most satisfactory results. However, the involved martingales have

to be square integrable. A natural question is thus the extension to martingales with a finite

moment of order p ∈ (1, 2), which is the main motivation of this note.

The paper is organized as follows: in Subsection 1.1, we state a deviation inequality for

any Banach space valued martingale differences sequence, then for stationarity sequence. In

Subsection 1.2, we review orthomartingales, and state a deviation inequality for stationary

orthomartingale differences random fields. Section 2 is devoted to applications to complete

convergence for martingale differences arrays and large deviations for strictly stationary mar-

tingale differences sequence and orthomartingale differences random fields. All these results

are proven in Section 3.

1.1. Martingale differences sequences.

1.1.1. General case.

Definition 1.1. Let (Ω, F ,P) be a probability space and let (B, ‖·‖B) be a separable Banach

space. For any p > 1, we denote by L
p
B the space of B-valued random variables such that

‖X‖p
L

p
B

= E [‖X‖p
B] is finite. Let (Fi)i>1 be an non-decreasing sequence of sub-σ-algebras of
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F . We say that a sequence of B-valued random variables (Xi)i>1 is a martingale differences

sequence with respect to the filtration (Fi)i>1 if

(1) for any i > 1, Xi is Fi-measurable and belongs to L
1
B;

(2) for any i > 2, E [Xi | Fi−1] = Xi−1 almost surely.

Definition 1.2. Following [Pis75], we say that a Banach space (B, ‖·‖B) is r-smooth (1 <

r 6 2) if there exists an equivalent norm ‖·‖ such that

sup
t>0

1

tr
sup {‖x + ty‖ + ‖x − ty‖ − 2 : ‖x‖ = ‖y‖ = 1} < ∞.

From [Ass75], we know that if B is r-smooth and separable, then there exists a constant D

such that for any sequence of B-valued martingale differences (Xi)i>1,

E

[
∥

∥

∥

∥

∥

n
∑

i=1

Xi

∥

∥

∥

∥

∥

r

B

]

6 D

n
∑

i=1

E [‖Xi‖r
B ] (1.1.1)

Definition 1.3. We say that a separable Banach space (B, ‖·‖B) is (r, D)-smooth (1 < r 6 2)

if (B, ‖·‖B) is r-smooth and any sequence of B-valued martingale differences (Xi)i>1 satisfies

(1.1.1).

Our first main result is an inequality in the spirit of Theorem 1 in [Nag03].

Theorem 1.4. Let (B, ‖·‖B) be a separable (r, D)-smooth Banach space where 1 < r 6 2. For

each 1 < p 6 r and each q > 0, there exist two constants C and c depending only on q and

D such that for any martingale differences sequence (Xi, Fi)i>0, the inequality holds for each

n > 1 and x > 0:

P

{

max
16i6n

‖Si‖B > x

}

6 C

∫ 1

0

P

{

max
16i6n

‖Xi‖ > cxu

}

uq−1du

+ C

∫ 1

0

P

{

n
∑

i=1

E [‖Xi‖p | Fi−1] > cxpup

}

uq−1du. (1.1.2)

Remark 1.5. We can choose c = min
{

1/2, 2−q/
√

D
}

and C = q8q/(2q − 1).

On one hand, Nagaev’s result [Nag03] applies to real valued supermartingales, while our

result is restricted to martingales. On the other hand, when applied to the latter class of

random variable, our result gives a generalization in two directions. First, we consider Banach

space valued random variables. Second, even when restricted to real-valued random variables,

our result can be used to treat martingales whose increments do not necessarily have a finite

moment of order 2.

1.1.2. Strictly stationary sequences. We now focus on the case of strictly stationary sequences.

We assume that T : Ω → Ω is a bijective bi-measurable and measure preserving map and that

F0 is a sub-σ-algebra of F such that T F0 ⊂ F0. We assume that Xi = m ◦ T i for some

function m : Ω → B, since any strictly stationary sequence can be represented in this way

(see [Doo53], p. 456, second paragraph). Furthermore, we assume that the filtration Fj has

the form Fj = T −jF0. In this way, the second term of the right hand side of (1.1.2) involves
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a Birkhoff sum, for which the maximal ergodic theorem applies. Consequently, the right hand

side of (1.1.2) can be written only with the distribution function of ‖m‖B and E [‖m‖p
B | T F0].

For a function f : Ω → B, we denote Uf the function f ◦ T , S0(f) = 0 and Sn (f) :=
∑n−1

j=0 f ◦ T j =
∑n−1

j=0 U jf .

Theorem 1.6. Let (B, ‖·‖B) be an (r, D)-smooth separable Banach space. For each 1 < p 6 r

and each q > p, there exist two constants C and c depending only on p, q and D such that for

any strictly stationary martingale differences sequence
(

m ◦ T i, T −iF0

)

i>0
with values in B,

the following inequalities hold for any n > 1 and x > 0:

P

{

max
16i6n

‖Si(m)‖B > xn1/p

}

6 Cn

∫ 1

0

P

{

‖m‖B > cxun1/p
}

uq−1du

+ C

∫ +∞

0

P {E [‖m‖p
B | T F0] > cxpup} min

{

uq−1, up−1
}

du; (1.1.3)

P

{

max
16i6n

‖Si‖B > xn1/p

}

6 C

∫ +∞

0

P {‖m‖B > xu} min
{

uq−1, up−1
}

du. (1.1.4)

1.2. Stationary orthomartingale differences random fields. Let (Tq)
d
q=1 be bijective, bi-

measurable and measure preserving transformations on (Ω, F ,P). Assume that Tq ◦ Tq′ = Tq′ ◦
Tq for each q, q′ ∈ {1, . . . , d}. Let F0 be a sub-σ-algebra of F such that for each q ∈ {1, . . . , d},

F0 ⊂ T −1
q F0. In this way, Fi := T −iF0, i ∈ Z

d, yields a filtration for the coordinatewise order

(that is, i 4 j if iq 6 jq for each q ∈ {1, . . . , d}).

We also denote for k and l ∈ Z
d the coordinatewise minimum by k ∧ l = (min {ki, li})

d
i=1.

If for each k, l ∈ Z
d and each integrable and Fl-mesurable random variable Y ,

E [Y | Fk] = E [Y | Fk∧l] almost surely, (1.2.1)

the transformations (Tq)d
q=1 are said to be completely commuting.

The collection of random variables
{

Mn, n ∈ N
d
}

is said to be an orthomartingale random

field with respect to the completely commuting filtration
(

T −iF0

)

i∈Zd if for each n ∈ N
d, Mn

is Fn-measurable, integrable and for each i, j ∈ Z
d
+ such that i 4 j,

E [Mj | Fi] = Mi. (1.2.2)

We denote for n < 1 the partial sums by Sn (m) :=
∑

04in−1 m ◦ T i

Definition 1.7. Let m : Ω → R be a measurable function. The random field
(

m ◦ T i
)

i∈Zd is

an orthomartingale difference random field with respect to the completely commuting filtration
(

T −iF0

)

if the random field (Mn)n∈Nd defined by Mn := Sn (m) is an orthomartingale random

field.

Orthomartingale random fields have good properties with respect to marginal filtrations

F (d)
q := σ

(

Fk, kq 6 j, k ∈ Z
d
)

, q ∈ {1, . . . , d}. Furthermore, when a coordinate is fixed, we

still have an orthomartingale random field with respect to a completely commuting filtration

(see [Kho02], p.37, Theorem 3.5.1).

Lemma 1.8. Let m : Ω → R be a measurable function. Let
(

m ◦ T i
)

i∈Zd be an orthomartingale

difference random field with respect to the completely commuting filtration
(

T −iF0

)

i∈Zd . Then

the following properties hold.
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(1) For any n = (n1, . . . , nd−1) ∈ N
d−1, the sequence

(

S(n,j)(m)
)

j>0
is a martingale with

respect to the filtration
(

F (d)
j

)

j>0
.

(2) For any n = (n1, . . . , nd−1) ∈ N
d−1, the sequence

(

maxi∈[1,n]

∣

∣S(i,j)(m)
∣

∣

)

j>0
is a non-

negative submartingale with respect to the filtration
(

F (d)
j

)

j>0
.

(3) For any j ∈ N, the random field
(

S(n,j)(m)
)

n<1
is an orthomartingale with respect to

the completely commuting filtration
(

T −iF ′
0

)

i∈Zd−1 , where F ′
0 is the σ-algebra generated

by
⋃

l∈Z
T ledF0.

We now state the analogue of Theorem 1.6 for strictly stationary orthomartingale differences

random fields.

Theorem 1.9. Let (B, ‖·‖B) be an (r, D)-smooth separable Banach space. For each 1 < p 6 r,

q > p and positive integer d, there exist a constant C depending only on p, q, d and D such

that for any strictly stationary orthomartingale differences random field
(

m ◦ T i, T −iF0

)

i∈Zd

with values in B, the following inequalities hold for any n ∈ N
d, x > 0 and j ∈ {1, . . . , d}:

P

{

max
14i4n

‖Si(m)‖B > x |n|1/p

}

6 Cnj

∫ 1

0

P

{

‖m‖B > xun
1/p
j

}

(1 + |log u|)d−1 uq−1du

+ C

∫ +∞

0

P {E [‖m‖p
B | TjF0] > xpup} min

{

uq−1, up−1
}

(1 + |log u|)d−1 du; (1.2.3)

P

{

max
14i4n

‖Si (m)‖B > x |n|1/p

}

6 C

∫ +∞

0

P {‖m‖B > xu} min
{

uq−1, up−1
}

(1 + |log u|)d−1
du. (1.2.4)

Remark 1.10. One can integrate the previously obtained inequalities to get moment inequali-

ties. For example, it is possible to recover a multidimensional Burkholder’s inequality in the

stationary case, like in [Faz05]. Like in the one dimensional case, it is also possible to establish

inequalities in weak L
p spaces like in [JS88], Remark 6.

2. Applications

2.1. Complete convergence for martingale differences sequences. A immediate ap-

plication of Theorem 1.4 is a sufficient condition for the complete convergence of martingale

differences arrays.

Theorem 2.1. Let
(

(Xn,k, Fn,k)k>1

)

n>1
be sequences of square integrable martingale differ-

ences with values in a separable (2, D)-smooth Banach space B. Let (cn)n>1 be a sequence of

non-negative real numbers. Assume that there exists some q > 0 such that for any positive R,

+∞
∑

n=1

cn

+∞
∑

k=1

∫ R

0

P
{

‖Xn,k‖B > u
}

uq−1du < +∞ and (2.1.1)
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+∞
∑

n=1

cn

∫ R

0

P

{

+∞
∑

k=1

E

[

‖Xn,k‖2
B | Fn,k−1

]

> u2

}

uq−1du < ∞. (2.1.2)

Then for each positive ε,

+∞
∑

n=1

cnP

{

sup
k>1

∥

∥

∥

∥

∥

k
∑

i=1

Xn,i

∥

∥

∥

∥

∥

B

> ε

}

< +∞. (2.1.3)

Remark 2.2. The assumptions of Theorem 2.1 can hold even if the conditional variances

E

[

‖Xn,k‖2
B | Fn,k−1

]

are not bounded, which was assumed in [WH14] and [GC98].

2.2. Large deviations for stationary martingale differences sequence and orthomartin-

gale differences random fields.

2.2.1. Stationary martingale differences sequences. Let
(

m ◦ T i, T −iF0

)

be a strictly station-

ary martingale differences sequence with values in an (r, D)-smooth separable Banach space.

We are interested in upper bounds for the quantity P {max16i62n ‖Si (m)‖B > 2nx} , n > 1.

For s > 1, we denote by L
s,∞ (respectively L

s,∞
0 ) the set of random variables X such that

supt>0 ts
P {‖X‖B > t} < +∞ (respectively limt→+∞ ts

P {‖X‖B > t} = 0).

Theorem 2.3. Let
(

m ◦ T i, T −iF0

)

be a strictly stationary martingale differences sequence

with values in an (r, D)-smooth separable Banach space B. Assume that 1 < p < r and that
(

m ◦ T i, T −iF0

)

is a B-valued strictly stationary martingale differences sequence. If m belongs

to L
p, then

lim
n→+∞

2n(p−1)
P

{

max
16i62n

‖Si (m)‖B > 2nx

}

= 0. (2.2.1)

Boundedness of the sequence
(

2n(p−1)
P {max16i62n ‖Si (m)‖B > 2nx}

)

n>1
was established

in Theorem 2.1 of [Li03], where the stationarity assumption is replaced by boundedness in L
p.

Remark 2.4. It seems that we cannot derive the results in [DM07] from Theorem 1.6, even

with the help of stationarity.

When a moment of order greater than two is finite, we can formulate precise results in terms

of integrability of the increments and of the conditional variance term.

Theorem 2.5. Let s > 2 and let B be a separable (2, D)-smooth Banach space. There exists a

constant C (s, B) such that the following holds: for each B-valued strictly stationary martingale

differences sequence
(

m ◦ T i, T −iF0

)

,

(1) if m ∈ L
s/2+1,∞ and E

[

‖m‖2
B | T F0

]

∈ L
s/2,∞, then for each x > 0,

sup
n>1

2ns/2
P

{

max
16i62n

‖Si (m)‖B > 2nx

}

6 C (s, B)

(

sup
t>0

ts/2+1
P {‖m‖B > t} x−s/2−1 + sup

t>0
ts/2

P

{

E

[

‖m‖2
B | T F0

]

> t
}

x−s

)

;

(2.2.2)

(2) if m ∈ L
s/2+1,∞
0 and E

[

‖m‖2
B | T F0

]

∈ L
s/2,∞, then for each x > 0,

lim
n→+∞

2ns/2
P

{

max
16i62n

‖Si (m)‖B > 2nx

}

= 0; (2.2.3)
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(3) if m ∈ L
s/2+1 and E

[

‖m‖2
B | T F0

]

∈ L
s/2, then

+∞
∑

n=1

2ns/2an (x) 6 C (s, B) x−s

(

E

[

‖m‖s/2+1
B

]

+ E

[

(

E

[

‖m‖2
B | T F0

])s/2
])

. (2.2.4)

For any non-negative random variable Y , sub-σ-algebra G and any s > 2, E
[

Y 2 | G
]

belongs

to L
s/2,∞ (respectively L

s/2,∞
0 , Ls/2) provided that Y belongs to L

s,∞ (respectively L
s,∞
0 , Ls).

As a consequence, we can derive from Theorem 2.5 similar results whose assumptions does not

directly carry on the conditional variance.

Corollary 2.6. Let s > 2 and let B be a separable (2, D)-smooth Banach space. There exists a

constant C (s, B) such that the following holds: for each B-valued strictly stationary martingale

differences sequence
(

m ◦ T i, T −iF0

)

,

(1) if m belongs to L
s,∞, then

sup
n>1

sup
x>0

xs2ns/2
P

{

max
16i62n

‖Si (m)‖B > 2nx

}

6 C (s, B) sup
t>0

ts
P {‖m‖B > t} ; (2.2.5)

(2) if m belongs to L
s,∞
0 then for each x > 0,

lim
n→+∞

2n(s/2)
P

{

max
16i62n

‖Si (m)‖B > 2nx

}

= 0; (2.2.6)

(3) if m belongs to L
s, then

+∞
∑

n=1

2ns/2
P

{

max
16i62n

‖Si (m)‖B > 2nx

}

6 C (s, B) x−s
E [‖m‖s

B] . (2.2.7)

Remark 2.7. In view of Theorem 3.7 in [LV01], the weight 2ns/2 is optimal for stationary ergodic

martingale differences sequences in the following sense: if (Rn)n>1 is a sequence of real numbers

with goes to infinity and s > 2, then there exists a martingale differences sequence
(

m ◦ T i
)

i>0

such that m belongs to L
s but the sequence

(

2ns/2RnP {max16i62n ‖Si (m)‖B > 2n}
)

n>1
does

not converge to 0.

2.2.2. Orthomartingale differences random fields. Deviation inequalities has been used in [KL11,

Lag16] for the question of complete convergence of orthomartingale differences random fields.

Similar results as in Subsubsection 2.2.1 can be proved for strictly stationary orthomartin-

gale differences sequences.

Theorem 2.8. Let
(

m ◦ T i, T −iF0, i ∈ N
d
)

be a strictly stationary martingale differences se-

quence with values in an (r, D)-smooth separable Banach space B. Assume that 1 < p < r. If

E

[

|m|p (log (1 + |m|))d−1
]

is finite, then for any x > 0,

lim
max n→+∞

|2n|p−1
P

{

max
14i42n

‖Si (m)‖B > |2n| x

}

= 0. (2.2.8)

Theorem 2.9. Let s > 2, let B be a separable (2, D)-smooth Banach space and let d be an

integer greater than 1. There exists a constant C (s, d, B) such that the following holds: for each

B-valued strictly stationary orthomartingale differences random field
(

m ◦ T i, T −iF0, i ∈ N
d
)

,
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(1) if m belongs to L
s,∞, then

sup
n<1

|2n|s/2
P

{

max
14i42n

‖Si (m)‖B > |2n| x

}

6 C (s, d, B)

(

x−s sup
t>0

ts
P {‖m‖B > t}

)

; (2.2.9)

(2) If m belongs to L
s,∞
0 then for each x > 0,

lim
max n→+∞

|2n|s/2
P

{

max
14i42n

‖Si (m)‖B > |2n| x

}

= 0. (2.2.10)

(3) If m belongs to L
s then for each i ∈ {1, . . . , d},

sup
n<1

max
16j6d

j 6=i

+∞
∑

ni=1

|2n|s/2
P

{

max
14i42n

‖Si (m)‖B > |2n| x

}

6 C (s, d, B) x−s
E [‖m‖s

B] . (2.2.11)

3. Proofs

3.1. Proofs of Theorems 1.4 and 1.6.

Proof of Theorem 1.4. We first start by a distribution function inequality, which was first

established in the real valued case and p = 2 in [Bur73] (see also [Pis75], p. 24 for a proof).

Lemma 3.1. Let (Xi, Fi)i>1 be a martingale differences sequence with values in an (r, D)-

smooth separable Banach space and let Sj :=
∑n

i=j Xi, F0 := {∅, Ω}. Then for each p 6 r,

β > 1, 0 < δ < β − 1, x > 0 and n > 1, the following inequality holds:

P

{

max
16i6n

‖Si‖B > βx

}

6
δp

(β − 1 − δ)
p DP

{

max
16i6n

‖Si‖B > x

}

+ P

{

max
16i6n

‖Xi‖B > δx

}

+ P

{

n
∑

i=1

E [‖Xi‖p
B | Fi−1] > (δx)p

}

. (3.1.1)

Remark 3.2. A better result can be obtain when the increments are assumed to be conditionally

symmetric (see Lemma 4.2 in [Pin94]).

Proof of Lemma 3.1. We follow the proof of equation (21.2) in [Bur73]. Let n be fixed and

assume that Xi ≡ 0 for i > n + 1. We define the random variables

σ := inf

{

l > 1 : ‖Xl‖B > δx or

l+1
∑

i=1

E [‖Xi‖p
B | Fi−1] > δx

}

, (3.1.2)

µ := inf {l > 1 : ‖Sl‖B > x} and (3.1.3)

ν := inf {l > 1 : ‖Sl‖B > βx} , (3.1.4)

and we consider the martingale started at µ and stopped at min {ν, σ}:

Yn :=

n
∑

i=1

1 {µ < i 6 min {ν, σ}} Xi. (3.1.5)
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Then we have the inequalities

P

(

{

max
16i6n

‖Si‖B > βx

}

∩
{

max
16i6n

‖Xi‖B 6 δx

}

∩
{

n+1
∑

i=1

E [‖Xi‖p
B | Fi−1] 6 δx

})

6 P ({µ 6 ν < +∞} ∩ {σ = +∞}) 6 P

{

max
16i6n

‖Yi‖B > (β − δ − 1) x

}

6
1

((β − δ − 1) x)
pE

[

max
16i6n

‖Yi‖p
B

]

. (3.1.6)

Using Doob’s inequality followed by (1.1.1), we derive that

P

(

{

max
16i6n

‖Si‖B > βx

}

∩
{

max
16i6n

‖Xi‖B 6 δx

}

∩
{

n+1
∑

i=1

E [‖Xi‖p
B | Fi−1] 6 δx

})

6
1

((β − δ − 1) x)
p

p

p − 1
D

n
∑

i=1

E [‖1 {µ < i 6 min {ν, σ}} Xi‖p
B] ; (3.1.7)

and since the event {µ < i 6 min {ν, σ}} is Fi−1-measurable, we get

P

(

{

max
16i6n

‖Si‖B > βx

}

∩
{

max
16i6n

‖Xi‖B 6 δx

}

∩
{

n+1
∑

i=1

E [‖Xi‖p
B | Fi−1] 6 δx

})

6
1

((β − δ − 1) x)
p

p

p − 1
D

n
∑

i=1

E [1 {µ < i 6 min {ν, σ}}E [‖Xi‖p
B | Fi−1]] . (3.1.8)

Since 1 {µ < i 6 min {ν, σ}}E [‖Xi‖p
B | Fi−1] 6 1 {µ < ∞} 1 {i 6 σ}E [‖Xi‖p

B | Fi−1], we in-

fer that

P

(

{

max
16i6n

‖Si‖B > βx

}

∩
{

max
16i6n

‖Xi‖B 6 δx

}

∩
{

n+1
∑

i=1

E [‖Xi‖p
B | Fi−1] 6 δx

})

6
1

((β − δ − 1) x)
p

p

p − 1
DE

[

1 {µ < ∞}
σ
∑

i=1

E [‖Xi‖p
B | Fi−1]

]

6
(δx)p

((β − δ − 1) x)
p

p

p − 1
DP {µ < ∞} , (3.1.9)

hence

P

(

{

max
16i6n

‖Si‖B > βx

}

∩
{

max
16i6n

‖Xi‖B 6 δx

}

∩
{

n+1
∑

i=1

E [‖Xi‖p
B | Fi−1] 6 δx

})

6
δp

(β − δ − 1)p
p

p − 1
DP

{

max
16i6n

‖Si‖B > x

}

, (3.1.10)

which gives (3.1.1). This ends the proof of Lemma 3.1. �

Lemma 3.3. Let f and g be two non-increasing functions defined on the positive real line,

taking their values between 0 and 2. Assume that for any q > 0, there exists a positive constant

b such that for any positive x,

f (2x) 6 2−q · f (x) + g (bx) . (3.1.11)
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Then for each q > 0, there exists C such that for any x > 0,

f(x) 6 C

∫ 1

0

g (bxt) tq−1dt. (3.1.12)

As the proof will show, we can choose an explicit valued for C, namely, C = q8q/(2q − 1).

Proof of Lemma 3.3. Let q > 0 be fixed. We define for a fixed t0 > 0 the sequence of numbers

(tk)k>0 by tk := 2kt0. By assumption, we derive that for any integer k > 0,

f (tk+1) 6 2−qf (tk) + g (btk) . (3.1.13)

Now, define a sequence (ck)k>0 by ck := 2qkf (tk). We then have in view of (3.1.13) and

2tk = tk+1,

ck+1 = 2q(k+1)f (tk+1) 6 2q(k+1)2−qf (tk) + 2q(k+1)g (btk) = ck + 2q(k+1)g (btk) . (3.1.14)

It follows that for any n > 0,

cn+1 =
n
∑

k=0

ck+1 − ck + c0 6

n
∑

k=0

2q(k+1)g (btk) + f (t0) , (3.1.15)

hence

f (tn+1) 6

n
∑

k=0

2q(k−n)g (btk) + 2−q(n+1)f (t0) . (3.1.16)

Notice that since g is non-increasing,

n
∑

k=1

2q(k−n)g (btk) 6
n
∑

k=1

2q(k−n)

∫ tk

tk−1

g (bu) uq−1du

(

∫ tk

tk−1

uq−1du

)−1

(3.1.17)

=

n
∑

k=1

2q(k−n)

∫ tk

tk−1

g (bu) uq−1duq
(

tq
k − tq

k−1

)−1
(3.1.18)

= q

n
∑

k=1

2q(k−n)
(

2k−1t0

)−q
∫ tk

tk−1

g (bu) uq−1du (2q − 1)
−1

(3.1.19)

=
q

2q − 1
t−q
0 2q2−nq

∫ tn

t0

g (bu) uq−1du, (3.1.20)

which yields, by (3.1.16),

f (tn+1) 6
q

2q − 1
2qt−q

n

∫ tn

t0

g (bu) uq−1du + 2−nqg (bt0) + 2−q(n+1)f (t0) . (3.1.21)

Let t be a real number such that tn+1 6 t < tn+2 for some n > −1. Since f is non-increasing,

we have

f (t) 6 f (tn+1) (3.1.22)

6
q

2q − 1
2q4qt−q

n+2

∫ tn

t0

g (bu) uq−1du + 2−nqg (bt0) + 2−q(n+1)f (t0) (3.1.23)

6
q8q

2q − 1

1

tq

∫ t

0

g (bu) uq−1du + 2−nqg (bt0) + 2−q(n+1)f (t0) . (3.1.24)
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We thus get

f (t)
+∞
∑

n=−1

1[2n+1t0,2n+2t0) (t) 6
+∞
∑

n=−1

1[2n+1t0,2n+2t0) (t)
q8q

2q − 1

1

tq

∫ t

0

g (bu) uq−1du

+ g (bt0)
+∞
∑

n=−1

2−nq1[2n+1t0,2n+2t0) (t) + f (t0)
+∞
∑

n=−1

2−q(n+1)1[2n+1t0,2n+2t0) (t) , (3.1.25)

and since
∑+∞

n=−1 1[2n+1t0,2n+2t0) (t) = 1[t0,+∞) (t), this can be rewritten as

f (t) 1[t0,+∞) (t) 6 1[t0,+∞) (t)
q8q

2q − 1

1

tq

∫ t

0

g (bu) uq−1du

+ g (bt0)

+∞
∑

n=−1

2−nq1[2n+1t0,2n+2t0) (t) + f (t0)

+∞
∑

n=−1

2−q(n+1)1[2n+1t0,2n+2t0) (t) , (3.1.26)

Notice that if t belongs to
[

2n+1t0, 2n+2t0

)

, we have 2n > 4/ (t0) hence 2−nq < (t/ (4t0))
−q

=

4qtq
0/tq. Since f and g are bounded above by 2, we derive that

g (bt0)

+∞
∑

n=−1

2−nq1[2n+1t0,2n+2t0) (t) + f (t0)

+∞
∑

n=−1

2−q(n+1)1[2n+1t0,2n+2t0) (t) 6 4q+1tq
0/tq

(3.1.27)

hence in view of (3.1.26), we get that

f (t) 1[t0,+∞) (t) 6 1[t0,+∞) (t)
q8q

2q − 1

1

tq

∫ t

0

g (bu) uq−1du + 1[t0,+∞) (t) 4q+1tq
0/tq, (3.1.28)

Since t0 is arbitrary, we get (3.1.12). This ends the proof of Lemma 3.3. �

In order to prove Theorem 1.4, we define

f(x) := P

{

max
16i6n

‖Si‖B > x

}

(3.1.29)

g(x) := P

{

max
16i6n

‖Xi‖B > x

}

+ P

{

n
∑

i=1

E [‖Xi‖p
B | Fi−1] > xp

}

. (3.1.30)

An application of Lemma 3.1 with δ such that

δ2

(1 − δ)
2

p

p − 1
D 6 2−q (3.1.31)

shows that the functions f and g satisfy the assumptions of Lemma 3.3. Its use gives (1.1.2),

which finishes the proof of Theorem 1.4. �

Proof of Theorem 1.6. We shall need the following lemma.

Lemma 3.4. Assume that X and Y are two non-negative random variables such that for each

positive x, we have

xP {X > x} 6 E [Y 1 {X > x}] . (3.1.32)

Then for each t, the following inequality holds:

P {X > 2t} 6

∫ +∞

1

P {Y > st} ds. (3.1.33)
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Proof of Lemma 3.4. Rewriting the expectation as

E [Y 1 {X > 2t}] =

∫ +∞

0

P {Y 1 {X > 2t} > u} du 6 tP {X > 2t} +

∫ +∞

t

P {Y > u} du,

(3.1.34)

we derive by the assumption the bound

2tP {X > 2t} 6 tP {X > 2t} +

∫ +∞

t

P {Y > u} du. (3.1.35)

We conclude using the substitution ts := u. �

We apply Theorem 1.4 with Xi := m ◦ T i for i > 0 and Fi := T −iF0. We get

P

{

max
16i6n

‖Si(m)‖B > xn1/p

}

6 C

∫ 1

0

P

{

max
16i6n

∥

∥m ◦ T i
∥

∥ > cxun1/p

}

uq−1du+C

∫ 1

0

P

{

1

n

n
∑

i=1

E [‖f‖p | T F0] ◦ T i > cxpup

}

uq−1du.

(3.1.36)

We bound the term
∫ 1

0 P
{

max16i6n ‖m‖B > cxun1/p
}

uq−1du by n
∫ 1

0 P
{

‖m‖B > cxun1/p
}

uq−1du.

By the maximal ergodic theorem, inequality (3.1.34) holds with X := sup
n>1

n−1Sn (E [‖m‖p
B | T F0])

and Y = E [‖m‖p
B | T F0], hence by Lemma 3.4 the estimate

P
{

n−1Sn (E [‖m‖p
B | T F0]) > 2uptp

}

6

∫ +∞

1

P {E [‖m‖p
B | T F0] > uptps} ds (3.1.37)

is valid for any n. We can deduce from inequalities (3.1.36) and (3.1.37) that (1.1.3) is satisfied

(after having switched the integrals).

In order to prove (1.1.4), we go back to (3.1.36) and we define for an integrable function

g : Ω → R, V g := UE [g | T F0]. Notice that V is an L
1-L∞ contraction and that V n(g) =

Un
E [g | T F0]. Therefore, we have the bound

∫ 1

0

P
{

n−1Sn (E [‖m‖p
B | T F0]) > 2uptp

}

uq−1du 6

∫ 1

0

∫ +∞

1

P {‖m‖p
B > uptpv} uq−1dvdu 6

∫ 1

0

∫ +∞

1

P

{

‖m‖B > utv1/p
}

uq−1dvdu, (3.1.38)

and using the substitution u′ := uv1/p, we get

∫ 1

0

∫ +∞

1

P

{

‖m‖B > utv1/p
}

uq−1dudv =

∫ +∞

0

P {‖m‖B > tu′}
∫ +∞

max{1,u′p}

u′q−1v−q/pdvdu′

=
p

q − p

∫ +∞

0

P {|m| > tu} uq−1 (max {1, up})
1−q/p

du

(3.1.39)
∫ 1

0

∫ +∞

1

P

{

‖m‖B > utv1/p
}

uq−1dudv =
p

q − p

∫ +∞

0

P {|m| > tu} min
{

uq−1, up−1
}

du.

(3.1.40)
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We now bound the first term of (3.1.36) independently of n. Putting v = n1/pu, we have

n

∫ 1

0

P

{

‖m‖B > n1/put
}

uq−1du = n1−q/p

∫ n1/p

0

P {‖m‖B > vt} vq−1dv. (3.1.41)

If v 6 1, we use the bound n1−q/pvq−1 6 vq−1 (since q > p). If 1 < v 6 n1/p, then

n1−q/pvq−1 6 vp−1. We thus have

n

∫ 1

0

P

{

‖m‖B > n1/put
}

uq−1du

∫ +∞

0

P {‖m‖B > vt} vq−1dv. (3.1.42)

Combining (3.1.36), (3.1.38), (3.1.40) and (3.1.42), we get (1.1.4). This ends the proof of

Theorem 1.6. �

3.2. Proof of Theorem 1.9. We start by proving (1.2.4) by induction on d.

For d = 1, this reduces to (1.1.4). Assume that for some d > 2, we have the following

property: if
(

m ◦ T i
)

i∈Zd−1 is a strictly stationary orthomartingale difference random field with

respect to the completely commuting filtration
(

T −iF0

)

i∈Zd−1 with values in a (r, D)-smooth

separable Banach space and q > p, p 6 r, then for each t > 0 and each n ∈ N
d−1,

P

{

max
14i4n

‖Si(m)‖B >

d−1
∏

l=1

n
1/p
l t

}

6 c(q, d − 1)

∫ +∞

0

P {‖m‖B > tv} (1 + |log v|)(d−1)−1 min
{

vp−1, vq−1
}

dv. (3.2.1)

We have to prove that this property is still valid for d, namely, that if
(

m ◦ T i
)

i∈Zd is a strictly

stationary orthomartingale difference random field with respect to the completely commuting

filtration
(

T −iF0

)

i∈Zd and q > p, p 6 r, then for each t, each n ∈ N
d and each j ∈ {1, . . . , d},

(1.2.4) holds. Let us take such a random field and q > p. Using item 2 of Lemma 1.8 and

Lemma 3.4, we obtain this first estimate

P

{

max
14i4n

|Si(m)| >
d
∏

l=1

n
1/p
l 2t

}

6

∫ +∞

1

P

{

max
i∈[1,n]

∣

∣S(i,nd)(m)
∣

∣ >

d
∏

l=1

n
1/p
l ts

}

ds. (3.2.2)

Now, using item 3 of Lemma 1.8 and the induction assumption, we derive

P

{

max
14i4n

|Si(m)| >
d
∏

l=1

n
1/p
l 2t

}

6 c(q, d − 1)

∫ +∞

1

∫ +∞

0

P

{

∣

∣S(0,nd)

∣

∣ > tsvn
1/p
d

}

(1 + |log v|)(d−1)−1 min
{

vp−1, vq−1
}

dvds. (3.2.3)

Switching the integrals and letting s′ := sv for a fixed v, we get

P

{

max
14i4n

|Si(m)| >
d
∏

l=1

n
1/p
l 2t

}

6 c(q, d − 1)

∫ +∞

0

P

{

∣

∣S(0,nd)

∣

∣ > ts′n
1/p
d

}

∫ +∞

0

1{s′>v}(1 + |log v|)(d−1)−1 min
{

vp−2, vq−2
}

dvds′.

(3.2.4)
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The inner integral is equal to

∫ 1

0

(1 + |log (s′w)|)d−2
min

{

(s′w)
p−2

, (s′w)
q−2
}

wdw, (3.2.5)

which can be bounded by K(q, d)(1 + |log(s′)|)d−2 min
{

s′, s′q−1
}

.

It thus follows that

P

{

max
14i4n

|Si(m)| >
d
∏

l=1

n
1/p
l 2t

}

6 c(q, d − 1)K(q, d)

∫ +∞

0

P

{

∣

∣S(0,nd)

∣

∣ > tsn
1/p
d

}

(1 + |log s|)(d−1)−1
min

{

sp−1, sq−1
}

ds. (3.2.6)

Now, by (1.1.4), we obtain

P

{

max
14i4n

|Si(m)| >
d
∏

l=1

n
1/p
l 2t

}

6 c(q, d − 1)K(q, d)c(q)

∫ +∞

0

∫ +∞

0

P {|m| > tsu} (1 + |log s|)(d−1)−1 min
{

sp−1, sq−1
}

min
{

up−1, uq−1
}

duds

= c(q, d − 1)K(q, d)c(q)

∫ +∞

0

∫ +∞

0

P {|m| > tv} I(v)dv, (3.2.7)

where

I(v) =

∫ +∞

0

(1 + |log s|)(d−1)−1 min
{

sp−2, sq−2
}

min

{

(v

s

)p−1

,
(v

s

)q−1
}

ds. (3.2.8)

Assume that v < 1. Then

I(v) =

∫ v

0

(1 + |log s|)d−2sq−2
(v

s

)p−1

ds +

∫ 1

v

(1 + |log s|)d−2sq−2
(v

s

)q−1

ds

+

∫ +∞

1

(1 + |log s|)d−2sp−2
(v

s

)q−1

ds

6 vp−1

∫ 1

0

(1 + |log s|)d−2sq−p−1ds + vq−1(1 + |log v|)d−2

∫ 1

v

1

s
ds

+ vq−1

∫ +∞

1

(1 + |log s|)d−2 1

sq−p−1
ds, (3.2.9)

and since the q > p, the integrals
∫ 1

0
(1+|log s|)d−2sq−p−1ds and

∫ +∞

1
(1+|log s|)d−21/sq−p−1ds

are convergent. Consequently, there exists a constant K depending only on d, p and q such

that for any v ∈ (0, 1), I(v) 6 Kvq−1(1 + |log v|)d−1.
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Assume now that v > 1. Then

I(v) =

∫ 1

0

(1 + |log s|)d−2sq−2
(v

s

)p−1

ds +

∫ v

1

(1 + |log s|)d−2sp−2
(v

s

)p−1

ds

+

∫ +∞

v

(1 + |log s|)d−2sp−2
(v

s

)q−1

ds

6 vp−1

∫ 1

0

(1 + |log s|)d−2sq−p−1ds + vp−1 (1 + |log v|)d−2
∫ v

1

1

s
ds

+ vp−1

∫ +∞

1

(1 + |log(u)| + |log(v)|)d−2 1

uq−p+1
du,

and here again, there exists a constant K depending only on d and q such that for any v > 1,

I(v) 6 Kvp−1 (1 + |log v|)d−1
. This shows the estimate

I(v) 6 K (1 + |log v|)d−1
min

{

vp−1, vq−1
}

, v > 0. (3.2.10)

The combination of (3.2.7) and (3.2.10) gives (1.2.4), which shows that the considered property

is valid for d.

We now prove (1.2.3). We start from (3.2.6). Using this time (1.1.3), we obtain

P

{

max
14i4n

|Si(m)| > 2

d
∏

l=1

n
1/p
l t

}

6 c(q, d − 1)K(q, d)c(q)

nd

∫ +∞

0

∫ +∞

0

P

{

|m| > tsun
1/p
d

}

(1 + |log s|)(d−1)−1 min
{

sp−1, sq−1
}

min
{

up−1, uq−1
}

duds

+ c(q, d − 1)K(q, d)c(q)

∫ +∞

0

∫ +∞

0

P

{

(

E
[

m2 | TdF0

])1/2
> tus

}

(1 + |log s|)(d−1)−1 min
{

up−1, uq−1
}

du min
{

sp−1, sq−1
}

ds. (3.2.11)

After having done the substitution v := us for a fixed s and rearranged the integrals, we get

(1.2.3) when j = d. The proof for a general j ∈ {1, . . . , d} can be carried out similarly. This

concludes the proof of Theorem 1.9.

3.3. Proof of the results of Section 2.

Proof of Theorem 2.1. We write start from the equality

P

{

sup
k>1

∥

∥

∥

∥

∥

k
∑

i=1

Xn,i

∥

∥

∥

∥

∥

B

> ε

}

= lim
N→+∞

P

{

sup
16k6N

∥

∥

∥

∥

∥

k
∑

i=1

Xn,i

∥

∥

∥

∥

∥

B

> ε

}

(3.3.1)

and we bound P

{

sup16k6N

∥

∥

∥

∑k
i=1 Xn,i

∥

∥

∥

B
> ε
}

by Theorem 1.4. �

Proof of Theorem 2.3. We use inequality (1.1.4) with q > p to get

2n(p−1)
P

{

max
16i62n

‖Si (m)‖B > 2nx

}

6 C

∫ 1

0

2n(p−1)
P

{

‖m‖B > 2n(1−1/p)xu
}

uq−1du

+ C

∫ +∞

1

2n(p−1)
P

{

‖m‖B > 2n(1−1/p)xu
}

up−1du. (3.3.2)
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One bounds the first term by

Cx−p

∫ 1

0

sup
t>2n(1−1/p)xu

tp
P {‖m‖B > t} uq−p−1du,

and the second one by Cx−p/pE
[

‖m‖p
B 1

{

‖m‖B > 2n(1−1/p)x
}]

. Therefore, we can find a

constant K such that for any integer n,

2n(p−1)
P

{

max
16i62n

‖Si (m)‖B > 2nx

}

6 KE

[

‖m‖p
B 1

{

‖m‖B > 2n(1−1/p)x
}]

,

which ends the proof of Theorem 2.3. �

Proof of Theorem 2.5. We use inequality (1.1.3) with p = 2 and q = 2s. We get

2ns/2
P

{

max
16i62n

‖Si (m)‖B > 2nx

}

6 C2ns/22n

∫ 1

0

P {‖m‖B > cxu2n} u2s−1du

+ C2ns/2

∫ +∞

0

P

{

E

[

‖m‖2
B | T F0

]

> cx2u22n
}

min
{

u2s−1, u
}

du. (3.3.3)

(1) Assume that m belongs to L
s/2+1,∞ and E

[

‖m‖2
B | T F0

]

∈ L
s/2,∞. One bounds the

first term of the right hand side of (3.3.3) by

C2ns/22n sup
t>0

ts/2+1
P {‖m‖B > t}

∫ 1

0

(cxu2n)
−(s/2+1)

u2s−1du

= C sup
t>0

ts/2+1
P {‖m‖B > t} (cx)

−(s/2+1)
∫ 1

0

u3s/2−2du. (3.3.4)

One bounds the second term of the right hand side of (3.3.3) by

C2ns/2 sup
t>0

ts/2
P

{

E

[

‖m‖2
B | T F0

]

> t
}

∫ +∞

0

(

cx2u22n
)−s/2

min
{

u2s−1, u
}

du

= C (cx)
−s

sup
t>0

ts/2
P

{

E

[

‖m‖2
B | T F0

]

> t
}

∫ +∞

0

min
{

us−1, u1−s
}

du, (3.3.5)

and since s > 2, the latter integral is finite.

(2) Assume that m ∈ L
s/2+1,∞
0 and E

[

‖m‖2
B | T F0

]

∈ L
s/2,∞. Plugging the bounds

P {‖m‖B > cxu2n} 6 (cxu2n)
−s/2−1

sup
t>cxu2n

ts/2+1
P {‖m‖B > t} and (3.3.6)

P

{

E

[

‖m‖2
B | T F0

]

> cx2u22n
}

6
(

cx2u22n
)−s/2

sup
t>cx2u22n

ts/2
P

{

E

[

‖m‖2
B | T F0

]

> t
}

.

(3.3.7)

into (3.3.3), we get

2ns/2
P

{

max
16i62n

‖Si (m)‖B > 2nx

}

6 C (cx)−s/2−1
∫ 1

0

sup
t>cxu2n

ts/2+1
P {‖m‖B > t} u3s/2−2du

+ C
(

cx2
)−s/2

∫ +∞

0

sup
t>cx2u22n

ts/2
P

{

E

[

‖m‖2
B | T F0

]

> t
}

max
{

us−1, u1−s
}

du, (3.3.8)
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and the right hand side goes to zero by monotone convergence.

(3) Assume that m ∈ L
s/2+1 and E

[

‖m‖2
B | T F0

]

∈ L
s/2. In view of (3.3.3), we have

+∞
∑

n=1

2ns/2
P

{

max
16i62n

‖Si (m)‖B > 2nx

}

6 C

+∞
∑

n=1

2ns/22n

∫ 1

0

P {‖m‖B > cxu2n} u2s−1du

+ C
+∞
∑

n=1

2ns/2

∫ +∞

0

P

{

E

[

‖m‖2
B | T F0

]

> cx2u22n
}

min
{

u2s−1, u
}

du. (3.3.9)

Since for any non-negative random variable Y and any q > 2,
∑+∞

n=1 2qn
P {Y > 2n} 6

2E [Y q], we get the conclusion of item 3 of Theorem 2.5.

�

Proof of Theorem 2.8. We use inequality (1.2.4) with a q > p to obtain

|2n|p−1
P

{

max
14i42n

‖Si (m)‖B > |2n| x

}

6 C |2n|p−1
∫ 1

0

P

{

‖m‖B > xu |2n|1−1/p
}

uq−1 (1 + |log u|)d−1
du

+ C |2n|p−1
∫ +∞

1

P

{

‖m‖B > xu |2n|1−1/p
}

up−1 (1 + |log u|)d−1
du. (3.3.10)

Using Markov’s inequality, the first term of the right hand side of (3.3.10) does not exceed

Cx−p

∫ 1

0

E

[

‖m‖p
B 1

{

‖m‖B > xu |2n|1−1/p
}]

uq−p−1 (1 + |log u|)d−1
du

and by monotone convergence, this quantity goes to 0 as max n → +∞.

The second term of the right hand side of (3.3.10) does not exceed

CE



‖m‖p
B

(

log

(

1 +
‖m‖B

x |2n|1−1/p

))d−1




which goes to 0 as max n goes to infinity. This ends the proof of Theorem 2.3. �

Proof of Theorem 2.9. We use inequality (1.2.4) with p = 2 in order to obtain

|2n|s/2
P

{

max
14i42n

‖Si (m)‖B > |2n| x

}

6 C |2n|s/2
∫ +∞

0

P

{

‖m‖B > xu |2n|1/2
}

(1 + |log u|)d−1 uq−1du. (3.3.11)

(1) Assume that m belongs to L
s,∞. Then we use the bound

P

{

‖m‖B > xu |2n|1/2
}

6 sup
t>0

ts
P {‖m‖B > t}

(

xu |2n|1/2
)−s

(3.3.12)

to get (2.2.9).

(2) Assume that m belongs to L
s,∞
0 . Then we use the bound

P

{

‖m‖B > xu |2n|1/2
}

6 sup
t>xu|2n|1/2

ts
P {‖m‖B > t}

(

xu |2n|1/2
)−s

(3.3.13)
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to get (2.2.10).

(3) Assume that m belongs to L
s. Then for each i ∈ {1, . . . , d}, denoting n′ := n − niei,

the following inequalities hold:

+∞
∑

ni=1

|2n|s/2
P

{

max
14i42n

‖Si (m)‖B > |2n| x

}

6 C

+∞
∑

ni=1

∣

∣

∣
2n′

∣

∣

∣

s/2

2nis/2

∫ +∞

0

P

{

‖m‖B > xu2nis/2
∣

∣

∣
2n′

∣

∣

∣

1/2
}

(1 + |log u|)d−1
min

{

uq−1, u
}

du

6 2C
∣

∣

∣
2n

′

∣

∣

∣

s/2

x−s

∫ +∞

0

u−s−1
∣

∣

∣
2n

′

∣

∣

∣

−s/2

(1 + |log u|)d−1
min

{

uq−1, u
}

du, (3.3.14)

from which (2.2.11) follows.

This ends the proof of Theorem 2.9. �
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