
HAL Id: hal-01280845
https://hal.science/hal-01280845

Submitted on 1 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On a phenomenon of Turán concerning the summands of
partitions

Cécile Dartyge, Mihály Szalay

To cite this version:
Cécile Dartyge, Mihály Szalay. On a phenomenon of Turán concerning the summands of partitions.
Acta Mathematica Hungarica, 2016, 149 (2), pp.375-395. �10.1007/s10474-016-0623-0�. �hal-01280845�

https://hal.science/hal-01280845
https://hal.archives-ouvertes.fr


On a phenomenon of Turán concerning the

summands of partitions

Cécile Dartyge ∗ Mihály Szalay ∗

February 11, 2016

Abstract

Turán [12] proved that for almost all pairs of partitions of an integer,
the proportion of common parts is very high, that is greater than 1

2
− ε

with ε > 0 arbitrarily small. In this paper we prove that this surpris-
ing phenomenon persists when we look only at the summands in a fixed
arithmetic progression.

1 Introduction

For n ∈ N, let p(n) be the number of partitions of n. By Hardy and
Ramanujan [9] we have:

p(n) = (1 + o(1))
1

4n
√

3
exp

(2π
√
n√

6

)
.

Turán [12], [13], [14] proved a surprising phenomenon related to the parti-
tions of integers. If we take randomly k partitions of an integer n then in
almost all cases with at most o(p(n)k) exceptions, the proportion of the
parts common to all these k partitions is greater than 1

k
− δ with δ > 0

as small as we want.
For n ∈ N and Π(n) : n = λ1+· · ·+λm, λ1 ≥ . . . ≥ λm a partition of n,

we denote by Π(n) = {λ1, . . . , λm} the multiset formed by the summands
of Π(n). Erdős and Lehner [7] proved that for almost all partitions, the

number of parts m(Π) is (1 + o(1))
√
6n
2π

logn.
The result of Turán is in fact more general than what we previously

recalled. Precisely ([13] Theorem I’ p. 192), he proved that for any δ > 0,
n(1 + o(1)) ≤ n1 ≤ n2 ≤ . . . ≤ nk ≤ n(1 + o(1)), for almost all k-tuples
(Π1(n1), . . . ,Πk(nk)) we have:

|Π1(n1) ∩ . . . ∩Πk(nk)| ≥
( 1

k
− δ
)

max(|Π1(n1)|, . . . ,Πk(nk)|).
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The aim of this paper is to examine whether such phenomenon still
exists when we consider only the parts in a given arithmetic progression.
In the papers [1], [2], [3] it is proved that for almost all partitions, the
summands are well distributed in residue classes. In particular in [1] it is
proved that if 1 ≤ a ≤ d are fixed integers then for almost all partitions

of n the number of summands ≡ a mod d is (1 + o(1))
√
6n

2πd
logn.

In [3] we obtained some results valid for d ≤ n1/2−ε but with some
limitations due to the fact that the small parts occur frequently. In [4] we
in fact proved that there are some “dominant” residue classes, the small
classes 1 mod d, 2 mod d appearing more frequently than the class m
mod d when m is large.

Extending the notations of Turán to this context of arithmetic pro-
gressions, we now consider for 1 ≤ a ≤ d, (Π(n), a, d) the multiset of the
summands ≡ a mod d from Π(n).

Our first result shows that Turán ’s phenomenon persists for the parts
in a fixed arithmetic progressions.

Theorem 1. Let k ≥ 2, a, d fixed integers with 1 ≤ a ≤ d. Then for
n → ∞, n ≤ n1 ≤ n2 ≤ . . . ≤ nk ≤ n(1 + o(1)), δ > 0, for almost all
partitions Π1(n1), . . . ,Πk(nk) of n1, . . . , nk respectively, we have:

|(Π1(n1), a, d) ∩ . . . ∩ (Πk(nk), a, d)| ≥ (1− δ)
√

6

2πkd

√
n logn,

with at most o(p(n1) · · · p(nk)) exceptions.

Let α(n1, . . . , nk;m; a, d) denote the number of multisets such that

|(Π1(n1), a, d) ∩ . . . ∩ (Πk(nk), a, d)| = m.

The proof of Theorem 1 is based on an upper bound on∑
m≤M

α(n1, . . . , nk;m; a, d).

It would be interesting to have estimates for the individual α(n1, . . . , nk;m; a, d)
at least when m is close to the expected number of common summands.
Here we concentrate on the most natural case, that is when k = 2 and
n1 = n2.

Theorem 2. Let 1 ≤ a ≤ d be fixed. For ε > 0 and M satisfying(3

4
+ ε
)√6n

4πd
logn ≤M ≤ n

5
8

d

we have:

α(n, n;M ; a, d) = (1 + o(1))p2(n)
( 2πd√

6n

)1− a
d 1

Γ
(
a
d

)
× exp

(
−

√
6n exp(−2πdM√

6n
)

2πd
− 2aM

π√
6n

)
.

(1)

A first application is the following estimate on the cardinality of the
intersection of two multisets form by two partitions of an integer n.
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Corollary 1. Let 1 ≤ a ≤ d be some fixed integers and ε > 0. For almost
all pairs (Π1(n),Π2(n)) of partitions of n, i. e. with at most o(p2(n))
exceptions, we have:(3

4
+ ε
)√6n

4πd
logn ≤ |(Π1(n), a, d) ∩ (Π2(n), a, d)| ≤ n

5
8

d
. (2)

In [14], Turán posed the following problem ([14] Problem 3 p.319). Let
k ≥ 2, λ ∈ R fixed and n ≤ n1 ≤ n2 ≤ . . . ≤ nk ≤ n(1 + o(1)). Denoting
by K(n1, n2, . . . , nk;λ) the number of k-tuples of unrestricted partitions
(Π1, . . . ,Πk) of n1, . . . , nk with property

|Π1 ∩Π2 ∩ . . . ∩Πk| ≥
√

6n

2πk
logn+ λ

√
n. (3)

Is it true that

lim
n→∞

K(n1, n2, . . . , nk;λ)

p(n1) · · · p(nk)
= Φ(λ)

exists?
We can apply Theorem 2 to solve this problem in the case k = 2 and

n1 = n2 = n. Furthermore we can detect the distribution of the number
of common parts ≡ a mod d. Let K(n1, . . . , nk;λ; a, d) be the number
of k-tuples of unrestricted partitions (Π1, . . . ,Πk) of n1, . . . , nk with the
same property as (3) but with each Πj(nj) replaced by(Πj(nj), a, d) and√

6n
2πk

logn+ λ
√
n by 1

d
(
√
6n

2πk
logn+ λ

√
n).

Corollary 2. Let 1 ≤ a ≤ d be fixed integer and λ ∈ R also fixed. We
have:

lim
n→∞

K(n, n;λ; a, d)

p2(n)
=

1

Γ
(
a
d

) ∫ √
6

2πd
e
− 2πλ√

6

0

e−tt
a
d
−1 d t.

Theorem 2 and its corollaries are valid only for pairs of partitions
whereas the general situation of Theorem 1. We have chosen this particu-
lar case in order to facilitate the presentations of the proofs but it doesn’t
seem to have real difficulty to obtain analogous results for k-tuples of
partitions.

In [3] and [4] the results are valid for large range for d for example for
d ≤ n1/8−ε. It is probably possible to obtain something interesting for
such a region of d. Here again we decided to concentrate in case of fixed
d in order to avoid some complications in the computations.

2 On an identity of Turán

LetD(n1, n2, . . . , nk, L) denote the number of k-tuples (Π1(n1), . . . ,Πk(nk))
such that |Π1(n1) ∩ Π2(n2) ∩ · · · ∩ Πk(nk)| ≤ L. Turán [13] Lemma I p.
193 proved for all 0 ≤ xj < 1 the following identity:

∞∑
n1=0

· · ·
∞∑

nk=0

D(n1, n2, . . . , nk, L)

k∏
i=1

xnii =

k∏
i=1

F (xi)

∞∏
ν=L+1

(1− (

k∏
i=1

xi)
ν),

3



where

F (r) =

∞∏
ν=1

(1− rν)−1. (4)

In this section we adapt this identity of Turán to our context with
some arithmetic progression condition. We want to study the generating
function associated to the coefficients α(n1, . . . , nk;m; a, d):

G(x, z) =

∞∑
n1=0

· · ·
∞∑

nk=0

∞∑
m=0

α(n1, . . . , nk;m; a, d)xn1
1 · · ·x

nk
k zm, (5)

with the notation x = (x1, . . . , xk).
Adapting Turán ’s argument we obtain

Lemma 1. For any |x1| < 1, . . . , |xk| < 1, |xa1 · · ·xakz| < 1 we have:

G(x, z) =
{ ∞∏
ν=1

1

(1− xν1) · · · (1− xνk)

}{ ∏
ν≥1

ν≡a mod d

1− (x1 · · ·xk)ν

1− (x1 · · ·xk)νz

}
.

Proof. We examine the contribution of the parts equal to a given integer
ν ≥ 1 in the function G. Let (Π1(n1), . . . ,Πk(nk)) be a k-tuple of parti-
tions counted in α(n1, . . . , nk;m; a, d). We may write each Πi(ni) in the

way ni =
∑
ν≥1 h

(i)
ν ν where h

(i)
ν denotes the number of parts equal to ν

in the partition Πi(ni).

If ν 6≡ a mod d then any multiplicity h
(i)
ν in partitions of the ni is pos-

sible when ni is running over all the positive integers. In other words the
terms with part ν will appear in the form xh1ν

1 · · ·xhkνk with h1, . . . , hk ≥ 0.
Thus the contribution of the ν 6≡ a mod d brings to G

g1(ν) :=

k∏
i=1

( ∞∑
hi=0

xνhi
)

=

k∏
i=1

( 1

1− xνi

)
. (6)

We study now the case when ν ≡ a mod d. The generic contribution of
the parts ν may be written in the following way:

xνh1
1 · · ·xνhkk (zh(x1 · · ·xk)hν), (7)

where at least one exponent hi = 0. Such terms correspond to the parti-
tions of some n1, . . . , nk such that the summand ν occurs exactly h times
in the intersection of Π1(n1) ∩ · · · ∩ Πk(nk). We deduce that the contri-
bution of such ν to the function G is

g2(ν) :=
( ∑
I⊂{1,...,k}
|I|6=k

∏
i∈I

( ∞∑
h=1

xhνi

))(
1 +

∞∑
h=1

zh
k∏
i=1

xνhi

)

=
( 1−

∏k
i=1 x

ν
i∏k

i=1(1− xνi )

)( 1

1− z
∏k
i=1 x

ν
i

)
.

(8)

By (6) and (8) we deduce that

G(x, z) =
∏
ν≥1

ν 6≡a mod d

g1(ν)
∏
ν≥1

ν≡a mod d

g2(ν),
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this ends the proof of Lemma 1.
Now we compute the coefficient of zm in G(x, z). If we write G(x, z) =∑∞
m=0 g(x,m)zm then we have:

g(x,m) =

∞∑
n1=0

. . .

∞∑
nk=0

α(n1, . . . , nk;m; a, d)xn1
1 · · ·x

nk
k . (9)

These coefficient g(x,m) have the following form:

Lemma 2. For |x1| < 1, . . . , |xk| < 1, |xa1 · · ·xakz| < 1, m ∈ N, we have

g(x,m) =
{ ∞∏
ν=1

k∏
i=1

1

1− xνi

}{ ∞∏
µ=0

(1−(x1 · · ·xk)a+dµ)
} (x1 · · ·xk)am∏m

j=1(1− (x1 · · ·xk)jd)
.

Proof. We will use the following formula (for example, see [10] Theorem
349 p. 280)

Lemma 3 (Euler ). For |λ| < 1, |ξλ| < 1 we have

∞∏
µ=1

1

1− ξλµ =

∞∑
µ=0

cµ(λ)ξµ,

with

cµ(λ) =
λµ

(1− λ)(1− λ2) · · · (1− λµ)

The first product in the expression of G(x, z) given in Lemma 1 doesn’t
depend on z, thus we only need to study the second product with the ν ≡ a
mod d. Writing ν = a+ µd we have

∏
ν≥1

ν≡a mod d

1− (x1 · · ·xk)ν

1− (x1 · · ·xk)νz
=

∞∏
µ=0

1− (x1 · · ·xk)a((x1 · · ·xk)d)µ

1− (x1 · · ·xk)az((x1 · · ·xk)d)µ
.

Then we apply Euler’s formula (Lemma 3) to expand the denominator

∏
ν≥1

ν≡a mod d

1− (x1 · · ·xk)ν

1− (x1 · · ·xk)νz
=
( ∞∏
µ=0

1− (x1 · · ·xk)a+dµ
)

×
∞∑
m=0

((x1 · · ·xk)az)m∏m
j=1(1− (x1 · · ·xk)jd)

.

This ends the proof of Lemma 2.

3 Proof of Theorem 1

Let A(n1, . . . , nk;M ; a, d) =
∑M
m=0 α(n1, . . . , nk;m,a, d) the number of

k-tuples of partitions with few common summands ≡ a mod d. To prove
Theorem 1 it is sufficient to show that

A(n1, . . . , nk;M ; a, d) = o(p(n1) · · · p(nk))
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when M ≤ (1− δ)(
√

6/(2πkd))
√
n logn.

By Lemma 2, we have:

∞∑
n1=0

· · ·
∞∑

nk=0

A(n1, . . . , nk;M ; a, d)

k∏
i=1

xnii =
( ∞∏
ν=1

k∏
i=1

1

1− xνi

)

×
( ∞∏
µ=0

(1− (

k∏
i=1

xi)
a+dµ)

) M∑
m=0

(x1 · · ·xk)am∏m
j=1(1− (x1 · · ·xk)jd)

.

For 0 < x1, . . . , xk < 1, we get:

A(n1, . . . , nk;M ; a, d)

k∏
i=1

xnii ≤
( ∞∏
ν=1

k∏
i=1

1

1− xνi

)( ∞∏
µ=0

(1− (x1 · · ·xk)a+dµ)
)

×
M∑
m=0

(x1 · · ·xk)am∏m
j=1(1− (x1 · · ·xk)jd)

.

(10)

Since xi ∈]0, 1[ the sum for 0 ≤ m ≤M is less than

M∑
m=0

(x1 · · ·xk)am∏M
j=1(1− (x1 · · ·xk)jd)

≤ 1

(1− (x1 · · ·xk)a)
∏M
j=1(1− (x1 · · ·xk)jd)

.

(11)
The factor (1 − (x1 · · ·xk)a) in the previous fraction appears also in the
product in µ in (10). Thus we can remove the factor µ = 0 in this product.
Next we use the fact that 1− (x1 · · ·xk)a+dµ ≤ 1− (x1 · · ·xk)d(µ+1) for all
µ ≥ 1. With this trick we find some simplifications with the product in
the variable j in (11). After all these manipulations we get:

A(n1, . . . , nk;M ; a, d)xn1
1 · · ·x

nk
k ≤

1

1− (x1 · · ·xk)d

( ∞∏
ν=1

k∏
j=1

1

1− xνj

)
×
( ∞∏
µ=M+1

(1− (x1 · · ·xk)dµ)
)
.

Let f(z) =
∏∞
ν=1(1− e−νz)−1 for <ez > 0. Choosing xj = e−tj , tj > 0,

j = 1, . . . , k we have:

A(n1, . . . , nk;M ; a, d) exp
(
−

k∑
i=1

niti
)
≤

∏k
i=1 f(ti)

1− exp
(
− d
(∑k

i=1 ti
))

×
∞∏

µ=M+1

(
1− exp

(
− dµ

( k∑
i=1

ti
)))

.

Next we use the following inequalities :

1

1− exp
(
− d
(∑k

i=1 ti
) =

exp
(
d
∑k
i=1 ti

)
exp

(
d
∑k
i=1 ti

)
− 1
≤

exp
(
d
∑k
i=1 ti

)∑k
i=1 dti

,

6



and
∞∏

µ=M+1

(
1− exp

(
− dµ

k∑
i=1

ti
))

= exp
(
−

∞∑
µ=M+1

log
1

1− exp
(
− dµ

∑k
i=1 ti

))

≤ exp
(
−

∞∑
µ=M+1

exp
(
− dµ

k∑
i=1

ti
))

= exp
(
−

exp
(
− d(M + 1)

∑k
i=1 ti

)
1− exp

(
− d

∑k
i=1 ti

) )
.

We obtain

A(n1, . . . , nk;M ; a, d) exp
(
−

k∑
i=1

niti
)
≤

exp
(
d
∑k
i=1 ti

)
d
∑k
i=1 ti

k∏
i=1

f(ti)

× exp
(
−

exp
(
− d(M + 1)

∑k
i=1 ti

)
1− exp

(
− d

∑k
i=1 ti

) )
.

Since for t > 0, t→ +0, f(t) = (1 + o(1))
√

t
2π

exp
(
π2

6t

)
, we obtain for

max1≤j≤k tj → +0,

A(n1, . . . , nk;M ; a, d)�
(∏k

i=1 ti
)1/2

d
∑k
i=1 ti

exp
( k∑
i=1

(
niti +

π2

6ti

)
− (1 + o(1))

exp
(
− dM

∑k
i=1 ti

)
d
∑k
i=1 ti

)
.

Finally, let tj = π/
√

6nj , j = 1, . . . , k. Then for n→∞,

n(1 + o(1)) ≤ n1 ≤ . . . ≤ nk ≤ n(1 + o(1))

we have:

A(n1, . . . , nk;M ; a, d)

� n
3k
4

+ 1
2 exp

(
− (1 + o(1))

exp
(
− (1 + o(1))dMkπ/

√
6n
)

dkπ/
√

6n

) k∏
i=1

p(ni)

� exp
(3k + 2

4
logn− (1 + o(1))

exp
(
− (1 + o(1))dMkπ/

√
6n
)

dkπ/
√

6n

) k∏
i=1

p(ni).

This upper bound is o(p(n1) · · · p(nk)) if M = [(1− δ)(
√

6n/(2πkd)) logn]
with a fixed, small positive δ. This ends the proof of Theorem 1.

4 The saddle point method

We focus now on the case k = 2, n1 = n2 = n. By Lemma 2 and the
Cauchy formula we have for any 0 < δ, % < 1 :

α(n, n;M ; a, d) =
1

(2iπ)2

∫
|x1|=δ

∫
|x2|=%

( ∞∏
ν=1

1

(1− xν1)(1− xν2)

)
×
{ ∞∏
µ=0

(1− (x1x2)a+dµ)
}xaM−n1−1

1 xaM−n2−1
2∏M

j=1(1− (x1x2)jd)
dx1 dx2.

7



As it is usual for partition problems we write x1 = e−z1 , x2 = e−z2 , with
z1 = x+ iy, z2 = x+ it, x = π√

6n
. Then we have

α(n, n;M ; a, d) =
1

4π2

∫ π

−π

∫ π

−π
f(x+ iy)f(x+ it)

×
∏∞
µ=0(1− exp(−(a+ dµ)(2x+ i(y + t))))∏M

j=1(1− exp(−dj(2x+ i(y + t))))

× exp((n− aM)(2x+ i(y + t))) d y d t.

(12)

Next we split the integral in two ranges. The main contribution will come
from the square max(|y|, |t|) ≤ 2πx.

5 Some trivial upper bounds for all the
range −π ≤ y, t ≤ π

A standard way to handle the generating function f is to write this prod-
uct as the sum of logarithms in the exponent, next to expand in analytic
series the logarithms and finally to exchange the order of summations and
compute some geometric series:

f(x+iy)f(x+it) = exp
( ∞∑
m=1

1

m

( 1

exp(m(x+ iy))− 1
+

1

exp(m(x+ it)− 1

))
.

(13)
Next for every y ∈ [−π, π], we have | exp(m(x+ iy))− 1| ≥ emx− 1 ≥

mx. Thus for every −π ≤ y, t ≤ π we have:

|f(x+ iy)f(x+ it)| ≤ exp
(

2

∞∑
m=1

1

m2x

)
= exp

(π2

3x

)
= exp

(2π
√
n√

6

)
.

Now we examine the ratio of products in (12). Let R(y, t) denote this
ratio:

R(y, t) =

∏∞
µ=0(1− exp(−(a+ dµ)(2x+ i(y + t))))∏M

j=1(1− exp(−dj(2x+ i(y + t))))
.

By some trivial upper bounds we have:

|R(y, t)| ≤
(1 + e−2ax)

∏∞
µ=1(1 + exp(−2dµx))∏M

j=1(1− exp(−2djx))
.

In the denominator we may take M =∞ if we want only an upper bound.
The resulting quantity may then be written as the quotient of two values
of f :

|R(y, t)| ≤ 2

∏∞
µ=1{(1− exp(−4dµx))(1− exp(−2dµx))−1}∏∞

j=1(1− exp(−2djx))
=

2f2(2dx)

f(4dx)
.

Next we use the well-known formula (see for example [8])

f(w) = exp
( π2

6w
+

1

2
log

w

2π
+O(|w|)

)
, (14)

8



for w → 0 in | argw| < π/2 and Rew > 0. We obtain:

|R(y, t)| ≤ (
√

2 + o(1))

√
dx

π
exp

( π2

8dx

)
.

It remains to handle one factor in (12):

| exp((n− aM)(2x+ i(y + t)))| < exp(2nx) = exp
(2π
√
n√

6

)
.

These upper bounds yield to:

α(n, n;M ; a, d)� n2p2(n) exp
( π2

8dx

)
= o(p2(n)) exp

( 5

4dx

)
.

When a = d we can easily obtain a better result for the fraction R(y, t)
because there are some cancellations between the product in numerator
and the product in denominator:

|R(y, t)| =

∏∞
µ=0

∣∣∣1− exp(−d(µ+ 1)(2x+ i(y + t)))
∣∣∣∏M

j=1 |1− exp(−dj(2x+ i(y + t)))|

=

∞∏
j=M+1

|1− exp(−dj(2x+ i(y + t)))|.

With trivial upper bounds we obtain

|R(y, t)| ≤
∞∏
j=1

(1 + exp(−2djx)) =
f(2dx)

f(4dx)
∼ 1√

2
exp

( π2

24dx

)
. (15)

Thus we obtain

α(n, n;M ; d, d) ≤ o(p2(n)) exp
( 5

12dx

)
.

6 The range 2πx ≤ |y| ≤ π

In this section we prove the following lemma

Lemma 4. With the notations f and R of the previous sections, we have:

α(n, n;M ; a, d) =
1

4π2

∫ 2πx

−2πx

∫ 2πx

−2πx

f(x+ iy)f(x+ it)R(y, t)

× exp((n− aM)(2x+ i(y + t))) d y d t

+ o
(
p(n)2 exp

(
−
√

6n

8π

))
.

Let us write c0 =
√

6/(8π) for the coefficient in the exponent in the
above error term.

9



Proof. We start with (13) and isolate the term with m = 1:

|f(x+iy)f(x+it)| ≤ exp
(
<e 1

exp(x+ iy)− 1
+

1

e x − 1
+

∞∑
m=2

2

m( emx − 1)

)
.

Then we use the upper bound proved in [4] p. 78:

|f(x+ iy)f(x+ it)| ≤ exp
( π

2|y| +
1

x
+

∞∑
m=2

2

xm2

)
≤ exp

( π

2|y| −
1

x
+
π2

3x

)
≤ exp

(π2

3x
− 3

4x

)
,

(16)

when 2πx ≤ |y| ≤ π. Thus the contribution of
∫
2πx≤|y|≤pi

∫
|t|≤π is

o(p2(n)) exp
( 5

4dx
− 3

4x

)
.

If d ≥ 2 we see easily that it is o(p2(n)) e−c0
√
n with the c0 defined

above. If d = 1, then a = d = 1: we combine (16) with (15) and this gives
a contribution bounded by

o(p2(n)) exp
( 5

12x
− 9

12x

)
= o(p2(n)) e−c0

√
n.

The same result can be obtained for 2πx ≤ |t| ≤ π, |y| ≤ π and this ends
the proof of Lemma 4.

7 The special case a = d.

By Lemma 4 we have

α(n, n;M ; a, d) = I + o(p2(n) e−c0
√
n),

where I is the contribution from max(|y|, |t|) ≤ 2πx. In the case a = d
the integral I has an easier presentation:

I =
1

4π2

∫ 2πx

−2πx

∫ 2πx

−2πx

f(x+ iy)f(x+ it)

∞∏
j=M+1

(1− exp(−dj(2x+ i(y + t))))

× exp((n− dM)(2x+ i(y + t))) d y d t.

Suppose that ε > 0 and

(3

4
+ ε
) 1

2d

√
6n

2π
logn ≤M ≤ n

5
8

d
. (17)

For j > M , | exp(−dj(2x+ i(y+ t)))| = exp(−2djx) < exp(−2dMx) ≤
n−

3
8
− ε

2 . In [4] we have already met a similar situation. There we worked
with the functions gM (w) = f(w)

∏
j≥M+1(1− exp(−jw)).

10



Following the proof of formula (4.2) in [4] we obtain:

∞∏
j=M+1

(1− exp(−dj(2x+ i(y + t)))) = exp
(
− exp(−2dMx)

2dx

+O
(

exp(−2dMx)
(√
nM |y + t|+ 1 +

√
n

d
exp(−2dMx)

)))
.

When n−5/8+ε/3 ≤ |y| ≤ 2πx (or n−5/8+ε/3 ≤ |t| ≤ 2πx) the terms in
f(x+ iy) give an extra factor exp(−n1/4) (see [4] p. 77). Therefore

α(n, n;M ; d, d) =
1

4π2

∫ ∫
max(|y|,|t|)≤n−

5
8
+ ε

3

f(x+ iy)f(x+ it)

×
∞∏

j=M+1

(1− exp(−dj(2x+ i(y + t))))

× exp((n− dM)(2x+ i(y + t))) d y d t+ o(p2(n)) e−c1n
1/4

.

The range n−3/4+ε/3 ≤ |y| ≤ n−5/8+ε/3 (or n−3/4+ε/3 ≤ |t| ≤ n−5/8+ε/3)
can be settled as in [4] pp. 76-77:

α(n, n;M ; d, d) =
1 + o(1)

4π2

∫ ∫
|y|,|t|≤n−

3
4
+ ε

3

f(x+ iy)f(x+ it)

× exp
(
− exp(−2dMx)

2dx

)
× exp((n− dM)(2x+ i(y + t)) d y d t+O(p2(n) e−c1n

1/4

).

After some simplifications we apply (14)

α(n, n;M ; d, d) =
1 + o(1)

4π2
exp

(
− exp−2dMx

2dx
− 2dMx

)
×
(∫
|y|≤n−

3
4
+ ε

3

f(x+ iy) exp(n(x+ iy)) d y
)2

+O(p2(n) e−c1n
1/4

)

= (1 + o(1))p2(n) exp
(
− exp(−2dMx)

2dx
− 2dMx

)
since

exp
(exp(−2dMx)

2dx
+ 2dMx

)
≤ exp(c2n

1/8).

8 The general case 1 ≤ a ≤ d

As in the case a = d we apply Lemma 4:

α(n, n;M,a, d) = I + o(p2(n) e−c0
√
n),

but in this general case, the integral I has a more complicated form:

I =
1

4π2

∫ 2πx

−2πx

∫ 2πx

−2πx

f(x+ iy)f(x+ it)D(2x+ i(y + t))

×
∞∏

j=M+1

(1− exp(−dj(2x+ i(y + t)))) exp((n− aM)(2x+ i(y + t)) d y d t.

11



We recognize the formula in the case a = d but with a disruptive quotient
D(2x+ i(y + t)) in addition

D(w) =

∏∞
µ=0(1− exp(−(a+ dµ)w))∏∞

j=1(1− exp(−djw))
. (18)

We will now obtain some convenient upper bounds for D(2x + i(y + t))
when max(|y|, |t|) > n−3/4+ε/3 and asymptotic estimates for the range
max(|y|, |t|) ≤ n−3/4+ε/3. Then the proof of Theorem 2 will be a conse-
quence of these estimations and the work done in the previous section for
the case a = d.

Lemma 5. For |y|, |t| ≤ 2πx, we have

|D(2x+ i(y + t))| = exp(O(logn)). (19)

Proof. In (18) we change the index of the denominator in order to start
with j = 0 instead of 1. Next we do some suitable manipulations which
transform the quotients (1− . . .)/(1− . . .) in terms like 1− . . .:

D(2x+ i(y + t)) =

∞∏
j=0

(
1− exp((d− a)(2x+ i(y + t)))− 1

exp((d+ dj)(2x+ i(y + t)))− 1

)
.

Now the numerator above is independent of j:

|D(2x+ i(y + t))| ≤
∞∏
µ=1

(
1 +
| exp((d− a)(2x+ i(y + t)))− 1|

exp(2dµx)− 1

)
.

When d is fixed, | exp((d − a)(2x + i(y + t))) − 1| = O(n−1/2). By the
classical formula 1 + u ≤ e u (u ∈ R) we obtain

|D(2x+ i(y + t))| ≤ exp
( ∞∑
µ=1

O(n−1/2)

exp(2µdx)− 1

)
. (20)

We split the summation over µ in two parts. When µ is small that is
µ ≤ 1/(2dx), we use the fact that exp(2µdx)−1 ≥ 2dµx otherwise we use
the fact that (1− exp(−2dµx))−1 = O(1):

∞∑
µ=1

1

exp(2µdx)− 1
≤

∑
µ≤ 1

2dx

1

2dxµ
+
∑

µ> 1
2dx

exp(−2dµx)

1− exp(−2dµx)

� 1

2dx
log

1

2dx
+

∞∑
µ=1

e−2dµx � 1

2dx
log

1

2dx
.

(21)

It remains to insert (21) in (20) to finish the proof of Lemma 5.

The upper bound of Lemma 5 is small enough to deduce with the
computations of the previous section that the contribution of the range

n−5/8+ε/3 ≤ max(|y|, |t|) ≤ 2πx is O(p2(n)) e−c
′
1n

1/4

for some c′1 > 0.
Now we study the case max(|y|, |t|) ≤ n−5/8+ε/3.

12



Lemma 6. For max(|y|, |t|) ≤ n−5/8+ε/3 the modifying factor satisfies

D(2x+ i(y + t)) = (1 +O(n−
1
8
+ε))

∞∏
µ=1

(
1− exp((d− a)2x)− 1

exp(2µdx)− 1

)
.

Proof. The challenge of the proof is to obtain an approximation of D(2x+
i(y+t)) by an expression independent of y and t. We recall the expression
of D:

D(2x+ i(y + t)) =

∞∏
µ=1

(
1− exp((d− a)(2x+ i(y + t)))− 1

exp(dµ(2x+ i(y + t)))− 1

)
.

We will proceed in two steps. In the first step we will compare D(2x +

i(y + t)) with a similar product but with no y and t in the numerators.

We will prove that∏∞
µ=1

(
1− exp((d−a)(2x+i(y+t)))−1

exp(dµ(2x+i(y+t)))−1

)
∏∞

µ=1

(
1− exp((d−a)2x))−1

exp(dµ(2x+i(y+t)))−1

) = 1 +O(n−
1
8

+ε). (22)

The second step consists of removing y and t in the denominators, that

is to prove:∏∞
µ=1

(
1− exp((d−a)2x)−1

exp(dµ(2x+i(y+t)))−1

)
∏∞

µ=1

(
1− exp((d−a)2x)−1

exp(2dxµ)−1

) = 1 +O(n−
1
8

+ε). (23)

Lemma 6 will be a consequence of (22) and (23).

We now prove (22). Le T1 denote the left hand side of this formula. As

in the proof of Lemma 5, we write each term in a product of type 1− . . .:

T1 =
∞∏
µ=1

(
1−

exp((d−a)(2x+i(y+t)))−exp(2x(d−a))
exp(dµ(2x+i(y+t)))−1

1− exp(2x(d−a))−1
exp(dµ(2x+i(y+t)))−1

)
.

The denominators exp(dµ(2x + i(y + t))) − 1 are cancelling, next we
factorize with exp((d− a)2x), this gives:

T1 =

∞∏
µ=1

(
1− exp((d− a)i(y + t))− 1

exp((dµ− d+ a)2x+ idµ(y + t))− 1

)
.

Next we proceed as in the previous sections, we write the product as the

sum of the logarithms in the exponent and use some standard inequalities:

T1 = exp
(
−
∞∑
µ=1

log
1

1− exp((d−a)i(y+t))−1
exp((dµ−d+a)2x+idµ(y+t))−1

)
.

13



This gives the upper bound

T1 = exp
(
O
( ∞∑
µ=1

∣∣∣ exp((d− a)i(y + t))− 1

exp((dµ− d+ a)2x+ idµ(y + t))− 1

∣∣∣))
= exp

(
O(1)

∞∑
µ=1

(d− a)|y + t]

exp((dµ− d+ a)2x)− 1

)
= exp(O(n−

1
8
+ε)) = 1 +O(n−

1
8
+ε).

This ends the proof of (22). We now prove (23). Let T2 denote the left

hand side of this formula. For 1 ≤ a < d we start in the same way as for

T1:

T2 =
∞∏
µ=1

(
1−

exp(2x(d−a))−1
exp(dµ(2x+i(y+t)))−1

− exp(2x(d−a))−1
exp(2dµx)−1

1− exp(2x(d−a))−1
exp(2dµx)−1

)
.

We factor out exp(2x(d− a))− 1 and/or simplify by it:

T2 =
∞∏
µ=1

(
1−

1
exp(dµ(2x+i(y+t)))−1

− 1
exp(2µdx)−1

1
exp((d−a)2x)−1

− 1
exp(2µdx)−1

)
.

We put in the same denominator the two differences of fractions and next

we factor out exp(2dµx). After these two manipulations we obtain:

T2 =
∞∏
µ=1

(
1−

1−exp(dµi(y+t))
exp(dµ(2x+i(y+t)))−1

1−exp(−(dµ−d+a)2x)
exp((d−a)2x)−1

)
.

We are now ready to do some standard upper bounds using the same

type of ideas as in T1:

T2 = exp

(
O

(
∞∑
µ=1

∣∣∣∣∣
1−exp(dµi(y+t))

exp(dµ(2x+i(y+t)))−1

1−exp(−(dµ−d+a)2x)
exp((d−a)2x)−1

∣∣∣∣∣
))

Thus we obtain

T2 = exp
(
O(1)

∞∑
µ=1

dµ|y + t|(exp(2x(d− a))− 1)

(exp(2dµx)− 1)(1− exp(−(dµ− d+ a)2x))

)
.

As in the end of the proof of Lemma 5 we split the sum on µ in two
sums and handle these sums as before:

T2 = exp
(
O(1)

∑
µ≤1/(2dx)

dµ|y + t|2x(d− a)

2µdx(dµ− d+ a)2x
+O(1)

∑
µ>1/(2dx)

µ|y + t|d2x
exp(2µdx)

)

= exp(O(1)|y + t|
√
n logn+O(1)d2|y + t|x

∞∑
µ=1

µ(exp(−2dx))µ).
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The last sum in µ is O(1/x2). Thus we obtain

T2 = exp(O(n−
1
8
+ε)) = 1 +O(n−

1
8
+ε).

This ends the proof of (23).

9 The modifying factor

Let P (2x) denote the product in the right hand side of the formula of
Lemma 6. We can write this product in the following way:

P (2x) = f(2dx)
∏
n≥1

n≡a mod d

(1− exp(−2xn)) = f(2dx)Q(2x),

say. The product Q(x)−1 is the generating series associated with parti-
tions with parts ≡ a mod d. It appears in [11] as the first example of
application of the general result of Meinardus. Following his method we
find when σ ∈ R, σ → 0:

Q(σ)−1 = (1 +O(σ)) exp
( π2

6dσ

)
Γ
(a
d

) (dσ)a/d−1/2

√
2π

.

Thus we obtain:

P (2x) = (1 +O(x))
(2dx)1−a/d

Γ(a/d)
= (1 +O(n−1/2))

( 2πd√
6n

)1−a/d 1

Γ(a/d)
.

This ends the proof of Theorem 2.

10 Proofs of the corollaries

Before proving Corollary 1 we prove the following lemma on some stability
of the behaviour of α(n, n;M,a, d).

Lemma 7. Let a, d,M, ε satisfy all the conditions of Theorem 2. For

|t−M | ≤ n
3
8
−2ε we have

α(n, n;M ; a, d) = (1 + o(1))p2(n)
( 2πd√

6n

)1− a
d 1

Γ
(
a
d

)
× exp

(
−

√
6n exp(−2πdt√

6n
)

2πd
− 2at

π√
6n

)
.

(24)

Proof. We consider the function

H(t) = exp
(
−

√
6n exp(−2πdt√

6n
)

2πd
− 2at

π√
6n

)
. (25)

By Theorem 2 it is sufficient to prove that H(M) = H(t)(1 + o(1)).
By a direct computation, we have:

H(M) = H(t) exp
(
−
√

6n

2πd

(
exp

(−2πdM√
6n

)
−exp

(−2πdt√
6n

))
−2aπ(M − t)√

6n

)
.
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Clearly we have:

exp
(
− 2aπ(M − t)√

6n

)
= 1 +O(|M − t|n−1/2).

For the difference of the two exponential we see that:

√
6n

2πd

(
exp

(−2πdM√
6n

)
− exp

(−2πdt√
6n

))
=

√
6n

2πd
exp

(−2πdM√
6n

)
×
(

1− exp
(−2πd(t−M)√

6n

))
= O

(
|t−M | exp

(
− 2πdM√

6n

))
= O(|t−M |n−

3
8
+ε)

Proof of Corollary 1. For brevity we will writeB1(n) =
(

3
4
+ε
)√

6n
4πd

logn

and B2(n) = n
5
8

d
. Let Z(n) denote the number of pairs of partitions of n,

(Π1(n),Π2(n)) satisfying (2). By Theorem 2 and using the notation (25)
we have:

Z(n) = (1 + o(1))p2(n)
( 2πd√

6n

)1− a
d 1

Γ
(
a
d

) ∑
B1(n)≤m≤B2(n)

H(m).

Next following the ideas of [4] or [5], [6], we approximate the summation
over m by an integral. Since by Lemma 7 we have uniformly for all
m ∈ [B1(n), B2(n)]:

H(m) = (1 + o(1))

∫ m+1

m

H(t) d t,

we obtain

Z(n) = (1 + o(1))p2(n)
( 2πd√

6n

)1− a
d 1

Γ
(
a
d

) ∫ B2(n)

B1(n)

H(t) d t.

Let I(n) denote the above integral on t. If we set u = exp
(
− 2πdt√

6n

)
then

we obtain

I(n) = −
√

6n

2πd

∫ u2(n)

u1(n)

exp
(
− u
√

6n

2πd

)
u
a
d
−1 du,

with u1(n) = exp
(
− 2πdB1(n)√

6n

)
, u2(n) = exp

(
− 2πdB2(n)√

6n

)
.

Next we do a second change of variables, that is v = u
√
6n

2πd
. We observe

some simplifications in the expression of Z(n):

Z(n) = −(1+o(1))
p2(n)

Γ
(
a
d

) ∫ u2(n)
√
6n/(2πd)

u1(n)
√
6n/(2πd)

e−vva/d−1 d v = p2(n)(1+o(1)),

by [4] p. 83. This ends the proof of Corollary 1.
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Proof of Corollary 2
By Corollary 1, it is sufficient to evaluate K̃(n, n;λ; a, d), the number

of pairs of partitions (Π1(n),Π2(n)) such that

1

d
(

√
6n

4π
logn+ λ

√
n) ≤ |(Π1(n), a, d) ∩ (Π2(n), a, d)| ≤ B2(n).

Next we apply Theorem 2 for every M ∈ [ 1
d
(
√
6n

2πk
logn+λ

√
n), B2(n)] and

Lemma 7 to work with some truncated gamma integral as in the previous
proof. We conclude with quite the same computations as in the proof of
Corollary 1. We skip the details.
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