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On a phenomenon of Turán concerning the summands of partitions

proved that for almost all pairs of partitions of an integer, the proportion of common parts is very high, that is greater than 1 2 -ε with ε > 0 arbitrarily small. In this paper we prove that this surprising phenomenon persists when we look only at the summands in a fixed arithmetic progression.

Introduction

For n ∈ N, let p(n) be the number of partitions of n. By Hardy and Ramanujan [START_REF] Hardy | Asymptotic formulae in combinatory analysis[END_REF] we have:

p(n) = (1 + o(1)) 1 4n √ 3 exp 2π √ n √ 6 .
Turán [START_REF] Turán | On some connections between combinatorics and group theory[END_REF], [START_REF] Turán | Combinatorics, partitions, group theory[END_REF], [START_REF] Turán | On some phenomena in the theory of partitions[END_REF] proved a surprising phenomenon related to the partitions of integers. If we take randomly k partitions of an integer n then in almost all cases with at most o(p(n) k ) exceptions, the proportion of the parts common to all these k partitions is greater than 1 k -δ with δ > 0 as small as we want.

For n ∈ N and Π(n) : n = λ1 +• • •+λm, λ1 ≥ . . . ≥ λm a partition of n, we denote by Π(n) = {λ1, . . . , λm} the multiset formed by the summands of Π(n). Erdős and Lehner [START_REF] Erdős | The distribution of the number of summands in the partitions of a positive integer[END_REF] proved that for almost all partitions, the number of parts m(Π) is (1 + o(1)) √ 6n 2π log n. The result of Turán is in fact more general than what we previously recalled. Precisely ( [START_REF] Turán | Combinatorics, partitions, group theory[END_REF] Theorem I' p. 192), he proved that for any δ > 0, n(1 + o(1)) ≤ n1 ≤ n2 ≤ . . . ≤ n k ≤ n(1 + o(1)), for almost all k-tuples (Π1(n1), . . . , Π k (n k )) we have:

|Π1(n1) ∩ . . . ∩ Π k (n k )| ≥ 1 k -δ max(|Π1(n1)|, . . . , Π k (n k )|).
The aim of this paper is to examine whether such phenomenon still exists when we consider only the parts in a given arithmetic progression. In the papers [START_REF] Dartyge | Arithmetic properties of summands of partitions[END_REF], [START_REF] Dartyge | Arithmetic properties of summands of partitions II[END_REF], [START_REF] Dartyge | On the distribution of the summands of partitions in residue classes[END_REF] it is proved that for almost all partitions, the summands are well distributed in residue classes. In particular in [START_REF] Dartyge | Arithmetic properties of summands of partitions[END_REF] it is proved that if 1 ≤ a ≤ d are fixed integers then for almost all partitions of n the number of summands ≡ a mod d is (1 + o(1))

√ 6n 2πd log n. In [START_REF] Dartyge | On the distribution of the summands of partitions in residue classes[END_REF] we obtained some results valid for d ≤ n 1/2-ε but with some limitations due to the fact that the small parts occur frequently. In [START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF] we in fact proved that there are some "dominant" residue classes, the small classes 1 mod d, 2 mod d appearing more frequently than the class m mod d when m is large.

Extending the notations of Turán to this context of arithmetic progressions, we now consider for 1 ≤ a ≤ d, (Π(n), a, d) the multiset of the summands ≡ a mod d from Π(n).

Our first result shows that Turán 's phenomenon persists for the parts in a fixed arithmetic progressions. 1)), δ > 0, for almost all partitions Π1(n1), . . . ,Π k (n k ) of n1, . . . , n k respectively, we have:

Theorem 1. Let k ≥ 2, a, d fixed integers with 1 ≤ a ≤ d. Then for n → ∞, n ≤ n1 ≤ n2 ≤ . . . ≤ n k ≤ n(1 + o(
|(Π1(n1), a, d) ∩ . . . ∩ (Π k (n k ), a, d)| ≥ (1 -δ) √ 6 2πkd √ n log n, with at most o(p(n1) • • • p(n k )) exceptions.
Let α(n1, . . . , n k ; m; a, d) denote the number of multisets such that

|(Π1(n1), a, d) ∩ . . . ∩ (Π k (n k ), a, d)| = m.
The proof of Theorem 1 is based on an upper bound on m≤M α(n1, . . . , n k ; m; a, d).

It would be interesting to have estimates for the individual α(n1, . . . , n k ; m; a, d) at least when m is close to the expected number of common summands.

Here we concentrate on the most natural case, that is when k = 2 and n1 = n2.

Theorem 2. Let 1 ≤ a ≤ d be fixed. For ε > 0 and M satisfying

3 4 + ε √ 6n 4πd log n ≤ M ≤ n 5 8 d
we have:

α(n, n; M ; a, d) = (1 + o(1))p 2 (n) 2πd √ 6n 1-a d 1 Γ a d × exp - √ 6n exp( -2πdM √ 6n ) 2πd -2aM π √ 6n . (1) 
A first application is the following estimate on the cardinality of the intersection of two multisets form by two partitions of an integer n.

Corollary 1. Let 1 ≤ a ≤ d be some fixed integers and ε > 0. For almost all pairs (Π1(n), Π2(n)) of partitions of n, i. e. with at most o(p 2 (n)) exceptions, we have:

3 4 + ε √ 6n 4πd log n ≤ |(Π1(n), a, d) ∩ (Π2(n), a, d)| ≤ n 5 8 d . (2) 
In [START_REF] Turán | On some phenomena in the theory of partitions[END_REF], Turán posed the following problem ([14] Problem 3 p.319). Let

k ≥ 2, λ ∈ R fixed and n ≤ n1 ≤ n2 ≤ . . . ≤ n k ≤ n(1 + o(1)
). Denoting by K(n1, n2, . . . , n k ; λ) the number of k-tuples of unrestricted partitions (Π1, . . . , Π k ) of n1, . . . , n k with property

|Π1 ∩ Π2 ∩ . . . ∩ Π k | ≥ √ 6n 2πk log n + λ √ n. (3) 
Is it true that

lim n→∞ K(n1, n2, . . . , n k ; λ) p(n1) • • • p(n k ) = Φ(λ) exists?
We can apply Theorem 2 to solve this problem in the case k = 2 and n1 = n2 = n. Furthermore we can detect the distribution of the number of common parts ≡ a mod d. Let K(n1, . . . , n k ; λ; a, d) be the number of k-tuples of unrestricted partitions (Π1, . . . , Π k ) of n1, . . . , n k with the same property as (3) but with each Πj(nj) replaced by(Πj(nj), a, d) and

√ 6n 2πk log n + λ √ n by 1 d ( √ 6n 2πk log n + λ √ n).
Corollary 2. Let 1 ≤ a ≤ d be fixed integer and λ ∈ R also fixed. We have:

lim n→∞ K(n, n; λ; a, d) p 2 (n) = 1 Γ a d √ 6 2πd e -2πλ √ 6 0 e -t t a d -1 d t.
Theorem 2 and its corollaries are valid only for pairs of partitions whereas the general situation of Theorem 1. We have chosen this particular case in order to facilitate the presentations of the proofs but it doesn't seem to have real difficulty to obtain analogous results for k-tuples of partitions.

In [START_REF] Dartyge | On the distribution of the summands of partitions in residue classes[END_REF] and [START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF] the results are valid for large range for d for example for d ≤ n 1/8-ε . It is probably possible to obtain something interesting for such a region of d. Here again we decided to concentrate in case of fixed d in order to avoid some complications in the computations.

2 On an identity of Turán

Let D(n1, n2, . . . , n k , L) denote the number of k-tuples (Π1(n1), . . . , Π k (n k )) such that |Π1(n1) ∩ Π2(n2) ∩ • • • ∩ Π k (n k )| ≤ L. Turán [13] Lemma I p.
193 proved for all 0 ≤ xj < 1 the following identity:

∞ n 1 =0 • • • ∞ n k =0 D(n1, n2, . . . , n k , L) k i=1 x n i i = k i=1 F (xi) ∞ ν=L+1 (1 -( k i=1 xi) ν ),
where

F (r) = ∞ ν=1 (1 -r ν ) -1 . (4) 
In this section we adapt this identity of Turán to our context with some arithmetic progression condition. We want to study the generating function associated to the coefficients α(n1, . . . , n k ; m; a, d):

G(x, z) = ∞ n 1 =0 • • • ∞ n k =0 ∞ m=0 α(n1, . . . , n k ; m; a, d)x n 1 1 • • • x n k k z m , (5) 
with the notation x = (x1, . . . , x k ). Adapting Turán 's argument we obtain

Lemma 1. For any |x1| < 1, . . . , |x k | < 1, |x a 1 • • • x a k z| < 1 we have: G(x, z) = ∞ ν=1 1 (1 -x ν 1 ) • • • (1 -x ν k ) ν≥1 ν≡a mod d 1 -(x1 • • • x k ) ν 1 -(x1 • • • x k ) ν z .
Proof. We examine the contribution of the parts equal to a given integer ν ≥ 1 in the function G. Let (Π1(n1), . . . , Π k (n k )) be a k-tuple of partitions counted in α(n1, . . . , n k ; m; a, d). We may write each Πi(ni) in the

way ni = ν≥1 h (i) ν ν where h (i)
ν denotes the number of parts equal to ν in the partition Πi(ni).

If ν ≡ a mod d then any multiplicity h

(i)
ν in partitions of the ni is possible when ni is running over all the positive integers. In other words the terms with part ν will appear in the form

x h 1 ν 1 • • • x h k ν k with h1, . . . , h k ≥ 0. Thus the contribution of the ν ≡ a mod d brings to G g1(ν) := k i=1 ∞ h i =0 x νh i = k i=1 1 1 -x ν i . (6) 
We study now the case when ν ≡ a mod d. The generic contribution of the parts ν may be written in the following way:

x νh 1 1 • • • x νh k k (z h (x1 • • • x k ) hν ), (7) 
where at least one exponent hi = 0. Such terms correspond to the partitions of some n1, . . . , n k such that the summand ν occurs exactly h times in the intersection of Π1(n1

) ∩ • • • ∩ Π k (n k ). We deduce that the contri- bution of such ν to the function G is g2(ν) := I⊂{1,...,k} |I| =k i∈I ∞ h=1 x hν i 1 + ∞ h=1 z h k i=1 x νh i = 1 -k i=1 x ν i k i=1 (1 -x ν i ) 1 1 -z k i=1 x ν i . (8) 
By ( 6) and ( 8) we deduce that

G(x, z) = ν≥1 ν ≡a mod d g1(ν) ν≥1 ν≡a mod d g2(ν),
this ends the proof of Lemma 1. Now we compute the coefficient of z m in G(x, z). If we write G(x, z) = ∞ m=0 g(x, m)z m then we have:

g(x, m) = ∞ n 1 =0 . . . ∞ n k =0 α(n1, . . . , n k ; m; a, d)x n 1 1 • • • x n k k . (9) 
These coefficient g(x, m) have the following form:

Lemma 2. For |x1| < 1, . . . , |x k | < 1, |x a 1 • • • x a k z| < 1, m ∈ N, we have g(x, m) = ∞ ν=1 k i=1 1 1 -x ν i ∞ µ=0 (1-(x1 • • • x k ) a+dµ ) (x1 • • • x k ) am m j=1 (1 -(x1 • • • x k ) jd )
.

Proof. We will use the following formula (for example, see [START_REF] Hardy | An introduction to the theory of numbers[END_REF] Theorem 349 p. 280)

Lemma 3 (Euler ). For |λ| < 1, |ξλ| < 1 we have ∞ µ=1 1 1 -ξλ µ = ∞ µ=0 cµ(λ)ξ µ , with cµ(λ) = λ µ (1 -λ)(1 -λ 2 ) • • • (1 -λ µ )
The first product in the expression of G(x, z) given in Lemma 1 doesn't depend on z, thus we only need to study the second product with the ν ≡ a mod d. Writing ν = a + µd we have

ν≥1 ν≡a mod d 1 -(x1 • • • x k ) ν 1 -(x1 • • • x k ) ν z = ∞ µ=0 1 -(x1 • • • x k ) a ((x1 • • • x k ) d ) µ 1 -(x1 • • • x k ) a z((x1 • • • x k ) d ) µ .
Then we apply Euler's formula (Lemma 3) to expand the denominator

ν≥1 ν≡a mod d 1 -(x1 • • • x k ) ν 1 -(x1 • • • x k ) ν z = ∞ µ=0 1 -(x1 • • • x k ) a+dµ × ∞ m=0 ((x1 • • • x k ) a z) m m j=1 (1 -(x1 • • • x k ) jd )
.

This ends the proof of Lemma 2.

Proof of Theorem 1

Let A(n1, . . . , n k ; M ; a, d) = M m=0 α(n1, . . . , n k ; m, a, d) the number of k-tuples of partitions with few common summands ≡ a mod d. To prove Theorem 1 it is sufficient to show that

A(n1, . . . , n k ; M ; a, d) = o(p(n1) • • • p(n k )) when M ≤ (1 -δ)( √ 6/(2πkd))
√ n log n. By Lemma 2, we have:

∞ n 1 =0 • • • ∞ n k =0 A(n1, . . . , n k ; M ; a, d) k i=1 x n i i = ∞ ν=1 k i=1 1 1 -x ν i × ∞ µ=0 (1 -( k i=1 xi) a+dµ ) M m=0 (x1 • • • x k ) am m j=1 (1 -(x1 • • • x k ) jd ) .
For 0 < x1, . . . , x k < 1, we get:

A(n1, . . . , n k ; M ; a, d) k i=1 x n i i ≤ ∞ ν=1 k i=1 1 1 -x ν i ∞ µ=0 (1 -(x1 • • • x k ) a+dµ ) × M m=0 (x1 • • • x k ) am m j=1 (1 -(x1 • • • x k ) jd ) . ( 10 
) Since xi ∈]0, 1[ the sum for 0 ≤ m ≤ M is less than M m=0 (x1 • • • x k ) am M j=1 (1 -(x1 • • • x k ) jd ) ≤ 1 (1 -(x1 • • • x k ) a ) M j=1 (1 -(x1 • • • x k ) jd ) . ( 11 
) The factor (1 -(x1 • • • x k ) a
) in the previous fraction appears also in the product in µ in [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. Thus we can remove the factor µ = 0 in this product. Next we use the fact that 1 -

(x1 • • • x k ) a+dµ ≤ 1 -(x1 • • • x k ) d(µ+1) for all µ ≥ 1.
With this trick we find some simplifications with the product in the variable j in [START_REF] Meinardus | Asymptotische Aussagen über Partitionen[END_REF]. After all these manipulations we get:

A(n1, . . . , n k ; M ; a, d)x n 1 1 • • • x n k k ≤ 1 1 -(x1 • • • x k ) d ∞ ν=1 k j=1 1 1 -x ν j × ∞ µ=M +1 (1 -(x1 • • • x k ) dµ ) . Let f (z) = ∞ ν=1 (1 -e -νz
) -1 for ez > 0. Choosing xj = e -t j , tj > 0, j = 1, . . . , k we have:

A(n1, . . . , n k ; M ; a, d) exp - k i=1 niti ≤ k i=1 f (ti) 1 -exp -d k i=1 ti × ∞ µ=M +1 1 -exp -dµ k i=1 ti .
Next we use the following inequalities :

1 1 -exp -d k i=1 ti = exp d k i=1 ti exp d k i=1 ti -1 ≤ exp d k i=1 ti k i=1 dti
, and

∞ µ=M +1 1 -exp -dµ k i=1 ti = exp - ∞ µ=M +1 log 1 1 -exp -dµ k i=1 ti ≤ exp - ∞ µ=M +1 exp -dµ k i=1 ti = exp - exp -d(M + 1) k i=1 ti 1 -exp -d k i=1 ti
.

We obtain 

A(n1, . . . , n k ; M ; a, d) exp - k i=1 niti ≤ exp d k i=1 ti d k i=1 ti k i=1 f (ti) × exp - exp -d(M + 1) k i=1 ti 1 -exp -d k i=1 ti . Since for t > 0, t → +0, f (t) = (1 + o(1)) t 2π exp π 2 6t , we obtain for max 1≤j≤k tj → +0, A(n1, . . . , n k ; M ; a, d) k i=1 ti 1/2 d k i=1 ti exp k i=1 niti + π 2 6ti -(1 + o(1)) exp -dM k i=1 ti d k i=1 ti . Finally, let tj = π/ √ 6nj, j = 1, . . . , k. Then for n → ∞, n(1 + o(1)) ≤ n1 ≤ . . . ≤ n k ≤ n(1 + o( 1 
This upper bound is o(p(n1) • • • p(n k )) if M = [(1 -δ)( √ 6n/(2πkd))
log n] with a fixed, small positive δ. This ends the proof of Theorem 1.

The saddle point method

We focus now on the case k = 2, n1 = n2 = n. By Lemma 2 and the Cauchy formula we have for any 0 < δ, < 1 :

α(n, n; M ; a, d) = 1 (2iπ) 2 |x 1 |=δ |x 2 |= ∞ ν=1 1 (1 -x ν 1 )(1 -x ν 2 ) × ∞ µ=0 (1 -(x1x2) a+dµ ) x aM -n 1 -1 1 x aM -n 2 -1 2 M j=1 (1 -(x1x2) jd ) d x1 d x2.
As it is usual for partition problems we write x1 = e -z 1 , x2 = e -z 2 , with z1 = x + iy, z2 = x + it, x = π √ 6n . Then we have

α(n, n; M ; a, d) = 1 4π 2 π -π π -π f (x + iy)f (x + it) × ∞ µ=0 (1 -exp(-(a + dµ)(2x + i(y + t)))) M j=1 (1 -exp(-dj(2x + i(y + t)))) × exp((n -aM )(2x + i(y + t))) d y d t. ( 12 
)
Next we split the integral in two ranges. The main contribution will come from the square max(|y|, |t|) ≤ 2πx.

5 Some trivial upper bounds for all the range -π ≤ y, t ≤ π A standard way to handle the generating function f is to write this product as the sum of logarithms in the exponent, next to expand in analytic series the logarithms and finally to exchange the order of summations and compute some geometric series:

f (x+iy)f (x+it) = exp ∞ m=1 1 m 1 exp(m(x + iy)) -1 + 1 exp(m(x + it) -1 .
(13) Next for every y ∈ [-π, π], we have | exp(m(x + iy)) -1| ≥ e mx -1 ≥ mx. Thus for every -π ≤ y, t ≤ π we have:

|f (x + iy)f (x + it)| ≤ exp 2 ∞ m=1 1 m 2 x = exp π 2 3x = exp 2π √ n √ 6 .
Now we examine the ratio of products in [START_REF] Turán | On some connections between combinatorics and group theory[END_REF]. Let R(y, t) denote this ratio:

R(y, t) = ∞ µ=0 (1 -exp(-(a + dµ)(2x + i(y + t)))) M j=1 (1 -exp(-dj(2x + i(y + t))))
.

By some trivial upper bounds we have:

|R(y, t)| ≤ (1 + e -2ax ) ∞ µ=1 (1 + exp(-2dµx)) M j=1 (1 -exp(-2djx))
.

In the denominator we may take M = ∞ if we want only an upper bound. The resulting quantity may then be written as the quotient of two values of f :

|R(y, t)| ≤ 2 ∞ µ=1 {(1 -exp(-4dµx))(1 -exp(-2dµx)) -1 } ∞ j=1 (1 -exp(-2djx)) = 2f 2 (2dx) f (4dx) .
Next we use the well-known formula (see for example [START_REF] Erdős | On the statistical theory of partitions[END_REF])

f (w) = exp π 2 6w + 1 2 log w 2π + O(|w|) , (14) 
for w → 0 in | arg w| < π/2 and Rew > 0. We obtain:

|R(y, t)| ≤ ( √ 2 + o(1)) dx π exp π 2 8dx .
It remains to handle one factor in [START_REF] Turán | On some connections between combinatorics and group theory[END_REF]:

| exp((n -aM )(2x + i(y + t)))| < exp(2nx) = exp 2π √ n √ 6 .
These upper bounds yield to:

α(n, n; M ; a, d) n 2 p 2 (n) exp π 2 8dx = o(p 2 (n)) exp 5 4dx
.

When a = d we can easily obtain a better result for the fraction R(y, t) because there are some cancellations between the product in numerator and the product in denominator:

|R(y, t)| = ∞ µ=0 1 -exp(-d(µ + 1)(2x + i(y + t))) M j=1 |1 -exp(-dj(2x + i(y + t)))| = ∞ j=M +1 |1 -exp(-dj(2x + i(y + t)))|.
With trivial upper bounds we obtain

|R(y, t)| ≤ ∞ j=1 (1 + exp(-2djx)) = f (2dx) f (4dx) ∼ 1 √ 2 exp π 2 24dx . (15) 
Thus we obtain

α(n, n; M ; d, d) ≤ o(p 2 (n)) exp 5 12dx
.

The range 2πx ≤ |y| ≤ π

In this section we prove the following lemma Lemma 4. With the notations f and R of the previous sections, we have:

α(n, n; M ; a, d) = 1 4π 2 2πx -2πx 2πx -2πx f (x + iy)f (x + it)R(y, t) × exp((n -aM )(2x + i(y + t))) d y d t + o p(n) 2 exp - √ 6n 8π .
Let us write c0 = √ 6/(8π) for the coefficient in the exponent in the above error term.

Proof. We start with [START_REF] Turán | Combinatorics, partitions, group theory[END_REF] and isolate the term with m = 1:

|f (x+iy)f (x+it)| ≤ exp e 1 exp(x + iy) -1 + 1 e x -1 + ∞ m=2 2 m( e mx -1)
.

Then we use the upper bound proved in [START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF] p. 78:

|f (x + iy)f (x + it)| ≤ exp π 2|y| + 1 x + ∞ m=2 2 xm 2 ≤ exp π 2|y| - 1 x + π 2 3x ≤ exp π 2 3x - 3 4x , (16) 
when 2πx ≤ |y| ≤ π. Thus the contribution of 2πx≤|y|≤pi |t|≤π is o(p 2 (n)) exp 5 4dx - 3 4x . If d ≥ 2 we see easily that it is o(p 2 (n)) e -c 0
√ n with the c0 defined above. If d = 1, then a = d = 1: we combine ( 16) with (15) and this gives a contribution bounded by

o(p 2 (n)) exp 5 12x - 9 12x = o(p 2 (n)) e -c 0 √ n .
The same result can be obtained for 2πx ≤ |t| ≤ π, |y| ≤ π and this ends the proof of Lemma 4.

7 The special case a = d.

By Lemma 4 we have

α(n, n; M ; a, d) = I + o(p 2 (n) e -c 0 √ n ),
where I is the contribution from max(|y|, |t|) ≤ 2πx. In the case a = d the integral I has an easier presentation:

I = 1 4π 2 2πx -2πx 2πx -2πx f (x + iy)f (x + it) ∞ j=M +1 (1 -exp(-dj(2x + i(y + t)))) × exp((n -dM )(2x + i(y + t))) d y d t.
Suppose that ε > 0 and

3 4 + ε 1 2d √ 6n 2π log n ≤ M ≤ n 5 8 d . ( 17 
) For j > M , | exp(-dj(2x + i(y + t)))| = exp(-2djx) < exp(-2dM x) ≤ n -3
Following the proof of formula (4.2) in [START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF] we obtain:

∞ j=M +1 (1 -exp(-dj(2x + i(y + t)))) = exp - exp(-2dM x) 2dx + O exp(-2dM x) √ nM |y + t| + 1 + √ n d exp(-2dM x) .
When n -5/8+ε/3 ≤ |y| ≤ 2πx (or n -5/8+ε/3 ≤ |t| ≤ 2πx) the terms in f (x + iy) give an extra factor exp(-n 1/4 ) (see [START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF] p. 77). Therefore

α(n, n; M ; d, d) = 1 4π 2 max(|y|,|t|)≤n -5 8 + ε 3 f (x + iy)f (x + it) × ∞ j=M +1
(1 -exp(-dj(2x + i(y + t))))

× exp((n -dM )(2x + i(y + t))) d y d t + o(p 2 (n)) e -c 1 n 1/4 .
The range n -3/4+ε/3 ≤ |y| ≤ n -5/8+ε/3 (or n -3/4+ε/3 ≤ |t| ≤ n -5/8+ε/3 ) can be settled as in [START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF] pp. 76-77:

α(n, n; M ; d, d) = 1 + o(1) 4π 2 |y|,|t|≤n -3 4 + ε 3 f (x + iy)f (x + it) × exp - exp(-2dM x) 2dx × exp((n -dM )(2x + i(y + t)) d y d t + O(p 2 (n) e -c 1 n 1/4
).

After some simplifications we apply ( 14)

α(n, n; M ; d, d) = 1 + o(1) 4π 2 exp - exp -2dM x 2dx -2dM x × |y|≤n -3 4 + ε 3 f (x + iy) exp(n(x + iy)) d y 2 + O(p 2 (n) e -c 1 n 1/4 ) = (1 + o(1))p 2 (n) exp - exp(-2dM x) 2dx -2dM x since exp exp(-2dM x) 2dx + 2dM x ≤ exp(c2n 1/8 ).
8 The general case 1 ≤ a ≤ d

As in the case a = d we apply Lemma 4:

α(n, n; M, a, d) = I + o(p 2 (n) e -c 0 √ n ),
but in this general case, the integral I has a more complicated form:

I = 1 4π 2 2πx -2πx 2πx -2πx f (x + iy)f (x + it)D(2x + i(y + t)) × ∞ j=M +1
(1 -exp(-dj(2x + i(y + t)))) exp((n -aM )(2x + i(y + t)) d y d t.

We recognize the formula in the case a = d but with a disruptive quotient D(2x + i(y + t)) in addition

D(w) = ∞ µ=0 (1 -exp(-(a + dµ)w)) ∞ j=1 (1 -exp(-djw)) . (18) 
We will now obtain some convenient upper bounds for D(2x + i(y + t)) when max(|y|, |t|) > n -3/4+ε/3 and asymptotic estimates for the range max(|y|, |t|) ≤ n -3/4+ε/3 . Then the proof of Theorem 2 will be a consequence of these estimations and the work done in the previous section for the case a = d.

Lemma 5. For |y|, |t| ≤ 2πx, we have

|D(2x + i(y + t))| = exp(O(log n)). (19) 
Proof. In (18) we change the index of the denominator in order to start with j = 0 instead of 1. Next we do some suitable manipulations which transform the quotients (1 -. . .)/(1 -. . .) in terms like 1 -. . .:

D(2x + i(y + t)) = ∞ j=0 1 - exp((d -a)(2x + i(y + t))) -1 exp((d + dj)(2x + i(y + t))) -1 .
Now the numerator above is independent of j:

|D(2x + i(y + t))| ≤ ∞ µ=1 1 + | exp((d -a)(2x + i(y + t))) -1| exp(2dµx) -1 . When d is fixed, | exp((d -a)(2x + i(y + t))) -1| = O(n -1/2
). By the classical formula 1 + u ≤ e u (u ∈ R) we obtain

|D(2x + i(y + t))| ≤ exp ∞ µ=1 O(n -1/2 ) exp(2µdx) -1 . (20) 
We split the summation over µ in two parts. When µ is small that is µ ≤ 1/(2dx), we use the fact that exp(2µdx) -1 ≥ 2dµx otherwise we use the fact that (1 -exp(-2dµx)) -1 = O(1):

∞ µ=1 1 exp(2µdx) -1 ≤ µ≤ 1 2dx 1 2dxµ + µ> 1 2dx exp(-2dµx) 1 -exp(-2dµx) 1 2dx log 1 2dx + ∞ µ=1 e -2dµx 1 2dx log 1 2dx . (21) 
It remains to insert (21) in (20) to finish the proof of Lemma 5.

The upper bound of Lemma 5 is small enough to deduce with the computations of the previous section that the contribution of the range n

-5/8+ε/3 ≤ max(|y|, |t|) ≤ 2πx is O(p 2 (n)) e -c 1 n 1/4
for some c 1 > 0. Now we study the case max(|y|, |t|) ≤ n -5/8+ε/3 . The last sum in µ is O(1/x 2 ). Thus we obtain

T2 = exp(O(n -1 8 +ε )) = 1 + O(n -1 8 +ε ).
This ends the proof of (23).

The modifying factor

Let P (2x) denote the product in the right hand side of the formula of Lemma 6. We can write this product in the following way:

P (2x) = f (2dx) n≥1 n≡a mod d (1 -exp(-2xn)) = f (2dx)Q(2x),
say. The product Q(x) -1 is the generating series associated with partitions with parts ≡ a mod d. It appears in [START_REF] Meinardus | Asymptotische Aussagen über Partitionen[END_REF] as the first example of application of the general result of Meinardus. Following his method we find when σ ∈ R, σ → 0:

Q(σ) -1 = (1 + O(σ)) exp π 2 6dσ Γ a d
(dσ) a/d-1/2 √ 2π .

Thus we obtain:

P (2x) = (1 + O(x)) (2dx) 1-a/d Γ(a/d) = (1 + O(n -1/2 )) 2πd √ 6n 1-a/d 1 Γ(a/d) .
This ends the proof of Theorem 2.

Proofs of the corollaries

Before proving Corollary 1 we prove the following lemma on some stability of the behaviour of α(n, n; M, a, d). (24)

Proof. We consider the function

H(t) = exp - √ 6n exp( -2πdt √ 6n ) 2πd -2at π √ 6n . ( 25 
)
By Theorem 2 it is sufficient to prove that H(M ) = H(t)(1 + o(1)). By a direct computation, we have:

H(M ) = H(t) exp - √ 6n 2πd exp -2πdM √ 6n -exp -2πdt √ 6n - 2aπ(M -t) √ 6n .

Proof of Corollary 2

By Corollary 1, it is sufficient to evaluate K(n, n; λ; a, d), the number of pairs of partitions (Π1(n), Π2(n)) such that √ n), B2(n)] and Lemma 7 to work with some truncated gamma integral as in the previous proof. We conclude with quite the same computations as in the proof of Corollary 1. We skip the details.
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 73 Let a, d, M, ε satisfy all the conditions of Theorem 2. For |t -M | ≤ n -2ε we have α(n, n; M ; a, d) = (1 + o(1))p 2 (n
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ε 2 . In[START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF] we have already met a similar situation. There we worked with the functions gM (w) = f (w) j≥M +1 (1 -exp(-jw)).

 Lemma 6. For max(|y|, |t|) ≤ n -5/8+ε/3 the modifying factor satisfies

Proof. The challenge of the proof is to obtain an approximation of D(2x+ i(y + t)) by an expression independent of y and t. We recall the expression of D:

We will proceed in two steps. In the first step we will compare D(2x + i(y + t)) with a similar product but with no y and t in the numerators.

We will prove that

The second step consists of removing y and t in the denominators, that is to prove:

Lemma 6 will be a consequence of ( 22) and (23).

We now prove (22). Le T1 denote the left hand side of this formula. As in the proof of Lemma 5, we write each term in a product of type 1 -. . .:

.

The denominators exp(dµ(2x + i(y + t))) -1 are cancelling, next we factorize with exp((d -a)2x), this gives:

Next we proceed as in the previous sections, we write the product as the sum of the logarithms in the exponent and use some standard inequalities:

This gives the upper bound

This ends the proof of ( 22). We now prove (23). Let T2 denote the left hand side of this formula. For 1 ≤ a < d we start in the same way as for T1:

.

We factor out exp(2x(d -a)) -1 and/or simplify by it:

We put in the same denominator the two differences of fractions and next we factor out exp(2dµx). After these two manipulations we obtain:

.

We are now ready to do some standard upper bounds using the same type of ideas as in T1:

Thus we obtain

.

As in the end of the proof of Lemma 5 we split the sum on µ in two sums and handle these sums as before:

Clearly we have:

For the difference of the two exponential we see that:

Proof of Corollary 1. For brevity we will write B1(n) = d . Let Z(n) denote the number of pairs of partitions of n, (Π1(n), Π2(n)) satisfying [START_REF] Dartyge | Arithmetic properties of summands of partitions II[END_REF]. By Theorem 2 and using the notation (25) we have:

Next following the ideas of [START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF] or [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF], [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions II[END_REF], we approximate the summation over m by an integral. Since by Lemma 7 we have uniformly for all m ∈ [B1(n), B2(n)]:

Let I(n) denote the above integral on t. If we set u = exp -2πdt √ 6n then we obtain

.

Next we do a second change of variables, that is v = u √ 6n 2πd . We observe some simplifications in the expression of Z(n):

e -v v a/d-1 d v = p 2 (n)(1+o(1)), by [START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF] p. 83. This ends the proof of Corollary 1.