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Abstract

In 1964 K. F. Roth initiated the study of irregularities of distribu-

tion of binary sequences relative to arithmetic progressions and since

that numerous papers have been written on this subject. In the appli-

cations one needs binary sequences which are well distributed relative

to arithmetic progressions, in particular, in cryptography one needs

binary sequences whose short subsequences are also well-distributed

relative to arithmetic progressions. Thus we introduce weighted mea-

sures of pseudorandomness of binary sequences to study this property.
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We study the typical and minimal values of this measure for binary

sequences of a given length.

1 Introduction

K. F. Roth [13] was the first who studied the irregularities of distri-

bution of sequences relative to arithmetic progressions in 1964. Among

others, it follows from his results that

Theorem 1 (Roth [13]) If N,Q ∈ N with Q ≤ N1/2 and EN =

(e1, e2, . . . , eN ) ∈ {−1, 1}N , then there are integers a, t, q such that

1 ≤ a ≤ a+ (t− 1)q ≤ N, q ≤ Q (1)

and
∣∣∣
t−1∑

j=0

ea+jq

∣∣∣ > c1Q
1/2

with some absolute constant c1.

Taking here Q = [N1/2] we get

Corollary 1 (Roth) If N ∈ N and EN = (e1, e2, . . . , eN ) ∈
{−1, 1}N , then there are integers a, t, q such that (1) holds,

q ≤ N1/2

and
∣∣∣
t−1∑

j=0

ea+jq

∣∣∣ > c2N
1/4.

Since that numerous papers have been written on related problems;

see the most recent papers [4], [12], [15], [16], [17] and the reference

lists at the end of these papers. In particular, improving on a result of

Beck [3], Matous̆ek and Spencer [10] proved
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Theorem 2 (Matous̆ek and Spencer [10]) If N ∈ N, then there

exists a sequence En = (e1, e2, . . . , eN ) ∈ {−1, 1}N such that for every

a, t, q satisfying (1) we have

∣∣∣
t−1∑

j=0

ea+jq

∣∣∣ < c3N
1/4

with some absolute constant c3.

This shows that Theorem 1 is sharp apart from the constant factor c1.

Binary sequences with strong pseudorandom properties play a cru-

cial role in cryptography ; e.g., they are used as key in the frequently

used encrypting system called Vernam cipher. Thus in [11] Mauduit

and Sárközy initiated a new constructive and quantitative approach

to study pseudorandom binary sequences

EN = (e1, e2, . . . , eN ) ∈ {−1, 1}N . (2)

In particular, they introduced the following measures of pseudoran-

domness of sequences of this type:

Definition 1 The well-distribution measure of the sequence (2)

is defined by

W (EN ) = max
a,b,t

∣∣∣
t−1∑

j=0

ea+jb

∣∣∣

where a, b, t ∈ N and 1 ≤ a ≤ a+ (t− 1)b ≤ N .

Definition 2 For k ∈ N, k ≤ N the correlation measure of order

k of the sequence (2) is defined as

Ck(EN ) = max
M,D

∣∣∣
M∑

n=1

en+d1en+d2 · · · en+dk

∣∣∣

where the maximum is taken over all D = (d1, d2, . . . , dk) and M ∈ N

such that 0 ≤ d1 < d2 < · · · < dk ≤ N −M .

Then the sequence EN ∈ {−1, 1}N is said to possess strong pseudo-

random properties or, briefly, it is considered a “good” PR sequence
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if both W (EN ) and Ck(EN ) (at least for “small” k) are small. This

terminology is justified by the fact that for a “truly” random sequence

EN ∈ {−1, 1}N , i. e. , for choosing each EN ∈ {−1, 1}N with prob-

ability 1
2N

both W (EN ) and (for fixed k) Ck(EN ) are “small”: they

are expected to be around N1/2 which is much smaller than the trivial

upper bound N . This was proved by Cassaigne, Mauduit and Sárközy

[5]:

Theorem 3 (Cassaigne, Mauduit and Sárközy [5]) For all ε >

0 there are numbers N0 = N0(ε) and δ = δ(ε) such that for N > N0

we have

P (W (EN ) > δN1/2) > 1− ε

and

P (W (EN ) > 6(N logN)1/2) < ε.

Theorem 4 (Cassaigne, Mauduit and Sárközy [5]) For all k ∈
N, k ≥ 2 and ε > 0 there are numbers N0 = N0(ε, k) and δ = δ(ε, k)

such that for N > N0 we have

P (Ck(EN ) > δN1/2) > 1− ε

and

P (Ck(EN ) > 5(kN logN)1/2) < ε.

(Later these results have been sharpened by Alon, Kohayakawa,

Mauduit, Moreira and Rödl [9], [2] and Aistleitner [1].)

In the last 15 years many papers have been written on the measures

of pseudorandomness of binary sequences and many “good” PR binary

sequences have been constructed; a survey of all these results has been

presented by Gyarmati [8].

By using the notation introduced in Definition 1, Theorems 1 and

2 can be rewritten in the following form:

c1N
1/4 < min

EN∈{−1,1}N
W (EN ) < c3N

1/4. (3)
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Comparing the upper bound here with Theorem 3, we may observe

that the minimum of W (EN ) (which is around N1/4) is much smaller

than its typical value (which is around N1/2).

Note that the proof of the upper bound in (3) given by Matous̆ek

and Spencer [10] is an existence proof, and no constructive proof is

known. Indeed, the best known construction (presented in [7]) gives

only

W (EN ) < c4N
1/3(logN)2/3. (4)

In the sequel of this paper we will slightly improve on this construction.

In this paper our goal is to study the following problem:

Suppose we need a PR binary sequence of unknown length L. If

we can estimate L reasonably well, say, we can find U such that U <

L < 2U , then there is no problem: we construct a “good” PR sequence

EN = (e1, e2, . . . , eN ) with 2U < N < 4U (it is not too difficult to

construct such a sequence), and then keeping only the first L elements

of the sequence for any U < L < 2U : EL = (e1, e2, . . . , eL), we

get a “good” PR sequence for any U < L < 2U . Namely it follows

from the definitions of the measures W and Ck that if EN is “good”,

0 ≤ n < n + M ≤ N and M ≫ N (or just M > N1−ε), then

(en+1, en+2, . . . , en+M ) is also “good”. If however, we cannot say more

than, say, U < L < U100 then this approach does not work; the

problem is that if M < N1/2 and 1 ≤ n < n + M ≤ N then the

“good” PR properties of (e1, e2, . . . , eN ) are not enough to guarantee

that (en+1, en+2, . . . , en+M ) is also “good”; indeed, even en+1 = en+2 =

. . . = en+M = 1 is possible.

This problem could be handled easily if we could construct se-

quences EN = (e1, e2, . . . , eN ) ∈ {−1, 1}N such that for every M >

N ε, 1 ≤ n < n + M ≤ N the subsequence (en+1, en+2, . . . , en+M ) is

“good”, its PR measures W , Ck are less than M1/2+ε, or just less than

M1−c would be a great step. But are there sequences EN of this type?

How far can we get in this direction ? Here we will study these ques-
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tions focusing on the measure W ; although the correlation measure

also will get into the picture, we will focus on it in a subsequent paper.

First in Section 2 we will introduce a weighted version Wα of the

measure W for studying these problems. In Section 3 we will estimate

Wα for a “truly” random sequence EN ∈ {−1,+}N . In Section 4 we

will formulate a conjecture on the minimal value of Wα(EN ) over all

EN ∈ {−1, 1}N , and in Sections 4 and 5 we will prove partial results

towards the lower bound in this conjecture.

In the sequel of this paper we will present constructive bounds

for minWα(EN ).

2 The weighted well-distribution mea-

sures

In the rest of this paper we will also use the following notations and

definitions: if EN is the binary sequence in (2), n ∈ {0, 1, . . . , N − 1},
M ∈ N and 0 ≤ n < n+M ≤ N , then we write

EN (n,M) = (en+1, en+2, . . . , en+M ).

Definition 3 If EN is the binary sequence in (2) and 0 ≤ α ≤ 1/2,

then the weighted α-well-distribution measure of EN is defined

as

Wα(EN ) = max
0≤n<n+M≤N

M−αW (EN (n,M)).

Then clearly we have

W0(EN ) = W (EN ). (5)

For 0 ≤ α ≤ 1/2 we will write

mα(N) = min
EN∈{−1,1}N

Wα(EN ).

Our main goals are to study Wα(EN ) for fixed α and a “truly” random

EN ∈ {−1, 1}N , and to estimate mα(N) for fixed α. However, we will

6



also need a modified version of the measure introduced in Definition

3.

Consider again the binary sequence EN in (2) and for a, b,M ∈ N,

1 ≤ a ≤ a+ (M − 1)b ≤ N , write

U(EN ,M, a, b) =

M−1∑

j=0

ea+jb.

Definition 4 If EN is the binary sequence in (2) and 0 ≤ α ≤ 1/2,

then the modified weighted α-well-distribution measure of EN is defined

as

W̃α(EN ) = max
0<M<N

(
M−α max

1≤a≤a+(M−1)b≤N
|U(EN ,M, a, b)|

)
.

For 0 ≤ α ≤ 1/2 we write

m̃α(N) = min
EN∈{−1,1}N

W̃α(EN ).

Clearly we have W0(EN ) = W̃0(EN ) for all EN ∈ {−1, 1}N and

m0(N) = m̃0(N) for all N ∈ N.

3 The weighted α-well-distribution

measure for random binary sequences

We will show that Theorem 3 can be extended to Wα(EN ) with

0 ≤ α ≤ 1/2:

Theorem 5 Assume that 0 ≤ α ≤ 1/2. Then for all ε > 0 there are

numbers N0 = N0(ε) and δ = δ(ε) such that if N > N0 then for a

random sequence EN ∈ {−1, 1}N (i.e. choosing each EN ∈ {−1, 1}N

with probability 1/2N ) we have

P (Wα(EN ) > δN1/2−α) > 1− ε (6)

and

P (Wα(EN ) > 6(N logN)1/2N−α) < ε. (7)
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Proof of Theorem 5. For α = 0 the statement of the theorem holds by

Theorem 3 and (5). Thus we may assume that

0 < α ≤ 1/2. (8)

First we will prove (6). By the definitions of W and Wα we have

Wα(EN ) ≥ max
M≤N

M−αW (EN (0,M)) ≥ N−αW (EN ) ≥ N−α
∣∣∣

N∑

j=1

ej

∣∣∣.

Thus it suffices to prove that

P
(
N−α

∣∣∣
N∑

j=1

ej

∣∣∣ > δN1/2−α
)
> 1− ε

or, in equivalent form,

P
(∣∣∣

N∑

j=1

ej

∣∣∣ > N1/2
)
> 1− ε.

This is inequality (2.7) in [5] which was proved there (under the same

conditions) and this completes the proof of (6).

Now we prove (7). This could be proved in an elementary manner

like (2.2) in [5] but this would be rather lengthy; it is much simpler to

use Chernoff’s inequality [6] (see also [18]). We will apply the following

special case of this inequality:

Lemma 1 Let X1,X2, . . . ,Xk be independent random variables with

P (Xi = 1) = P (Xi = −1) = 1/2 for i = 1, 2, . . . , k and let X =
∑k

i=1 Xi. Then for all A > 0 we have

P (|X| ≥ A) ≤ 2e−A2/2k.
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(See the section “Better Chernoff bounds for some special cases” in

[18].) By Definition 3 we have

P (Wα(EN ) > 6(N logN)1/2N−α)

= P
(

max
0≤n<n+M≤N

M−αW (EN (n,M)) > 6(N logN)1/2N−α
)

≤
∑

0≤n<n+M≤N

P (M−αW (EN (n,M)) > 6(N logN)1/2N−α)

=
∑

0≤n<n+M≤N

P (W (EN (n,M)) > 6(N logN)1/2(M/N)α)

=
∑

0≤n<n+M≤N

P
(

max
1≤a<a+(t−1)b≤M

∣∣∣
t−1∑

j=0

en+a+jb

∣∣∣ > 6(N logN)1/2(M/N)α
)

≤
∑

0≤n<n+M≤N

∑

1≤a<a+(t−1)b≤M

P
(∣∣∣

t−1∑

j=0

en+a+jb

∣∣∣ > 6(N logN)1/2(M/N)α
)
.

(9)

It remains to estimate the general term of this double sum. This can

be done by using Lemma 1 with t, en+a+(i−1)b (for i = 1, 2, . . . , t) and

6(N logN)1/2(M/N)α in place of k, Xi and A respectively.

We obtain that

P
(∣∣∣

t−1∑

j=0

en+a+jb

∣∣∣ > 6(N logN)1/2(M/N)α
)
≤ 2e−18N(logN)(M/N)2α/t.

(10)

It follows from our conditions on a, b and t that

t− 1 ≤ (t− 1)b ≤ M − a ≤ M − 1

whence t ≤ M . Thus we get from (10) that

P
(∣∣∣

t−1∑

j=0

en+a+jb

∣∣∣ > 6(N logN)1/2(M/N)α
)
≤ 2e−18(logN)(M/N)2α−1

≤ 2e−18 logN ≤ 1

N17
.

(11)

In (9) we have 0 ≤ n ≤ N , 1 ≤ M ≤ N and 1 ≤ a, b, t ≤ M ≤ N so

that each of the parameters n,M, a, b and t can be chosen in at most
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N ways. Thus it follows from (9) and (11) that

P (Wα(EN ) > 6(logN)1/2N−α) ≤
∑

0≤n<n+M≤N

∑

1≤a<a+(t−1)b≤M

1

N17

≤ 1

N12
< ε

if N is large enough which proves (7) and this completes the proof of

Theorem 5.

4 A conjecture on the minimum of

Wα(EN) and a related lower bound

By Corollary 1, there exists c2 > 0 such that for any binary se-

quence satisfying (2) there are integers a, t, q such that (1) holds with

q ≤ N1/2 and
∣∣∣
t−1∑

j=0

ea+jq

∣∣∣ > c2N
1/4.

Then we have for α ∈ [0, 1/2]

1

tα

∣∣∣
t−1∑

j=0

ea+jq

∣∣∣ > c2N
1/4t−α ≫ N1/4−α.

By this observation we deduce that:

mα(N) ≫ N1/4−α for α ∈ [0, 1/2]. (12)

We conjecture that this estimate for the minimum of Wα(N) can be

sharpened in the following way:

Conjecture 1 For 0 ≤ α ≤ 1/2 we have

c5N
1/4−α/2 < mα(N) < c6N

1/4−α/2. (13)

Note that by Corollary 1 and (5) this inequality holds for α = 0.

Unfortunately we have not been able to improve (12); the difficulty is

that we have not been able to adapt Roth’s method used in [13]. Thus
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instead of estimating Wα(EN ) we will give a lower bound for W̃α(EN )

(which can be handled more easily) as a partial result. Some other

partial results will be proved in the next section and in the sequel of

this paper.

Adapting Roth’s method we will prove

Theorem 6 For α ∈ [0, 1/2], α > 0 and N ∈ N, N > N0(ε), we

have:

m̃α(N) ≥
( 2

π
√
5
− ε
)
N1/4−α/2.

Proof of Theorem 6. The main tool is the following result of Sárközy

([14] Corollary 4), which was proved there by a generalization of Roth’s

argument.

Lemma 2 (Sárközy) If ε > 0, N > N0(ε) is a positive integer and

s1, s2, . . . , sN a set of N complex numbers, then there exists integers

n, q such that 1 ≤ q ≤
√
N and

|D(n, q, [
√
N/2])| ≥

( 2

π
√
5
− ε
)( 1

N

N∑

m=1

|sm|2
)1/2

N1/4, (14)

where D(n, q, k) is defined by

D(n, q, k) = sn + sn+q + · · ·+ sn+(k−1)q,

with si = 0 if i 6∈ {1, . . . , N}.

Let ε > 0. We apply this lemma with N > N0(ε) and any se-

quence EN = {e1, e2, . . . , eN} ∈ {−1,+1}N (setting also ei = 0 if

i /∈ {1, 2, . . . , N}) in place of s1, s2, . . . , sN . Then there exist integers

n0 and q0 ≤
√
N such that

∣∣∣D(n0, q0, [
√
N/2])

∣∣∣ =

∣∣∣∣∣∣

[
√
N/2]−1∑

i=0

en0+iq0

∣∣∣∣∣∣
≥
(

2

π
√
5
− ε

)
N1/4. (15)

Define the integers a,M by

{n0, n0 + q0, n0 + 2q0, . . . , n0 + ([
√
N/2]− 1)q0} ∩ {1, 2, . . . , N} =

= {a, a + q0, a+ 2q0, . . . , a+ (M − 1)q0}. (16)
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Then clearly we have

1 ≤ M ≤
√
N/2, (17)

1 ≤ a ≤ a+ (M − 1)q0 ≤ N (18)

and

en0+iq0 = 0 if i ∈ Z, n0 + iq0 /∈ {1, 2, . . . , N}. (19)

It follows from (16), (18) and (19) that

∣∣∣D(n0, q0, [
√
N/2])

∣∣∣ =

∣∣∣∣∣∣

[
√
N/2]−1∑

i=0

en0+iq0

∣∣∣∣∣∣
=

∣∣∣∣∣∣

M−1∑

j=0

ea+jq0

∣∣∣∣∣∣

= |U(EN ,M, a, q0)| (20)

(where U(EN ,M, a, b) is the notation used in Definition 4). By (15),

(17), (18), (20) and the definition of W̃α(EN ) we have

W̃α(EN ) ≥ M−α |U(EN ,M, a, b)| ≥
(√

N

2

)−α(
2

π
√
5
− ε

)
N1/4

≥
(

2

π
√
5
− ε

)
N1/4−α/2

for every EN ∈ {−1,+1}N which, by the definition of m̃α(N), com-

pletes the proof of the theorem.

5 Lower bound for Wα(EN) for almost

all EN

In this section we will present a lower bound for Wα(EN ) for all

α and EN ∈ {−1, 1}N , and from this we will deduce a lower bound

for Wα(EN ) for almost all EN ∈ {−1, 1}N which is smaller than the

conjectured lower bound in Conjecture 1 by just a logarithm factor.

Theorem 7 For 0 ≤ α ≤ 1/2 and N ∈ N we have

Wα(EN ) ≥
√

2

3

[ N

4C2(EN )

]1/2−α
. (21)
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Corollary 2 For all ε > 0 there is a number N0 such that for N ∈ N,

N > N0 we have:

P
(
Wα(EN ) ≥

√
2

3

[ 1

20
√
2

( N

logN

)1/2]1/2−α)
≥ 1− ε. (22)

Proof of Theorem 7. Define k by

k =
[1
4

N

C2(EN )

]
,

and consider the sum

Z :=
N−k∑

n=0

(en+1 + en+2 + · · · + en+k)
2.

It follows from the definition of Wα(EN ) that

|en+1 + · · ·+ en+k|
kα

≤ Wα(EN ),

for all 0 ≤ n ≤ N . Thus we have

Z ≤ (N − k + 1)k2αWα(EN )2. (23)

On the other hand, clearly we have:

Z =

N−k∑

n=0

(en+1 + · · ·+ en+k)
2

=

N−k∑

n=0

k +

N−k∑

n=0

∑

1≤i 6=j≤k

en+ien+j

≥ (N − k + 1)k −
∑

1≤i 6=j≤k

∣∣∣
N−k∑

n=0

en+ien+j

∣∣∣

≥ (N − k + 1)k − k2C2(EN ).

(24)

It follows from (23) and (24) that

(N − k + 1)k2αWα(EN )2 ≥ Z ≥ (N − k + 1)k − k2C2(EN )

whence

Wα(EN )2 ≥ k1−2α − k2−2α C2(EN )

N − k + 1
. (25)
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Here we have

C2(EN )

N − k + 1
=

C2(EN )

N + 1−
[

N
4C2(EN )

] ≤ C2(EN )
3N
4

=
4

3

1
N

C2(EN )

≤ 1

3k
.

Thus we obtain from (25) that

Wα(EN )2 ≥ k1−2α − k1−2α

3
=

2

3
k1−2α

whence

Wα(EN ) ≥
√

2

3

[ N

4C2(EN )

]1/2−α
,

which completes the proof of the theorem.

Proof of Corollary 2. By the second inequality in Theorem 4 for

N > N0(ε) we have

P (C2(EN ) ≤ 5
√
2(N logN)1/2) ≥ 1− ε.

Thus it follows from (21) with probability greater than or equal to

1− ε that

Wα(EN ) ≥
√

2

3

[ N

4 · 5
√
2(N logN)1/2

]1/2−α

=

√
2

3

[ 1

20
√
2

( N

logN

)1/2]1/2−α

which completes the proof of the corollary.
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