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Abstract

In 1964 K. F. Roth initiated the study of irregularities of distribu-
tion of binary sequences relative to arithmetic progressions and since
that numerous papers have been written on this subject. In the appli-
cations one needs binary sequences which are well distributed relative
to arithmetic progressions, in particular, in cryptography one needs
binary sequences whose short subsequences are also well-distributed
relative to arithmetic progressions. Thus we introduce weighted mea-

sures of pseudorandomness of binary sequences to study this property.
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We study the typical and minimal values of this measure for binary

sequences of a given length.

1 Introduction

K. F. Roth [13] was the first who studied the irregularities of distri-
bution of sequences relative to arithmetic progressions in 1964. Among

others, it follows from his results that

Theorem 1 (Roth [13]) If N,Q € N with Q < N2 and Ey =

(e1,ea,...,en) € {—1,1}V, then there are integers a,t,q such that
l<a<at(t-1g<N, ¢<@Q 1)

and
t—1
‘Zeaﬂq‘ > aQY?
§=0
with some absolute constant c;.

Taking here Q = [N'/?] we get

Corollary 1 (Roth) If N € N and Exy = (e1,e2,...,en) €
{—1,1}", then there are integers a,t,q such that (1) holds,

and

t—1

1/4
|3 Caria| > a4,
3=0

Since that numerous papers have been written on related problems;
see the most recent papers [4], [12], [15], [16], [17] and the reference

lists at the end of these papers. In particular, improving on a result of

Beck [3|, Matousek and Spencer [10] proved



Theorem 2 (MatouSek and Spencer [10]) If N € N, then there
exists a sequence E,, = (e1,ea,...,en) € {—1,1}V such that for every
a,t,q satisfying (1) we have

t—1

1/4
‘Zeaﬂq‘ < cgN /
J=0

with some absolute constant cs.

This shows that Theorem 1 is sharp apart from the constant factor c;.

Binary sequences with strong pseudorandom properties play a cru-
cial role in cryptography ; e.g., they are used as key in the frequently
used encrypting system called Vernam cipher. Thus in [11] Mauduit
and Sarkozy initiated a new constructive and quantitative approach

to study pseudorandom binary sequences
EN: (615625"'561\7) € {_171}N (2)

In particular, they introduced the following measures of pseudoran-

domness of sequences of this type:

Definition 1 The well-distribution measure of the sequence (2)

is defined by

W(EyN) = max ‘ Z €a+]b‘
=0

a,b,t

where a,b,t € N andlgaga—i—(t—l)bSN.

Definition 2 For k € N, k < N the correlation measure of order

k of the sequence (2) is defined as

M
Ck (EN) = max ‘ Z €n+di1Cn+dy " " Entdy
n=1
where the mazimum is taken over all D = (dy,ds,...,d;) and M € N

such that 0 < dy < dy < -+ <dp <N —M.

Then the sequence Ey € {—1, l}N is said to possess strong pseudo-

random properties or, briefly, it is considered a “good” PR sequence



if both W(Ey) and Ci(EN) (at least for “small” k) are small. This
terminology is justified by the fact that for a “truly” random sequence
Ex € {-1,1},i. e. , for choosing each Ex € {—1,1}" with prob-
ability 55 both W(Ey) and (for fixed k) Cy(Ey) are “small™ they
are expected to be around N2 which is much smaller than the trivial

upper bound N. This was proved by Cassaigne, Mauduit and Sarkozy
[5]:

Theorem 3 (Cassaigne, Mauduit and Sarkozy [5]) For all ¢ >
0 there are numbers No = No(e) and § = 6(¢) such that for N > Ny
we have

P(W(Ey)>6NY?)>1—¢

and

P(W(Ey) > 6(Nlog N)*/?) < e.

Theorem 4 (Cassaigne, Mauduit and Sarkozy [5]) For all k €
N, k> 2 and € > 0 there are numbers Ny = No(e, k) and § = 6(e, k)
such that for N > Ny we have

P(Cy(En) > 0NY?) >1—¢

and

P(Ci(En) > 5(kNlog N)Y/?) < e.

(Later these results have been sharpened by Alon, Kohayakawa,
Mauduit, Moreira and Rodl [9], [2] and Aistleitner [1].)

In the last 15 years many papers have been written on the measures
of pseudorandomness of binary sequences and many “good” PR binary
sequences have been constructed; a survey of all these results has been
presented by Gyarmati [8|.

By using the notation introduced in Definition 1, Theorems 1 and
2 can be rewritten in the following form:

aNY* < min  W(EyN) < esNV4 (3)
Enye{-1,1}V

4



Comparing the upper bound here with Theorem 3, we may observe
that the minimum of W (Ey) (which is around N'/4) is much smaller
than its typical value (which is around N'/2).

Note that the proof of the upper bound in (3) given by Matousek
and Spencer [10] is an existence proof, and no constructive proof is
known. Indeed, the best known construction (presented in [7]) gives
only

W (EN) < caNY3(log N)?/3. (4)

In the sequel of this paper we will slightly improve on this construction.

In this paper our goal is to study the following problem:

Suppose we need a PR binary sequence of unknown length L. If
we can estimate L reasonably well, say, we can find U such that U <
L < 2U, then there is no problem: we construct a “good” PR sequence
En = (e1,ea,...,en) with 2U < N < 4U (it is not too difficult to
construct such a sequence), and then keeping only the first L elements
of the sequence for any U < L < 2U : E = (e1,e2,...,er), we
get a “good” PR sequence for any U < L < 2U. Namely it follows
from the definitions of the measures W and C} that if Ey is “good”,
0<n<n+M<Nand M > N (or just M > N'¢), then
(€n+1,€n42s---,entnr) is also “good”. If however, we cannot say more
than, say, U < L < U'"9 then this approach does not work; the
problem is that if M < NY2 and 1 < n < n+ M < N then the
“good” PR properties of (eq,es,...,en) are not enough to guarantee
that (en41,€nt2,---,entr) is also “good”; indeed, even €, 11 = €, =
... =éepyn = 1 is possible.

This problem could be handled easily if we could construct se-
quences Ex = (e1,ea,...,en) € {—1,1}¥ such that for every M >
Ne, 1 <n <n+ M < N the subsequence (€41, €n+2,--.,€ntrr) 18
“good”, its PR measures W, C}, are less than M 12te or just less than
M'¢ would be a great step. But are there sequences Ey of this type?

How far can we get in this direction ? Here we will study these ques-



tions focusing on the measure W; although the correlation measure
also will get into the picture, we will focus on it in a subsequent paper.

First in Section 2 we will introduce a weighted version W, of the
measure W for studying these problems. In Section 3 we will estimate
W, for a “truly” random sequence Ey € {—1,+}". In Section 4 we
will formulate a conjecture on the minimal value of W, (Ex) over all
Ex € {~1,1}", and in Sections 4 and 5 we will prove partial results
towards the lower bound in this conjecture.

In the sequel of this paper we will present constructive bounds

for min W, (En).

2 The weighted well-distribution mea-
sures

In the rest of this paper we will also use the following notations and
definitions: if Ey is the binary sequence in (2), n € {0,1,..., N — 1},
MeNand 0 <n<n+ M <N, then we write

EN(TL, M) = (eN+17 €n+2; - .- 7en+M)-

Definition 3 If Ex is the binary sequence in (2) and 0 < a < 1/2,
then the weighted a-well-distribution measure of En is defined

as

Wu(ENn) = max M “W(En(n,M)).
0<n<n+M<N

Then clearly we have
Wo(En) = W(EN). (5)
For 0 < o < 1/2 we will write
N) = i Wa(EN).
ma( ) ENEI?—Hll,l}N oc( N)

Our main goals are to study W, (Ey) for fixed @ and a “truly” random

Ex € {—1,1}", and to estimate m,(N) for fixed a. However, we will
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also need a modified version of the measure introduced in Definition
3.

Consider again the binary sequence Ey in (2) and for a,b, M € N,
1<a<a+ (M —-1)b< N, write

M-1

U(En, M,a,b) = Y €ayjo-
j=0

Definition 4 If Ey is the binary sequence in (2) and 0 < a < 1/2,
then the modified weighted a-well-distribution measure of En is defined

as

Wy(En) = max (M_O‘ max |U(EN,M,a,b)|>.
0<M<N 1<a<a+(M—1)b<N

For 0 < a < 1/2 we write

ma(N) = i Wa(EN).
TalN) =, Join o WalEw)

Clearly we have Wo(Ey) = Wy(Ey) for all Ey € {—1,1}" and
mo(N) = mo(N) for all N € N.

3 The weighted a-well-distribution
measure for random binary sequences

We will show that Theorem 3 can be extended to W, (Ey) with
0<a<1/2:

Theorem 5 Assume that 0 < o < 1/2. Then for all € > 0 there are
numbers Nog = No(g) and § = 6(g) such that if N > Ny then for a
random sequence Ex € {—1,1} Y (i.e. choosing each Ex € {—1,1}¥
with probability 1/2V ) we have

P(Wo(EN) > 6NY279) > 1 —¢ (6)

and

P(Wy(Ey) > 6(Nlog N)Y/2N~%) < e. (7)



Proof of Theorem 5. For a = 0 the statement of the theorem holds by

Theorem 3 and (5). Thus we may assume that
0<a<1/2. 8)

First we will prove (6). By the definitions of W and W, we have

P

Jj=1

Wa(Bn) 2 max M™*W(En(0,M)) 2 N™*W(Ey) 2 N™°

Thus it suffices to prove that

N
Zej‘ > 5N1/2*0‘) >1—¢

J=1

P <N*a

or, in equivalent form,
N
P(‘ Z ej
Jj=1

This is inequality (2.7) in [5] which was proved there (under the same

>N1/2) >1-—c.

conditions) and this completes the proof of (6).

Now we prove (7). This could be proved in an elementary manner
like (2.2) in [5] but this would be rather lengthy; it is much simpler to
use Chernofl’s inequality [6] (see also [18]). We will apply the following

special case of this inequality:

Lemma 1 Let X1, Xo,..., X, be independent random variables with
PX;=1) = PX;, =-1) =1/2 fori = 1,2,...,k and let X =
Zle Xi. Then for all A > 0 we have

P(|X| > A) < 24/,



(See the section “Better Chernoff bounds for some special cases” in

[18].) By Definition 3 we have

P(Wy(En) > 6(Nlog N)Y/2N~2)

:P( max M*O‘W(EN(n,M))>6(N10gN)1/2N*a)
0<n<n+M<N

< > P(MW(Ey(n,M)) >6(Nlog N)'/>N~®)

0<n<n+M<N

= Y POW(Ex(n,M) > 6(Nlog N)'/2(M/N))
0<n<n+M<N
t—1

= Y p(_ max ‘Zen+a+jb( > 6(N log N)/%(M/N)*)
ocncaren  \1Se<er(-npsm |

t—1
< > 3 P<‘ Zenﬂﬂb‘ > 6(N log N)'/2(M/N)*).
0<n<n+M<N 1<a<a+(t—1)b<M  j=0
(9)

It remains to estimate the general term of this double sum. This can
be done by using Lemma 1 with ¢, e, 41y (fori=1,2,... ,t) and
6(N log N)'/2(M/N)* in place of k, X; and A respectively.

We obtain that

t—1
P(| S ensaris| > 6(N1og N)!/2(21/N)?) < 218N UosMM/NY 1,

§=0
(10)
It follows from our conditions on a,b and t that
t—1<(t—-1)b<M-a<M-1
whence ¢t < M. Thus we get from (10) that
t—1 _
P(|> envarin] > 6(N1og N)V2(M/N)? ) < 2071800 NM/N)™
=0
<9 18log N < i
- - N7
(11)

In (9) wehave 0 <n < N, 1< M < Nand1<a,bt<M<N so

that each of the parameters n, M, a,b and ¢ can be chosen in at most



N ways. Thus it follows from (9) and (11) that

_ 1
P(Wo(Ey) > 6(log N)/2N") < )~ 3 7
0<n<n+M<N 1<a<a+(t—1)b<M
1
S W <e

if N is large enough which proves (7) and this completes the proof of

Theorem 5.

4 A conjecture on the minimum of

W,(Ey) and a related lower bound

By Corollary 1, there exists ¢o > 0 such that for any binary se-
quence satisfying (2) there are integers a,t, ¢ such that (1) holds with
g < N2 and

t—1

1/4
|3 Caria| > a4,
j=0

Then we have for a € [0,1/2]

By this observation we deduce that:
ma(N) > NY4=  for a €(0,1/2]. (12)

We conjecture that this estimate for the minimum of W, (N) can be

sharpened in the following way:
Conjecture 1 For 0 < o < 1/2 we have
cs N/A—a/2 < mae(N) < cgN/A4—a/2, (13)

Note that by Corollary 1 and (5) this inequality holds for o = 0.
Unfortunately we have not been able to improve (12); the difficulty is
that we have not been able to adapt Roth’s method used in [13]. Thus

10



instead of estimating W, (Ex) we will give a lower bound for WQ(EN)
(which can be handled more easily) as a partial result. Some other
partial results will be proved in the next section and in the sequel of
this paper.

Adapting Roth’s method we will prove

Theorem 6 For o € [0,1/2], o > 0 and N € N, N > Ny(e), we

have:

a(N) > (Wi\/g _ 6>N1/47a/2.

Proof of Theorem 6. The main tool is the following result of Sarkozy
([14] Corollary 4), which was proved there by a generalization of Roth’s

argument.

Lemma 2 (Sarkozy) Ife > 0, N > Ny(e) is a positive integer and
$1,892,...,8N a set of N complexr numbers, then there exists integers

n, q such that 1 < ¢ < VN and

D(n, ¢, [VN/2)| = (— ) (% Z sal?) U (19)
where D(n,q, k) is defined by
D(n,q,k) = sy + Sn4qg T F S (k—1)gs
with s; =0 4fi ¢ {1,...,N}.
Let € > 0. We apply this lemma with N > Ny(e) and any se-
quence Ey = {ej,e2,...,en}t € {—1,+1}V (setting also e; = 0 if
i ¢ {1,2,...,N}) in place of s1,$2,...,sny. Then there exist integers

no and go < v/N such that
[VN/2]-1 9
D(ny, ,\/N2‘: Cnoti 2(——5>N1/4. 15
(oo YN/ = | 3 envvin| 2 (5 (15)
Define the integers a, M by
{n05n0+q0,n0+2q05"'5n0+([\/ﬁ/2] _1)QO}Q{172’5N} =

:{aaa+q0,a+2q05"'7a+(M_l)QO}' (16)

11



Then clearly we have

1<M<VN/2, (17)
1<a<a+(M-—-1)gg <N (18)

and
enotiqp = 01f 1 € Z, ng +iqo ¢ {1,2,...,N}. (19)

It follows from (16), (18) and (19) that

[VN/2]-1 -1
Do, 0, VN/2D| = | Y2 engtian| = | D catia
i=0 =0
= ‘U(EN,M,G,,(]O)’ (20)

(where U(En, M, a,b) is the notation used in Definition 4). By (15),
(17), (18), (20) and the definition of W, (Ex) we have

Wo(Exn) > M~ |U(Ex, M, a,b)| > <@> (i — g> N1/4

2 V5
2
> _Z ¢ N1/47a/2
- (W\/g >

for every Ey € {—1,+1}" which, by the definition of 74 (N), com-
pletes the proof of the theorem.

5 Lower bound for W,(FEy) for almost
all EN

In this section we will present a lower bound for W, (Ey) for all
a and Ey € {—1,1}", and from this we will deduce a lower bound
for W, (Ey) for almost all Ex € {—1,1}" which is smaller than the

conjectured lower bound in Conjecture 1 by just a logarithm factor.

Theorem 7 For 0 <« <1/2 and N € N we have

WQ(EN)E\/g[WJ\;m]l/z‘K (21)

12



Corollary 2 For all € > 0 there is a number Ny such that for N € N,
N > Ny we have:

Proof of Theorem 7. Define k by

1 N
[t
4 Cy(EN)
and consider the sum
N—k
Z = Z (ent1+ enya+ -+ engr)’
n=0

It follows from the definition of W, (Ey) that

leny1 + -+ entil
]Ca

S Wa(EN)7
for all 0 < n < N. Thus we have
7Z < (N — k4 Dk*W,(Ey)>. (23)

On the other hand, clearly we have:

N—k
Z = (ens1+-+en)’
n=0

N—k  N—k
=D k+ D D nrien;
n=0

n=0 1<i#j<k (24)
N—k
> (N —k+ 1)k — Z ‘ Z en-i—ien-i-j‘
1<i#j<k n=0

> (N —k+ 1)k — k°Cy(Ey).

It follows from (23) and (24) that
(N —k+ DE**Wo(EN)? > Z > (N —k+ 1)k — k*Co(Eyn)

whence

Cy(EN)

Woc(EN)2 Z kl*?& o k272aN — = 1

(25)

13



Here we have

Ca(Bn) Ca2(En) < Go(En)
1C5(En) 4
41 1
=-—— < —.
3—CQ(EN) 3k

Thus we obtain from (25) that

kl—Qa _ 2]617201

Wa(EN)2 Z k172a _ 3 2

whence

Wo(EN) > \/%{WNEN)] 1/2—04’

which completes the proof of the theorem.
Proof of Corollary 2. By the second inequality in Theorem 4 for
N > Ny(e) we have

P(Cy(En) < 5V2(Nlog N)Y/2) > 1 —e.

Thus it follows from (21) with probability greater than or equal to
1 — ¢ that

N 1/2—a
WalEn) 2 \/2[4 : 5\/§(NlogN)1/2}

:\/g[ﬁ<logi]v>1/zr/2a

which completes the proof of the corollary.
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