
HAL Id: hal-01280837
https://hal.science/hal-01280837v1

Submitted on 3 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning and Evolution in Dynamic Software Product
Lines

Amir Molzam Sharifloo, Andreas Metzger, Clément Quinton, Luciano Baresi,
Klaus Pohl

To cite this version:
Amir Molzam Sharifloo, Andreas Metzger, Clément Quinton, Luciano Baresi, Klaus Pohl. Learning
and Evolution in Dynamic Software Product Lines. SEAMS ’16: 11th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, May 2016, Austin, Texas, United
States. pp.158-164. �hal-01280837�

https://hal.science/hal-01280837v1
https://hal.archives-ouvertes.fr

Learning and Evolution in Dynamic Software Product Lines

Amir Molzam Sharifloo†, Andreas Metzger†, Clément Quinton*

Luciano Baresi*, and Klaus Pohl†
†paluno (The Ruhr Institute for Software Technology), University of Duisburg Essen, Germany

{amir.molzamsharifloo | andreas.metzger | klaus.pohl}@paluno.uni-due.de
*Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy

{luciano.baresi | clement.quinton}@polimi.it

ABSTRACT
A Dynamic Software Product Line (DSPL) aims at manag-
ing run-time adaptations of a software system. It is built
on the assumption that context changes that require these
adaptations at run-time can be anticipated at design-time.
Therefore, the set of adaptation rules and the space of con-
figurations in a DSPL are predefined and fixed at design-
time. Yet, for large-scale and highly distributed systems,
anticipating all relevant context changes during design-time
is often not possible due to the uncertainty of how the con-
text may change. Such design-time uncertainty therefore
may mean that a DSPL lacks adaptation rules or configura-
tions to properly reconfigure itself at run-time. We propose
an adaptive system model to cope with design-time uncer-
tainty in DSPLs. This model combines learning of adapta-
tion rules with evolution of the DSPL configuration space. It
takes particular account of the mutual dependencies between
evolution and learning, such as using feedback from unsuc-
cessful learning to trigger evolution. We describe concrete
steps for learning and evolution to show how such feedback
can be exploited. We illustrate the use of such a model with
a running example from the cloud computing domain.

CCS Concepts
•Software and its engineering → Software product
lines; •Computing methodologies → Machine learn-
ing;

Keywords
Adaptation, evolution, machine learning, dynamic software
product lines

1. INTRODUCTION AND MOTIVATION
Adaptive systems modify themselves at run-time to react

to context changes that – without adaptation – would lead
to requirements violations. A well-known approach to real-
izing run-time adaptation is by means of a Dynamic Soft-

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

ware Product Line (DSPL). A DSPL extends existing soft-
ware product line engineering approaches by moving their
capabilities to run-time [13]. In particular, variability bind-
ing is postponed to run-time, allowing a DSPL to activate
or deactivate certain features according to context changes.
Run-time reconfigurations are driven by the DSPL variabil-
ity model, usually expressed as a feature model [12]. The
DSPL feature model describes the possible and allowed fea-
ture combinations of the software system and thereby defines
its configuration space.

How the system will reconfigure in response to context
changes is defined by means of adaptation policies or adap-
tation rules [6]. To this end, the DSPL feature model is usu-
ally augmented with a set of rules that explicitly define un-
der which circumstances a reconfiguration should take place.
Adaptation rules define the actual configurations that may
be reached through run-time adaptation and thereby delimit
a system’s adaptation space.

1.1 Uncertainty
DSPLs are built on the assumption that potential, rele-

vant context changes can be anticipated at design-time. As a
result, the set of adaptation rules and the possible configura-
tions of a DSPL are predefined and fixed at design-time. Yet,
for large-scale and highly distributed systems, such as cloud
or cyber-physical systems, anticipating all relevant context
situations and defining appropriate adaptation policies dur-
ing design-time is often not possible due to the uncertainty
of how the context may change at run-time [21, 9, 25].

Adding to this is the difficulty, in general, for a developer
to exhaustively explore, anticipate, or resolve all possible
context conditions [25]. Selecting a set of features and de-
pendencies to be included in a DSPL involves difficult design
decisions, requiring a good knowledge of the existing (or to
be developed) features and the ability to predict their behav-
ior in future contexts [10]. Similarly, developing an effective
set of adaptation rules is a challenging task for developers
due to the complexity and dynamicity of the context [7].

1.2 Learning and Evolution
Recently, two research directions have emerged that aim

at tackling uncertainty in adaptive systems. On the one
hand, machine learning has been proposed for modifying the
adaptation space at run-time [9, 16, 14]. Context changes
not anticipated during design-time are addressed by learn-
ing new adaptation rules dynamically, or by modifying and
improving existing rules. On the other hand, evolution [4]
has been proposed as a way to modify the DSPL configu-

ration space [3, 24, 33]. The variability of the DSPL (in
terms of features and their constraints) is changed based
on insights gathered during system operation, while derived
configurations are running.

1.3 Problem Statement
Learning and evolution individually address the problem

of uncertainty. However, the mutual dependencies between
learning and evolution also have to be considered, as context
changes that cannot be addressed by learning and evolution
in isolation can occur. As an example, let us assume that
learning has explored the whole configuration space but none
of the configurations was able to meet the requirements given
the new, unforeseen context situation. In such a case, an
evolution of the configuration space is required to enrich the
DSPL with new features or feature combinations.

Existing adaptive system models do not explicitly consider
the dependencies between learning and evolution. Well-
known adaptive system models, such as the MAPE model
and Kramer and Magee’s reference architecture for self-mana-
gement [17], are not connected with evolution, while dual
life-cycle models that consider evolution, such as [22] and
[20], do not explicitly reflect the role of learning and its de-
pendency with evolution.

1.4 Paper Contributions
This paper makes three main contributions. First, we

introduce an adaptive system model for dealing with un-
certainty in DSPLs. Our model extends the MAPE model
by learning and evolution. In particular, the model makes
explicit the dependencies and feedback loops between sys-
tem execution, adaptation, learning, and evolution. Second,
we describe the key concepts and steps that learning and
evolution have to perform as part of this model in order
to exploit feedback information between learning and evo-
lution. Third, we use an example from cloud computing to
illustrate the use of the model.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the running example. Section 3 introduces
our adaptive system model. Section 4 defines how adapta-
tion rules can be optimized through learning, while Section 5
explains the feedback-driven evolution of DSPLs. Section 6
discusses related work. Section 7 sketches remaining chal-
lenges and concludes the paper.

2. RUNNING DSPL EXAMPLE
In a classical software product line, variability describes

different possible products, i.e., software systems. In con-
trast, DSPL variability describes different possible adapta-
tions of the same system. Due to their foundation in soft-
ware product lines, DSPLs can rely on proven engineering
foundations [13]. The running system managed by the DSPL
can be reconfigured by switching among configurations that
are expressed in terms of a product line variability model,
usually a feature model [12, 21]. A feature model serves as
a compact representation of all valid feature combinations.

Figure 1 depicts the feature model of our running exam-
ple, a Software-as-a-Service (SaaS) system that can be de-
ployed on two types of virtual machines (Small and Medium

VM) offered by a cloud provider. The XOR constraint in
the feature model defines the mutual exclusion between fea-
tures Small and Medium. Valid configurations of the example
system are thus C1 = {DB, Small} and C2 = {DB, Medium}.

SaaS

DB VM

Small Medium

Adaptation
Rules

R1: W0 ∨ W1→ C1 | C1={DB, Small}

R2: W2 ∨ W3 → C2 | C2={DB, Medium}

XOR

Figure 1: Feature Model (top) and Adaptation Rules

The DSPL adaptation rules relate context situations, which
define the triggers for an adaptation, to feature configura-
tions, which define the outcome of an adaptation [1, 18].
Performance (e.g., here, response time) and cost are two
main system requirements in our cloud example. The over-
all goal is to keep performance high while minimizing the
cost of renting virtual machines from the cloud provider.
To address these goals, the Rule Set in our example con-
tains two adaptation rules R1 and R2 (see Figure 1). Rule R2

switches to the Medium VM if the workload is high (W2 or W3)
to achieve performance, while rule R1 switches to the Small

VM if the workload is considered normal (W0 or W1) to reduce
costs.1

In our example, different kinds of uncertainty can be faced.
For instance, during operation, heavier workloads way be-
yond what has been anticipated during design-time may oc-
cur (such as W4, W5, . . .). Or, adaptation rules defined at
design-time (such as choosing C2 in case of W3) may be based
on wrong or incomplete design-time knowledge and thus will
not be effective when applied.

C1

C2

W0 W1 W2 W3

Adaptation space
Configuration space

Context situation

C
on

fig
ur

at
io

n

No suitable configuration w.r.t. Wi

Triggered configuration w.r.t. Wi

Figure 2: Configuration & adaptation spaces at design-time

In the remainder of the paper we discuss how such un-
certainty can be addressed by combining learning and evo-
lution. To support this discussion, we use a simplified, di-
agrammatic representation of the configuration and adap-
tation spaces, which is shown in Figure 2 for our example.
Horizontally, the triggering conditions for an adaptation are

1We use a discretization of the context situations for the
sake of simplicity.

shown (the workloads W0, . . ., W3), while vertically the DSPL
configurations are depicted (C1, and C2). The area enclosed
by the dashed line depicts the configuration space, while the
area enclosed by the solid line depicts the adaptation space.
Black dots represent the existence of adaptation rules that
are triggered by the respective context situation and adapt
the system to the respective configuration. Dashes mean
that a combination of context situation and configuration is
not covered by any adaptation rule.

3. ADAPTIVE SYSTEM MODEL
The key elements of our adaptive system model are sketched

in Figure 3. As novelties, the model adds both Learning and
Evolution to the classical elements of the MAPE model (the
Managed Element and the Adaptation Manager), while taking
particular attention to the mutual dependencies between
learning and evolution by introducing explicit feedback loops
between the Adaptation Manager, Evolution and Learning.

Learning

Adaptation
Manager

Execution
(Managed Element)

Updated
Feature Model

Updated
Adaptation Rules

Evolution

Feature
Bindings

Monitored
Data

Requirements

Adaptation Space
Feedback

Configuration
Space Feedback

Figure 3: Learning and Evolution in DSPLs

Learning observes the execution of adaptation actions and
their effectiveness in achieving requirements (Adaptation Space
Feedback in Figure 3). In addition, Learning is informed by
Evolution about changes in features and their constraints
(Updated Feature Model) and thus can explore new configu-
rations as part of the DSPL’s modified configuration space.
Based on both kinds of information, adaptation rules are re-
visited and updated, thus dynamically modifying the adap-
tation space. Updated Adaptation Rules are then fed back to
the adaptation engine.

In addition to new requirements that possibly require an
evolution of the DSPL (see top of Figure 3), Evolution re-
ceives from Learning insights concerning the effectiveness
of different features and their combinations (Configuration
Space Feedback), which constitutes further the triggers for
DSPL evolution. The DSPL can be evolved by adding new
features, changing feature constraints, or even by removing
never used features from the DSPL feature model. While
Learning is fully automatic, Evolution requires human in-
volvement.

4. LEARNING
Learning aims at improving existing adaptation rules and

adding new adaptation rules to address uncertainty faced at
run-time. The learning strategy we propose in our model

has been inspired by Reinforcement Learning (RL) [29]. In
RL an agent learns the effectiveness of its actions through
interactions with its context2. The agent receives a reward
value as the feedback for applying an action. The overall aim
of RL is to maximize some form of cumulative reward. Un-
like supervised learning, which learns from a set of existing
training data, RL relies only on the feedback from the con-
text. This is a key advantage when handling unpredictable
and changing context situations.

Given a context situation, an adaptation action is cho-
sen by RL using two complementary strategies: exploitation
and exploration. Exploitation focuses on the collected re-
ward values, and recommends the action with the highest
reward to be executed. Exploration recommends a random
action regardless of its reward value to prevent the learning
from sub-optimal solutions. A proper learning strategy is a
reasonable combination of exploitation and exploration.

Consequently, Learning involves three major steps, which
are described below: 1) adaptation rule exploitation, 2) con-
figuration space exploration, and 3) feeding back the cover-
age of the configuration space to Evolution.

4.1 Adaptation Rule Exploitation
Learning starts with exploitation to collect measured data

and calculate the requirements metrics (e.g., average re-
sponse time) to evaluate the adaptation space. Learning

continuously observes the execution of adaptation rules and
evaluates their ability to meet the requirements. To this end,
Learning monitors a set of metrics that indicate the satisfac-
tion of requirements. The monitoring results thereby consti-
tute the rewards for RL. The monitoring results are stored
in a data structure – we call this the Reward Set. The Reward

Set contains the actual values of metrics together with the
respective configuration and context situation.

In our example, the performance goal may be evaluated
by measuring the average response time of the cloud ser-
vice. Relating a monitored metric to the configuration of
the DSPL that was active during monitoring gives the abil-
ity to reason about the effectiveness of different DSPL con-
figurations. As a result, adaptation rules can be evaluated
since they dictate which configurations are going to be used
in a given context situation. In our example, the Reward Set

contains the tuples {W0, C1, 250ms}, {W1, C1, 1000ms} and so
forth. Assuming our response time requirement is 500ms,
the effectiveness of the adaptation rules is evaluated and
leads to the result as shown in Figure 4.

C1

C2

W0 W1 W2 W3

Requirements satisfaction

Requirements violation

Context situation

C
on

fig
ur

at
io

n

Figure 4: Adaptation Space after Exploitation

2aka. environment in RL.

Requirements are violated in two context situations: W1

and W3. Adaptation rules that led to requirements violations
are removed and thus alternative adaptation rules can be
explored in the second step.

4.2 Configuration Space Exploration
Exploration aims at improving and enhancing the set of

adaptation rules. The exploration strategy examines the
parts of the configuration space not yet covered by success-
ful adaptation rules and derives new adaptation rules for
these parts. As a result, configurations not yet executed
in certain context situations may be encoded as adaptation
rules. Figure 5 shows such optimized adaptation space after
exploration in our cloud example.

C1

C2

W0 W1 W2 W3
Context situation

C
on

fig
ur

at
io

n

Figure 5: Configuration space after exploration

Compared to the prescribed rules, exploration has found
an adaptation rule to successfully handle context situation
W1 using configuration C2, instead of C1. Compared to the
initial adaptation rules (see Section 2), the Rule Set is up-
dated as follows:

R =

{
R1 : W0→ C1 | C1 = {DB,Small}
R2 : W1 ∨W2→ C2 | C2 = {DB,Medium} (1)

In addition to improving the adaptation rules for known
context situations, exploration enables us to deal with un-
foreseen context situations. As mentioned in Section 2, our
cloud service may face a workload way beyond what has been
anticipated during design-time – let it be W4. As illustrated
in Figure 6, the existing adaptation rules do not support
this context situation. Exploration, however, will search the
configuration space with the aim of finding a configuration
that satisfies the requirements for this unforeseen context
situation.

C1

C2

W0 W1 W2 W3
Context situation

C
on

fig
ur

at
io

n

W4

Figure 6: Unforeseen context situation

4.3 Feedback to Evolution
The exploration of the adaptation space is eventually lim-

ited to the set of features defined within the feature model
of the DSPL. That is, the adaptation space may not become
larger than the configuration space. In situations where none
of the existing configurations is able to achieve the system
goals, e.g., W3 and W4 in our example, the DSPL needs to be
evolved to offer more suitable features and configurations.
Such need for evolution is fed back to Evolution, together
with the Reward Set in order to be able to perform an anal-
ysis of the evolution need.

5. EVOLUTION
Evolution aims at updating the DSPL and its feature

model to address unsatisfied or emerging requirements. Tra-
ditionally, evolution is triggered by changes in requirements
that demand new features. In our adaptive system model,
additional needs for evolution come from Learning by pro-
viding insights about run-time execution and in particular
about the effectiveness of existing DSPL configurations. Re-
lying on the run-time information and the expertise of de-
velopers, Evolution is to revise the design of the DSPL and
its feature model towards addressing those needs. To do
so, Evolution involves three major steps described below: 1)
analyzing the evolution needs in terms of DSPL features, 2)
updating the DSPL feature model, 3) feeding back feature
model updates to Learning.

5.1 Feature-aware Analysis
To effectively address the needs for evolution, it is impor-

tant to diagnose which features may be missing or misbehav-
ing. Key information for performing such task is contained
within the Reward Set. However, the Reward Set encodes the
information at the level of each individual configuration. As
a result, the Reward Set can be very large, depending on the
size of the configuration and adaptation spaces. This makes
it difficult to be used as the direct source of information for
the developer who has to define the DSPL evolution.

To support the developers in decision making, we thus
need artifacts that allow developers to make a decision on
the feature level instead of the level of individual configura-
tions. Here, one can rely on techniques such as statistical
methods to derive “feature-aware models” from large sets of
metric data. As an example, association rules [35] can be
derived to identify the relations among features, situations,
and requirements violations. Or, mathematical functions
can be calculated by regression techniques to represent a
system requirement as a function of DSPL feature bindings,
such as the performance influence models introduced in [28].

In our example, a feature-aware model can take the fol-
lowing shape to understand the impact of feature selection
on response time, rt, given a workload of W :

rt = 10 ·W · Small + 3 ·W ·Medium (2)

The values of Small and Medium are determined to be
0 or 1 depending on the activation of their corresponding
features.

5.2 Feature Model Update
Considering the feature-aware models and the expected

system requirements, developers re-visit the DSPL design.
The current design may require further development of new

features, optimizing the existing ones, or removing ineffec-
tive features. The implementation is thus updated accord-
ingly and the new feature model is sent to Learning. Addi-
tionally, developer-defined adaption rules may be added to
the feature model to guide the adaptation actions and adjust
the adaptation space accordingly.

Regarding our running example, the need for evolution is
triggered after discovering that there exists no configuration
to cope with the workloads W3 and W4. The feature-aware
model derived in the previous step shows the positive impact
of VM capacity on the response time. This indicates that a
potential solution to address W3 and W4 may be to increase
VM capacity further. Developers then decide on the possi-
ble evolution scenarios. For instance, adding a Large virtual
machine feature as a child feature of VM could be one solu-
tion. Another solution could be to add a load balancer (LB)
and use both Small and Medium VMs simultaneously when
W3 and W4 occur. Figure 7 depicts the latter solution in the
DSPL feature model. Note that the relationship among VM

and its children is changed to OR to allow the use of multiple
machines in configuration C3. As part of the DSPL evolu-
tion, also a new adaptation rule is added that is triggered
by the occurrence of W3 and W4.

Figure 7: Evolution by Adding Load Balancer

5.3 Feedback to Learning
The evolution of a DSPL is propagated through the layers

of our adaptive system model (Figure 3). In particular, a
DSPL evolution may affect Learning. Figure 8 illustrates the
changes to the configuration and adaptation space in our
example. The configuration space is enlarged by the new
configuration C3 = {DB, Small, Medium, LB}, which reflects
the addition of the load balancing feature. The adaptation
space is expanded accordingly by allowing C3 to be executed
under situations W3 and W4.

As shown in the figure, the accumulated information in
Reward Set is still valid, since the previous configurations are
not changed through the evolution in our example. However,
for the newly introduced configuration and adaptation rule,
no metric information has been collected yet and thus it is
shown as bullet in the figure.

In case a feature were modified during evolution, the met-
rics of all the configurations that include the feature would
be invalidated and thus could not be reused. In case a fea-
ture were removed, all configurations involving this feature

C1

C2

W0 W1 W2 W3
Context situation

C
on

fig
ur

at
io

n

C3

W4

Figure 8: Evolved configuration and adaptation spaces

are removed from the configuration space. Finally, configu-
rations that violate changed constraints among features also
are to be removed. Those changes are reflected by removing
the entries from the Reward Set accordingly.

6. RELATED WORK
This section provides a summary of the related work on

learning and evolution of adaptive systems.
Existing work in learning for adaptive systems focuses on

improving the adaptation decisions by analyzing the feed-
back from past experiences. Qian et al. apply case-based
reasoning and store the encountered situations together with
the performed adaptations [23]. When facing a new situ-
ation, similar cases are retrieved from storage to find an
adaptation whose effectiveness has been shown earlier. Es-
fahani et al. discuss the application of black-box learning,
in particular regression models, to understand the impact
of different features on the goals of an adaptive system [9].
Features are then enabled or disabled accordingly to adapt
to the changes, based on how successfully they achieve the
goals. Q-Learning [32], as a specific form of reinforcement
learning, has been employed to predict the impact of adap-
tation actions in a wide range of application domains, in-
cluding data centers [5, 34, 30] and web-based systems [2].
In our recent work [14], we applied Fuzzy Q-Learning to de-
rive explicit adaptation rules. In contrast to this previous
efforts, we take a further step and propose an adaptive sys-
tem model that combines learning and evolution for DSPLs.

Software evolution is a key research field in software engi-
neering [19], and in adaptive systems it is considered a cru-
cial concern [8]. Different techniques have been proposed to
deal with run-time evolution of adaptive systems. Khakpour
et al. [15] present a formal model for developing and model-
ing self-adaptive evolving systems. They rely on this model,
based on evolution policies, to adapt the behavior and the
structure of the system at run time, i.e., to adapt and evolve
it. This approach relies on predefined evolution policies, and
thus cannot adapt to unforeseen evolution scenarios, while
our approach is able to cope with such scenarios by rely-
ing on run-time feedback, thus continuously learning and
evolving the system. Other authors propose maintaining
run-time models consistent with the system they describe
relying on a model-driven approach providing multiple archi-
tectural models at different levels of abstraction [31]. Those
run-time models are derived from a source model that can be
evolved, and thus used to propagate changes to the run-time

ones. In our previous work [3, 24], we also studied the chal-
lenges related to the evolution of DSPLs. Compared to these
contributions, we go further by using run-time feedback to
decide how a DSPL is evolved, and take full advantage of
both the knowledge produced by machine learning and the
developers’ expertise.

The adaptive system model presented in this paper pro-
gresses from the state of the art of adaptive systems by
studying the coexistence of learning and evolution in a uni-
fied model. It also opens up further research opportunities,
which are briefly discussed below.

7. CONCLUSION & PERSPECTIVES
A DSPL is applicable if future context situations are known

during design-time. Yet, for large-scale and highly distributed
systems, foreseeing future context conditions and defining
appropriate adaptation options during design-time is often
not possible. We advocate for an adaptive system model
that augments the MAPE model by a combination of on-
line machine learning and evolution. We plan in future
work to implement this model and propose an automated
approach supporting learning and evoluion. One major con-
cern when introducing machine learning into the software
life-cycle is that software will change itself and morph during
run-time without the explicit control of software engineers.
This raises questions about the resulting overall behavior of
the adaptive system. Learning may lead to unsafe or un-
wanted system states. We foresee different, complementary
research questions to be explored to address these concerns:

Defining safe operational boundaries: Developers are able
to prohibit the execution of certain configurations and adap-
tations by adding constraints to feature models. Indeed,
learning in our adaptive system model will only explore the
configuration space defined by developers. Learning only
triggers an evolution (and thus exploration) of new configu-
rations via DSPL evolution, thereby keeping the human in
the loop to take the final decision.

Sandboxing : The exploration of new adaption rules and
observing their effectiveness may be performed decoupled
from the actual system in operation. Our adaptive system
model differentiates between existing adaptation rules and
the ones being explored. This information may be used to
execute the rules under exploration in a sandbox.

Run-time verification: Due to the dynamic changes in the
adaptation and configuration spaces due to learning and evo-
lution, verification of an adaptive system needs to be ex-
tended to run-time [27, 11]. Existing verification techniques
for adaptive systems are essentially built to check adapta-
tions defined by developers at design-time. Advances in
learning techniques (making explicit what is learned) com-
bined with more powerful verification techniques (such as
verification in the cloud) might be explored to address this
challenge [26].

Acknowledgments: Research leading to these results has
received funding from the EU’s 7th Framework Programme
FP7/2007-2013 under grant agreement 610802 (CloudWave),
the DFG under the Priority Programme SPP1593: Design
For Future – Managed Software Evolution (iObserve), and
from project EEB - Edifici A Zero Consumo Energetico In
Distretti Urbani Intelligenti (Italian Technology Cluster For
Smart Communities) - CTN01 00034 594053.

8. REFERENCES
[1] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and

D. Diaz. Dynamic adaptation of service compositions
with variability models. Journal of Systems and
Software, 91:24–47, 2014.

[2] M. Amoui, M. Salehie, S. Mirarab, and L. Tahvildari.
Adaptive Action Selection in Autonomic Software
Using Reinforcement Learning. In Fourth
International Conference on Autonomic and
Autonomous Systems, pages 175–181, 2008.

[3] L. Baresi and C. Quinton. Dynamically evolving the
structural variability of dynamic software product
lines. In 10th IEEE/ACM International Symposium
on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS, pages 57–63, 2015.

[4] J. M. Barnes, D. Garlan, and B. Schmerl. Evolution
styles: foundations and models for software
architecture evolution. Software and Systems
Modeling, 13(2):649–678, 2012.

[5] E. Barrett, E. Howley, and J. Duggan. Applying
reinforcement learning towards automating resource
allocation and application scalability in the cloud.
Concurrency and Computation: Practice and
Experience, 25(12):1656–1674, 2013.

[6] N. Bencomo, J. Lee, and S. O. Hallsteinsen. How
dynamic is your dynamic software product line? In
Software Product Lines - 14th International
Conference, SPLC 2010, Jeju Island, South Korea,
September 13-17, 2010. Workshop Proceedings
(Volume 2 : Workshops, Industrial Track, Doctoral
Symposium, Demonstrations and Tools), pages 61–68,
2010.

[7] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese,
H. Kienle, M. Litoiu, H. Müller, M. Pezzè, and
M. Shaw. Engineering Self-Adaptive Systems Through
Feedback Loops. In Software Engineering for
Self-Adaptive Systems, pages 48–70. 2009.

[8] R. de Lemos et al. Software Engineering for
Self-Adaptive Systems: A Second Research Roadmap.
In Software Engineering for Self-Adaptive Systems II,
volume 7475 of Lecture Notes in Computer Science,
pages 1–32. Springer Berlin Heidelberg, 2013.

[9] N. Esfahani, A. M. Elkhodary, and S. Malek. A
learning-based framework for engineering
feature-oriented self-adaptive software systems. IEEE
Trans. Software Eng., 39(11):1467–1493, 2013.

[10] N. Esfahani, E. Kouroshfar, and S. Malek. Taming
Uncertainty in Self-adaptive Software. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 234–244, 2011.

[11] C. Ghezzi, C. Menghi, A. M. Sharifloo, and
P. Spoletini. On requirements verification for model
refinements. In Requirements Engineering Conference
(RE), pages 62–71, 2013.

[12] C. Ghezzi and A. M. Sharifloo. Dealing with
non-functional requirements for adaptive systems via
dynamic software product-lines. In Software
Engineering for Self-Adaptive Systems II, pages
191–213, 2010.

[13] M. Hinchey, S. Park, and K. Schmid. Building
dynamic software product lines. IEEE Computer,

45(10):22–26, 2012.

[14] P. Jamshidi, A. Sharifloo, C. Pahl, A. Metzger, and
G. Estrada. Self-learning cloud controllers: Fuzzy
Q-learning for knowledge evolution (short paper). In
Int’l Conference on Cloud and Autonomic Computing
(ICCAC), pages 208–211, 2015.

[15] N. Khakpour, S. Jalili, C. Talcott, M. Sirjani, and
M. Mousavi. Formal Modeling of Evolving
Self-adaptive Systems. Sci. Comput. Program.,
78(1):3–26, Nov. 2012.

[16] D. Kim and S. Park. Reinforcement learning-based
dynamic adaptation planning method for
architecture-based self-managed software. In ICSE
Workshop on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS, pages 76–85, 2009.

[17] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In International Conference on
Software Engineering, ISCE 2007, Workshop on the
Future of Software Engineering, FOSE, pages 259–268,
2007.

[18] J. Lee, G. Kotonya, and D. Robinson. Engineering
Service-Based Dynamic Software Product Lines. IEEE
Computer, pages 49–55, 2012.

[19] T. Mens. Introduction and Roadmap: History and
Challenges of Software Evolution. In Software
Evolution, pages 1–11. Springer Berlin Heidelberg,
2008.

[20] A. Metzger and E. Di Nitto. Addressing highly
dynamic changes in service-oriented systems: Towards
agile evolution and adaptation. In X. Wang, N. Ali,
I. Ramos, and R. Vidgen, editors, Agile and Lean
Service-Oriented Development: Foundations, Theory
and Practice, pages 33–46. IGI Global, 2012.

[21] A. Metzger and K. Pohl. Software product line
engineering and variability management:
Achievements and challenges. In Proceedings of the on
Future of Software Engineering, FOSE 2014, pages
70–84, 2014.

[22] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner,
G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum,
and A. Wolf. An architecture-based approach to
self-adaptive software. Intelligent Systems and their
Applications, IEEE, 14(3):54–62, 1999.

[23] W. Qian, X. Peng, B. Chen, J. Mylopoulos, H. Wang,
and W. Zhao. Rationalism with a dose of empiricism:
Case-based reasoning for requirements-driven
self-adaptation. In RE’14, pages 113–122, 2014.

[24] C. Quinton, R. Rabiser, M. Vierhauser,
P. Grünbacher, and L. Baresi. Evolution in dynamic
software product lines: challenges and perspectives. In
Proceedings of the 19th International Conference on
Software Product Line, SPLC, pages 126–130, 2015.

[25] A. J. Ramirez, A. C. Jensen, and B. H. C. Cheng. A
taxonomy of uncertainty for dynamically adaptive
systems. In 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems,
SEAMS, pages 99–108, 2012.

[26] A. M. Sharifloo and A. Metzger. Mcaas: Model
checking in the cloud for assurances of adaptive
systems. In To be published in Software Engineering
for Self-Adaptive Systems III, 2016.

[27] A. M. Sharifloo and P. Spoletini. LOVER: light-weight

formal verification of adaptive systems at run time. In
9th International Symposium Formal Aspects of
Component Software, FACS, pages 170–187, 2012.

[28] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner.
Performance-influence models for highly configurable
systems. In 10th Joint Meeting on Foundations of
Software Engineering, pages 284–294, 2015.

[29] R. S. Sutton and A. G. Barto. Introduction to
Reinforcement Learning. MIT Press, Cambridge, MA,
USA, 1st edition, 1998.

[30] G. Tesauro, N. Jong, R. Das, and M. Bennani. A
Hybrid Reinforcement Learning Approach to
Autonomic Resource Allocation. International
Conference on Autonomic Computing, pages 65–73,
2006.

[31] T. Vogel and H. Giese. Adaptation and abstract
runtime models. In ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems,
pages 39–48, 2010.

[32] C. J. C. H. Watkins and P. Dayan. Technical note:
q-learning. Mach. Learn., 8(3-4), 1992.

[33] D. Weyns, B. Michalik, A. Helleboogh, and
N. Boucké. An architectural approach to support
online updates of software product lines. In 9th
Working IEEE/IFIP Conference on Software
Architecture, WICSA, pages 204–213, 2011.

[34] C. Xu, J. Rao, and X. Bu. URL: A unified
reinforcement learning approach for autonomic cloud
management. J. Parallel Distrib. Comput.,
72(2):95–105, 2012.

[35] C. Zhang and S. Zhang. Association Rule Mining:
Models and Algorithms. Springer-Verlag, 2002.

