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We report direct evidence of superfluidity in a quasi two-dimensional Bose gas by observing its
dynamical response to a collective excitation. Relying on a novel local correlation analysis, we are
able to probe inhomogeneous clouds and reveal their local dynamics. We identify in this way the
superfluid and thermal phases inside the gas and locate the boundary at which the Berezinskii-
Kosterlitz-Thouless crossover occurs. This new analysis also allows to evidence the coupling of
the two fluids which induces at finite temperatures damping rates larger than the usual Landau
damping.

Superfluidity is one of the most fascinating expressions
of quantum mechanics at the macroscopic level. It man-
ifests itself through specific dynamical properties, giving
rise to collective effects as diverse as quantized vortices
or second sound [1]. First observed in liquid helium [2],
superfluidity has also been shown to occur for polari-
tons in semi-conductor micro-cavities or weakly inter-
acting quantum gases [3]. Thanks to mature imaging
techniques and a high degree of control over their pa-
rameters, the latter have proven to be particularly well
suited for evidencing key features of superfluids: their
linear excitation spectrum at low momentum [4] as well
as the existence of a finite critical velocity have been ob-
served [5–7]. Moreover when set into rotation quantum
gases display vortices [8, 9] and present specific collec-
tive modes [10, 11]. Yet, extracting relevant information
from the dynamics of these systems still represents an
experimental challenge.

Properties of quantum gases are fully determined by
the knowledge of their density and temperature. Hence,
in order to explore different physical regimes, these quan-
tities may have to be varied over a large range of val-
ues. While for homogeneous systems each repetition of
an experiment will address a single point of this phase
space, inhomogeneous quantum gases readily experience
different regimes locally. This is the framework of the
local density approximation (LDA), which has been ex-
tensively exploited while exploring physics of quantum
gases at equilibrium. It has allowed for instance the de-
termination of the equation of state of a Fermi gas at
unitarity [12] and of a two-dimensional (2D) Bose gas
both in the weakly and strongly interacting regimes [13–
15]. In the same spirit, density fluctuations of a quasi-
one-dimensional Bose gas have been described from the
quasi-condensate to the nearly ideal gas regime [16].

In this work, we extend this approach to the in situ
study of the dynamical properties of an inhomogeneous
quantum gas. We apply a novel local correlation anal-

ysis to probe the superfluidity of a quasi-2D Bose gas,
observing its response to the so-called scissors excita-
tion [11, 17]. It allows us to identify and locate the super-
fluid and normal phases within the system. In addition,
at finite temperature we evidence a collisional coupling

between them. In a sense, our scheme relying on the weak
global excitation of a gas close to equilibrium probed
locally is symmetric to the recent measurement of the
critical velocity in an inhomogeneous quasi-2D Bose gas,
where the effect of a strong local perturbation is probed
through a global observable, the total heat deposited over
the whole cloud [7].

The reduction to low dimensions strongly affects the
physics of the collective properties of a quantum sys-
tem [18, 19]. In particular, in two dimensions, thermal
phase fluctuations destroy long range order [20] and pre-
vent the occurrence of Bose-Einstein condensation (BEC)
in a homogeneous Bose gas at any finite temperature [21].
On the other hand, these systems undergo a Berezinskii-
Kosterlitz-Thouless (BKT) phase transition to a super-
fluid state [22–24]. This still holds for quantum gases
confined in harmonic traps [25] as evidenced experimen-
tally for quasi-2D Bose gases through the algebraic decay
of their phase coherence [26]. Here, we directly locate the
boundary where the superfluid fraction vanishes across
the BKT crossover through local correlation analysis.

The starting point for our experiments is a partially
degenerate Bose gas of 87Rb atoms produced in a radio-
frequency (rf) dressed quadrupole trap [27], loaded from
an hybrid trap [28]. For our experimental parameters
the measured vertical trapping frequency ωz = 2π ×
1.83(1)kHz is much larger than the in-plane trapping fre-
quencies ωx = 2π× 33.8(2)Hz and ωy = 2π× 48.0(2)Hz,
resulting in a pancake shaped atomic cloud. The trap
in-plane geometry, defined by the direction of the eige-
naxes (x, y) and the anisotropy ǫ = (ω2

y−ω2
x)/(ω

2
y+ω2

x) =
0.34(5), is controlled by the rf polarization.

We prepare different samples by varying the total atom
number and temperature. As both the temperature kBT
and the chemical potential µ are comparable to the ver-
tical oscillator energy level spacing h̄ωz, the system is in
the quasi-2D regime, and the effective dimensionless 2D
interaction constant is g̃ =

√
8πa/ℓz = 0.1056(3) [29],

where a is the scattering length, ℓz =
√

h̄/(mωz) the
vertical harmonic oscillator length and m the atomic
mass. For most of our datasets the fraction of atoms
out of the vertical oscillator groundstate is smaller than
20%, despite the relatively high temperatures and chem-
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FIG. 1. (color online) Principle of the experiment studied in
this work. (a) A quasi-2D sample (blue shaded ellipse) is pre-
pared in an anisotropic harmonic trap (dashed axes), and at
t = 0 the trap axes are rotated by θ ≃ 10◦. (b) For t > 0,
the cloud shape oscillates in the rotated trap (solid axes):
the scissors mode is excited. (c) Examples of the evolution
with holding time of the average 〈xy〉 over the in situ atomic
density distribution, for an almost purely degenerate sam-
ple (α = 0.78(18), open blue triangles) and a non-degenerate
sample (α = 0.09(2), filled red squares), together with the cor-
responding fits (black solid lines). Each point is an average
of two measurements. A constant offset has been subtracted
from the first dataset for the sake of clarity.

ical potentials[30] (with respect to h̄ωz = h× 1830Hz =
kB × 88 nK). Therefore the system is well described by
coupled 2D manifolds and exhibits 2D physics. Specifi-
cally, the BKT transition is expected to occur in our trap
at a phase space density Dc = 8.188(3) for a reduced
chemical potential αc = µ/(kBT ) = 0.162(1) [31]. These
critical values increase slightly when the effect of the pop-
ulation in the transverse excited states at kBT >∼ h̄ωz is
taken into account [32]. The samples are prepared with
a reduced chemical potential α in the range [0.09− 0.88],
on both sides of the expected threshold [30].

We excite the scissors oscillations by suddenly chang-
ing the orientation of the horizontal confinement axes by
θ ≃ 10◦, while keeping the trap frequencies constant [33],
see figure 1(a). The superfluid and thermal fractions of
the cloud are subsequently expected to oscillate at differ-
ent frequencies: ω± = |ωx±ωy| for a normal gas close to

the collisionless regime and ωhd =
√

ω2
x + ω2

y for the su-

perfluid [11]. We typically record one hundred in situ pic-
tures of the atoms after different holding times, spanning
about 200ms. In order to study the scissors mode at fi-
nite temperature, it is essential to be able to discriminate
between the superfluid and thermal phases [34]. However
a direct fit of the 2D in situ density profiles by a bi-modal
function is quite imprecise because the typical width over
which they extend are comparable.

Inspired by the theoretical works which use the aver-
age 〈xy〉 as an observable of the scissors mode excita-

tion [11, 35, 36], we use an efficient algorithm to extract
〈xy〉 from our data [30]. For all of our datasets 〈xy〉
presents damped oscillations as illustrated in figure 1(c).
In order to quantitatively analyze this signal, we take
advantage of the classical description of the scissors os-
cillations [11]. In this framework the complex oscillation
frequencies ω of 〈xy〉 are parametrized by a characteristic
relaxation time τ :

i
ω

τ
(ω2 − ω2

hd) + (ω2 − ω2
+)(ω

2 − ω2
−) = 0. (1)

In the hydrodynamic limit where τ vanishes, this model
also describes the scissors mode in a superfluid [11]. Ap-
plying this prediction to our data, we are able to fit [30]
the value of τ and deduce the frequencies ωsc and damp-
ing rates Γsc of the oscillations relying on the constraints
of equation (1). In this way, we perform a double fre-
quency fit with only three parameters (amplitude, offset
and τ). The model always predicts two frequencies, cor-
responding to an upper branch and a lower branch. The
former spans frequencies in the range [ωhd, ω+] while the
latter spans [0, ω−]. We found this method to be more
accurate than a fit to a sum of two damped cosines which
requires at least nine free parameters, in particular for the
determination of the lowest, highly damped, frequency.
We checked that the fit constrained by equation (1) intro-
duces no bias and that both models give the same results
[30].

Figure 2 reports the frequencies found as a function
of the reduced chemical potential α. Below the BKT
transition (α < αc, leftmost point of the graph), the
two frequencies are very close to, but slightly below, the
classical prediction ω±. This, together with the large ob-
served damping rates (see figure 1(c)), indicates that the
gas is not fully in the collisionless regime, which would
require ωscτ ≫ 1 [11]. For samples above the BKT tran-
sition (α > αc) we find either a single frequency close to
ωhd or two frequencies, shifted below the collisionless fre-
quencies ω±. Our data are consistent with an increase of
the upper frequency from ωhd to ω+ when α decreases,
in agreement with 2D dynamical classical field simula-
tions [36], and in stark contrast with what was observed
in three-dimensional experiments [34]. We note however
that the simple criterion based on the critical value αc

is not sufficient to describe our datasets: in particular
the thermal frequencies ω± are still observable beyond
α = αc. The global 〈xy〉 observable therefore fails to
evidence the normal to superfluid crossover. Indeed, in
these conditions the superfluid and normal phases coex-
ist in the trap and the simple picture of equation (1)
does not capture all the dynamics. Moreover, as the ob-
servable 〈xy〉 is computed over the whole sample, both
phases are combined in the total signal and it is difficult
to isolate their respective signature.

In order to overcome this issue we introduce the con-
cept of local correlation analysis. In the spirit of LDA, we
define the rescaled radius r̄ =

√

(ωx/ωy)x2 + (ωy/ωx)y2,
following a 2D isodensity path around the trap center.
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FIG. 2. (color online) Measured oscillation frequencies as a
function of the reduced chemical potential α = µ/(kBT ). The
open blue circles correspond to the upper frequency branch,
the filled red diamonds to the lower frequency branch, see text
for detail. The three horizontal lines indicate the expected fre-
quencies in the low/high temperature limits: ωhd/(2π) (solid
line), ω+/(2π) (dashed) and ω−/(2π) (dash-dotted). The ver-
tical red solid line indicates the estimated position of the BKT
transition αc = 0.162(1) for a 2D Bose gas with our trap pa-
rameters [31]. The error bars are the standard deviations
estimated using the fit residuals.

We compute a partial average 〈xy〉rc evaluated by in-
cluding only the pixels at a rescaled distance r̄ < rc. In
this way we expect to isolate the superfluid phase which
is located at smaller r̄.

Figure 3 presents the frequencies found as a function
of the cut-off radius rc, for three of the datasets. Below
a cutoff radius of rc ≃ 10µm there is no clear oscillation
(indicated by the large error bars). This reflects the fact
that the scissors excitation is a surface mode and does
not affect the core of the cloud. Beyond this cutoff ra-
dius, we observe in most of the datasets a central region
oscillating at a single frequency, in good agreement with
the hydrodynamic prediction ωhd, which was not appar-
ent in the global analysis. For larger radii, we recover
the results of the global analysis, showing that the con-
tribution of the central region to the total signal is small,
even if the density is higher at the center. The radius
at which the crossover between these two regimes occurs
depends on α. As discussed below, this result is a di-
rect evidence of the coexistence of normal and superfluid
scissors excitations at finite temperature in our system.

To get more accurate results, we reduce further the re-
gion of interest to a thin annulus centered on r̄ = ra, with
a width δr = 4 pixels, thus probing an isodensity region
of the cloud. Figure 4 displays the frequencies measured
for this partial average 〈xy〉ra as a function of ra, for
α = 0.73(3), corresponding to one of the datasets of fig-
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FIG. 3. (color online) Measured oscillation frequencies of
the 〈xy〉rc observable as a function of the cutoff radius rc
(see text). (a) corresponds to the upper branch, (b) to the
lower branch. Measurements for three different experimental
conditions are presented: α = 0.78(18) (open blue circles),
α = 0.73(3) (open red diamonds) and α = 0.09(2) (open ma-
genta squares). The three horizontal solid lines correspond
to the three expected frequencies, as in figure 2. The gray
shaded areas indicate the central part of the clouds where the
signal to noise ratio is too small to extract a frequency for all
the datasets. The error bars are the standard deviations esti-
mated using the fit residuals. (c) The computation of 〈xy〉rc
uses only the pixels located at a scaled radius r̄ < rc (gray
shaded ellipse).

ure 3. The larger error bars result from a smaller number
of pixels involved in the average. This local analysis is
even more sensitive to frequency shifts and allows a more
accurate determination of the position of the boundary
between the two phases at r̄ ≃ 22µm.

We attribute the hydrodynamic part of the gas present
at the center to the superfluid phase of the degenerate
quasi-2D Bose gas. One may wonder if a hydrodynamic
classical gas at high density could explain our observa-
tion. From the independent measurement of the equilib-
rium values of µ and T , we evaluate the scaled distance
from the trap center at which the reduced local chem-
ical potential α(r̄) = µloc(r̄)/(kBT ), where µloc(r̄) =
µ − mωxωyr̄

2/2, reaches the critical value for the BKT
transition [32]. This is indicated by the vertical red solid
line in figure 4, in good agreement with our observed
crossover. The small discrepancy could be explained in
two ways. First, close to the critical radius, the finite
extension δr of our local probe averages the signal over
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FIG. 4. (color online) Measured frequencies for 〈xy〉ra , com-
puted on a thin annulus of width δr = 4 pixels, centered on a
given scaled radius r̄ = ra, as sketched in (c). (a) corresponds
to the upper branch, (b) to the lower branch. The error bars
are the standard deviations estimated using the fit residuals.
The grey shaded areas indicate the low signal to noise ratio
regions, at the cloud center (left) and in the wings (right).
The two vertical lines are estimates of the boundary between
the superfluid and normal phases in a trapped quasi-2D Bose
gas, based on the local density approximation [32] (solid red),
and on the local collision time (dashed magenta), see text for
details.

both the superfluid and normal regions. Second, finite
size effects for a trapped cloud, away from the thermody-
namic limit, modify the position of the expected bound-
ary anyway. Indeed, a Quantum Monte Carlo simulation
of a quasi two-dimensional trapped Bose gas with our
parameters[37] has shown that the normal to superfluid
crossover is broadened by about 2µm in the sample, re-
sulting in a non zero superfluid fraction beyond the crit-
ical radius predicted by the LDA. We are thus confident
that we observe the superfluid to classical transition sig-
nature in the dynamical response of the gas.

We now come to the interpretation of the local relax-
ation time τ(ra) deduced from the local analysis. We
find that its value is in good agreement with the inverse
of the local collision rate Γc(ra) ≃ n2D(ra)g̃

2h̄/m eval-
uated in the confinement dominated three-dimensional
regime [38], where n2D(ra) is the measured average 2D
density on the annulus. This supports the use of equa-
tion (1) to describe the local dynamics. We point out
that our analysis could give access to a local relaxation
time of the excitation, a key ingredient in finite temper-

ature two-fluids models [39, 40].
Conversely we use the measured τ(ra) to estimate

the local collision rate and hence the local phase space
density, knowing the sample temperature. The verti-
cal dashed magenta line in figure 4 indicates the radius
at which this estimated local phase space density be-
comes higher than the BKT critical phase space density
Dc = 11.2 computed for this quasi-2D gas [32]. The
analysis of the dynamics thus confirms the location of
the boundary between the superfluid and normal phases.
We now turn to a quantitative analysis of the damping

rates Γsc of the local correlations. We will only consider
the upper frequency branch, sketched on figure 5(a), as
the lower frequency is highly damped in our experiments.
In order to get a reliable estimate of the frequency and
damping rates of the scissors oscillation for both the cen-
tral and outer regions, we exclude the crossover area and
compute the 〈xy〉 averages over a disc for the central part
and over a large annulus for the outer part, as illustrated
on figure 5(c). Figure 5(b) compares the measured re-
duced damping rate of the scissors oscillations Γsc/ωsc to
the reduced Landau damping ΓL/ωsc [41, 42]:

ΓL

ωsc

=
3π

8

kBTa

h̄c
, (2)

where c =
√

2µ/(3m) is the sound velocity for a pancake-
shaped Bose gas [43]. For our coldest samples the mea-
sured damping rate for the superfluid phase is close to
the damping predicted by equation (2). However for the
datasets with a large thermal fraction, the damping in
the superfluid phase deviates from the predicted Landau
damping and is of the same order of magnitude than the
damping in the normal phase, suggesting that this addi-
tional damping originates from collisional coupling to the
normal gas [39]. The reduced damping rate in the normal
phase is approximately constant for all our datasets. We
note that in our 2D geometry the abnormal damping can-
not be explained by a resonant Beliaev coupling to other
modes as observed in three-dimensional experiments [44].
In conclusion we have studied the dynamics of a quasi-

2D Bose gas near the BKT transition. We have shown
the coexistence of a superfluid fraction and a thermal
part by a direct, in situ, local analysis of its dynamical
behavior. We use the frequency of the scissors mode as
a local probe of superfluidity. Whereas a global analy-
sis of the data fails to reveal the coexistence of the su-
perfluid and normal oscillations, we demonstrate a new
local correlation analysis, reminiscent of the local den-
sity approximation, which allows to locate the normal
to superfluid transition, using a purely dynamical crite-
rion. The position of the boundary is in good agreement
with the crossover expected from the equilibrium prop-
erties of the gas. In principle it should be possible with
this local probe to observe the superfluid density jump
at the BKT transition [24, 45]. This motivates future
numerical studies of finite temperature dynamics to es-
tablish quantitatively the relation between local scissors
frequency and local superfluid fraction.



5

55 60 65 70 75 80 85
0

50

100
Γ  s

c [s
−

1 ]

ω
 sc

/(2π) [Hz]

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

Γ  s
c/ω

 s
c

Γ
L
/ω

 sc

(a)

(b)

(c)

x

y

FIG. 5. (color online) (a) Measured damping rate and fre-
quencies for the central superfluid phase (open blue circles)
and for the normal phase (filled red squares), for all the
datasets. The black solid curve is the prediction of equa-
tion (1). The error bars are the standard deviations esti-
mated using the fit residuals. (b) Measured damping rate,
in units of the scissors oscillation frequency, for the central
superfluid phase (open blue circles) and for the normal phase
(filled red squares), as a function of the reduced damping Lan-
dau rate of equation (2), estimated for each dataset from the
values of µ and T . The black solid line is a guide to the eye
(with slope 1). The error bars are the standard deviations
estimated using the fit residuals. (c) Contributions from the
superfluid (central blue shaded area) and the normal phase
(outer red shaded area) to the computation of 〈xy〉 are iso-
lated. The thin excluded area (white annulus) corresponds to
the crossover evidenced using the method of figure 4, for each
of the datasets.

Local correlation analysis could also be applied to nu-
merical simulations. In particular, the local measurement
of relaxation times would be useful to compare exper-
iments to numerical calculations at finite temperature.
We expect this new kind of local diagnosis to shed new
light on the study of out-of-equilibrium systems.
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SUPPLEMENTARY MATERIAL

A. Image processing

The determination of the equilibrium properties of the
cloud follows the approach described in reference [46].
Prior to the excitation we take an in situ picture of the
atoms at rest in the initial trap using a low intensity
(I ∼ 0.7Isat) imaging pulse, to recover correctly the low
density profile of the thermal wings. We then adjust this
density profile by a self consistently determined Hartree-
Fock mean field model including up to ten excited states
manifolds. From this procedure we deduce the chem-
ical potential µ and temperature T of the cloud [46].
The total atom number and detection efficiency are cal-
ibrated independently using an auxiliary time of flight
imaging system observing the atoms at lower density
from the side [28]. The equilibrium parameters for the
different datasets are summarized in table I. The num-
ber of atoms in the groundstate of the vertical harmonic
oscillator N0z is estimated from the values of the chemi-
cal potential and temperature using an hybrid Thomas-
Fermi plus Hartree-Fock mean field model that allows to
compute the populations in the first ten vertical oscilla-
tor manifolds. Since a majority of the atoms are in the
groundstate the system is in the quasi two-dimensional
regime.
After the excitation, we record the atomic density after

a variable delay time using a saturating imaging pulse
(I ∼ 8Isat) [47]. We are thus able to resolve both the low
density thermal wings of the cloud and the high density
degenerate core. Our home-made imaging system has a
resolution of 4µm and an effective pixel size of 0.95µm

TABLE I. Equilibrium properties of the cold atom ensembles,
prior to the scissors oscillation excitation: chemical potential
µ, temperature T , reduced chemical potential α = µ/(kBT )
and ratio of the number of atoms in the groundstate of the
vertical oscillator N0z to the total number of atoms N . The
data plotted on figure 1(c) and 3 of the main paper come from
datasets 1 and 9. Dataset 7 is also used for figure 3 and 4.

Dataset µ/h (Hz) T (nK) α = µ/(kBT ) N0z/N
1 2165 ± 380 133± 7 0.78± 0.18 0.90
2 2651 ± 190 157± 5 0.81± 0.08 0.88
3 2633 ± 68 167± 4 0.76± 0.04 0.86
4 2936 ± 84 161± 3 0.88± 0.04 0.88
5 2057 ± 63 148± 3 0.67± 0.03 0.86
6 3081 ± 91 200± 4 0.74± 0.04 0.82
7 3169 ± 85 209± 4 0.73± 0.03 0.81
8 3598 ± 140 227± 5 0.76± 0.05 0.80
9 396 ± 86 217± 5 0.09± 0.02 0.42
10 1955 ± 130 254± 5 0.37± 0.03 0.59
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FIG. 6. (color online) Data histogram (white bars) of a single
picture of 121× 121 pixels (see inset). The red solid line is a
Gaussian fit to the background distribution, and the vertical
blue dashed line is the estimated signal threshold.

in object space.
In order to compute the relevant density weighted av-

erage values 〈x〉, 〈y〉, 〈x2〉, 〈y2〉 and 〈xy〉, it is necessary
to remove the imaging noise which does not correspond
to real atomic signal. We proceed as follows. For a square
picture, and a small ellipsoidal cloud, about half the pix-
els do not represent atoms and therefore contain infor-
mation only about the noise. This appears clearly if one
plots the histogram of the picture, as we do in figure 6.
We identify a large contribution due to the background,
with a low value of signal, and a smaller contribution
due to the data, at larger signal values. From a Gaus-
sian fit to the background contribution, we estimate a
signal threshold (2.5σ of the Gaussian) above which we
can neglect the noise. We then cancel the contribution of
all pixels having a value lower than the threshold. Note
that this process also filters a few relevant pixels, but it
greatly improves the signal to noise ratio. We checked
that the results are insensitive to the exact position of
the threshold.
After this noise removal procedure, we compute the

values of 〈x′〉, 〈y′〉, 〈x′2〉, 〈y′2〉 and 〈x′y′〉 for each picture,
where x′ and y′ are the coordinates of the pixels in the
camera frame. By adjusting the two-dimensional center
of mass motion of the cloud we find the trap frequencies,
the trap center, and the orientation of the axes relative to
the camera. Then by combining with appropriate weights
the second order moments we extract the 〈xy〉 values in
the trap frame.

B. Scissors mode classical model

In this section we describe the fitting procedure used
in the main paper to extract the frequencies and relax-
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FIG. 7. (color online) Measured frequencies and damping
rates (for the upper branch) using the local 〈xy〉 probe and
two different fitting methods: open blue circles are obtained
using the model derived from equations (3), filled red squares
are obtained using a sum of two damped cosines model. The
error bars are the standard deviations estimated using the fit
residuals. The black solid line is the upper branch predicted
using equation (1). For the sake of clarity only the data points
corresponding to radii ra = {12, 17, 21, 23, 24, 25, 28, 30, 35}
are displayed.

ation times of the scissors oscillations. We start from the
following set of coupled equations describing the classical
scissors oscillations [11]:

d〈xy〉
dt

= 〈xvy + yvx〉, (3a)

d〈xvy + yvx〉
dt

= −(ω2
x + ω2

y)〈xy〉+ 2〈vxvy〉, (3b)

d〈vxvy〉
dt

= −
ω2
x + ω2

y

2
〈xvy + yvx〉 −

〈vxvy〉
τ

−
ω2
y − ω2

x

2
〈yvx − xvy〉, (3c)

d〈yvx − xvy〉
dt

= (ω2
y − ω2

x)〈xy〉. (3d)

We denote fτ (t) = 〈xy〉(t) the solution of equations (3)
with initial conditions: fτ (0) = 〈xy〉0 (an arbitrary non
zero value), 〈yvx ± xvy〉t=0 = 0 and 〈vxvy〉t=0 = 0.
We use the time-dependent function g(τ, A,B) : t 7→
Afτ (t)+B as a model to fit our experimental data, with
A, B and τ as free real parameters. For small values
of τ this model is close to a damped cosine, with fre-

quency ω ≃ ωhd =
√

ω2
x + ω2

y, while for large values of

τ this model is close to a sum of two damped cosines
with frequencies close to ω± = |ωx ± ωy|. In both cases
the damping depends on the exact value of τ . Once we
have determined the value of τ from the fit, we solve
equation (1) of the main paper to find the corresponding
frequency and damping rate.



7

Figure 7 displays the damping rates and frequencies
found for different radii ra for the same dataset as in fig-
ure 4, using two fitting methods: the one described above
and a simple sum of two damped cosines. Both models
give results close to the prediction of equation (1) (con-
sidering the error bars). As mentioned before the former
model has been derived from the predictions of equa-
tion (1) and therefore the points must fall near the theo-

retical curve. However the latter model do not make any
kind of assumption constraining the relative values of the
damping rate and the frequency and yet agrees with the
same theoretical prediction. Therefore we conclude that
equation (1) quantitatively describes the scissors oscilla-
tions found with our local correlation analysis scheme.
Using our model fit enables to reduce the error bars and
thus to extract the low frequency branch from the noise.
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