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Context




High-order methods for CFD

A few among many high-order methods for CFD
m Cell-centered Godunov-type schemes

— Direct Eulerian ENO/WENO finite difference/volume schemes [Shu, 2003],
— Non-oscillatory central differencing schemes [Nessyahu and Tadmor, 1990]
— Compact schemes [Nagarajan et al., 2003]
— GoHy schemes, Cauchy—Kovalevskaya procedure and high-order directionnal
splitting in a Lagrange-remap setting on Cartesian grids [Duboc et al., 2010],
m Schemes for unstructured meshes

— Discontinuous Galerkin (DG) methods [Cockburn et al., 2000],
— DG spectral element methods [Karniadakis and Sherwin, 2013]

- DG high-order Riemann solver with the ADER schemes
[Titarev and Toro, 2002]

And for structured staggered grids 7

There are no truly high-order accurate finite volume schemes currently available
on staggered Cartesian grids .
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Hydrodynamics on staggered grids

Shock capturing schemes on staggered grids

Lagrangian vNR scheme in internal energy :[Richtmyer, 1948]

[von Neumann and Richtmyer, 1950]

Limits of vNR scheme [Trulio and Trigger, 1961]

274 order Eulerian Lagrange-remap scheme on staggered Cartesian grids:
KRAKEN [DeBar, 1974] and BBC [Sutcliffe, 1974] hydrocodes, implicit

1-iteration fixed point Trulio-Trigger version , explicit version
[Woodward and Colella, 1984]

Works for B-type staggering (nodal) [Youngs, 2007] and improvement for
energy conservation for C-type staggering (MAC) [Herbin et al., 2013]

Beyond 2"? order, there is no truly high-order accurate scheme for the Euler
system on staggered Cartesian grids.

Aim of this work
Building a family of high-order accurate and conservative finite volume schemes

on staggered Cartesian grids [Dakin and Jourdren, 2016].
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1D-Lagrangian schemes on
staggered grids




cea 1D Euler system

Variables

u the material velocity,

x the position,

p the material density, po the initial density,
T = % the specific volume,

e = € + ey, total, internal and kinetic energy,

p the pressure, ¢ the pseudo-viscosity [Richtmyer, 1948,
von Neumann and Richtmyer, 1950, Cook and Cabot, 2005], IT = p + q.

1D Euler system

Op + Oz (pu) =0
9 (pu) + 8, (pu® + p) =0 (1)
9y (pe) + 9y (pue + pu)=0
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~~— 1D Euler system formulated in internal and kinetic energies
Cea y :

1D Euler system

O (pu) + 0y (Pu2 +p) =0 (2)
O (pe) + 0 (pue) + pdyu =0
03 (pekin) + Oz (pueiin) + u0,p=0

Non conservative terms
We are aiming at solving system (1) but with formulation of system (2).

m For sufficiently smooth problem, there is no special treatments for ud,p and
pd,u and both systems are equivalent.

m However, when dealing with shocks, there is no sense in writing ud,p and
POLU.
So we will introduce a procedure so that for shocks, we are solving system (1).
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Lagrangian system

We make the following change of variables:

dx(X,t) = J(X,t)dX + u(X,t)dt

which gives the lagrangian system formulated in total energy or in internal and
kinetic energies,

1D Lagrangian system

Ot (po7) — Oxu =0
9 (pou) +0xp =0
0 (po€) + pOxu =0
Ot (poekin) + udxp=0

8t (poT) — 8Xu =0
Ot (pou) + Oxp =0 rewrites formally
9t (poe) + Oxpu=0

3)

The closure of the system is realized thanks to the equation of state
p=EOS(r¢)
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Finite-Volume notations on staggered mesh (1/3)

Staggered grids

= A primal uniform Cartesian grid {z; 1} with AX =2, 1 —a;_

N

® A dual grid {z;} with z; = 1 (z Tip1+x; %)

—n Titd " n m

P = oz, t")dz ,  ¢F = ¢p(xi,t") ¢ € {po, poT, poe}

—n mi_é+1

¢i+% = ﬁ ‘ ¢( )da: o i+l T ¢( Tiyl 7tn) ¢ € {PO,POU,POBkin}
do; = ¢i+% - ¢i,% and quH% = ¢i+1 — ¢ (4)

For a grid with IV cells, we have to keep in memory at least 6V variables, whereas
for MAC-type it is 3N ([Herbin et al., 2013]).
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Za Scheme on staggered mesh (2/3)

Runge-Kutta Finite-Volume (FV) schemes

m Formulated in internal energy.

m Centred for thermodynamics variables, staggered for the mechanical
variables, no staggering in time.?

m Conservative in mass, momentum and total energy.

aTrulio-Trigger type: staggered in space, unstaggered in time

Usual Runge-Kutta notations:

Q,  —  time step for the m subcycle
am,; — Butcher's table coefficients
0, — Reconstruction coefficients
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Scheme - Runge-Kutta subcycles (3/4)

m—1
N+Qm . ——= At n+ao
POT; = poT; + AX § Appdug ™!
=0
m—1
— N+ ——n _ At n+aog
ot [ " =Pot 1 — Ax am,deH%
=0
m—1 (5)
—ntay, _ —— At 1ty
POE; - POG? T AX am,lﬂéui
=0
m—1
n+omy, _ n n+aoy
T = xH_%—FAt E G, 17y
=0
N+, n+am  ntom,
p; = EOS(Ti ) €5 )

Remark
m EOS is called on reconstructed pointwise values thanks to average values.

m Kinetic energy is not updated during the subcycles.
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Scheme - Runge-Kutta final step (4/4)

s—1
—n+l _ ——=n At n+a
oty = poTi + Ax E Ordu; ™
l 0
—n+l _ —n _ § n+a;g
pouz+% - pOuH— eldHH_%
9—1
—— N, % _ —_—n At n+aoy
POE; = pPo€; — Ax E 0116w, (6)
=0
s—1
Can " =Poern. 1 — 2L E 0,001, 1"
Po kan-Jr%*pO k|ni+% AX l i+%
=0
s—1
n+1 _ n n+a;g
xH% = T + At E 9ui+%
=0
n+1 _ n+1 n+1
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C@a Pointwise and average values

be(i) = chag(mk
k
P = Zqu{)E(in i on primal grid
& ; N
ey = (Po®)e(i) with £(i) = { i+ 1 on dual grid
€O (po)eqr
0e(sy = ) di (¢§(i)+k+§ - ng(z’)—k—%)
E>0
(7

Remark

Coefficients Cy,, Cj, and dj, are independent of the grid as far as the original grid
is Cartesian.
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. Spatial reconstruction of average and pointwise values
cea °° geand p

Table 1 : Coefficients for the finite volume computation of point-wise values from
cell-average ones and vice versa.

Order [[Co  Ci1  Cin  Ciz [[Co  Cix Cin  Cuy

ond 1 0 0 0 1 0 0 0
rd 13 —1 11 1
Aoy 2 OO
4™ and 5 960 130 640 0 960 1440 5760 0
6th and 7th 30251 —7621 159 —5 215641 6361 —281 367
26880 107520 17920 7168 241920 107520 53760 967680
Remark

Although other reconstructions may be used, centered and symmetric ones are
retained here and sufficient for uniform Cartesian grids.
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0 operator coefficient and staggered interpolation

Table 2 :  Coefficients for the & operator and the interpolation of dual grid positions
from primal grid ones.

l Order H do d1 do ds H o 1 T2 r3
2 1 0 0 0 1 0 0 0
rd 9 —1 9 —1
o 20 Q3 0O
4™ and 5 64 384 640 0 128 356 256 0
6th and 7th 1225 —245 49 —5 1225 —245 49 —5
1024 3072 5120 7168 2048 2048 2048 2048
Remark

The non-conservative terms 10¢ on RHS of (5) and (6) are computed by:

Applying the § operator to point-wise values of ¢ using coefficients in Table 2
and last equation of (7).

Multiplying by point-wise value of 1, then reconstructing average values
using the right part of Table 1 and second equation of (7).
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s [ heoretical results
cea

Lemma 1

For all Runge-Kutta sequences, all artificial viscosities, all spatial reconstructions,
the schemes (5-7) formulated in internal energy are conservative in mass,
momentum. It is also conservative in total energy in the sense that E™* = E™ for

E =3 Poci+ ) Potkini+} (8)

Remark

The proof is obvious for mass and momentum and purely algebraic (see next slide)
for total energy using summation over the whole space of kinetic and internal
energy for wall? and periodic boundary conditions.?

2Ghost-cell values are non-trivial in this case
bDefinition of total energy on a cell, function of kinetic and internal energy is non
trivial for high order
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Proof of Lemma 1

Proof.

Ev* — B" = Z (W?7* = W?) = Z (W?Y* - poE + Z ( Oekln - pOekln il )
i

i

At g —=n+ao; —=n+aq;
s P (Mo + wa

_ n+al n+al n—+tao; n+ao;
- Zzzzelckdk/ i+k 1+k+k'+% +ui+k+%ni+k+k’+1
i =1 k K’
_qmnto, ntog _,ntog n+al
HH-k O k-3 ui+k+1 itk— k')
Making the change of index i <— ¢ + k’ in the 1st term and i < ¢ + k/ 4+ 1 in the 2nd term of the
RHS:

S
T,k — n+ao; n+al n+oy n+aog
g Zzzzolckdkl H7.+k kY +k+% +ui+k_k/_%ni+k
i l=1 k K
n+a; n+ta; _ ,ntoy n—+ao; _
I Uik~ 1 ui+k+%ni+k—k/) =0
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Conservation of total energy and proper shock capturing

(1/2)

Lemma 1 gives the conservation of mass, impulsion and total energy as sum of
internal and kinetic energies. But because of the non-conservative terms, the
computation of internal and kinetic energies is not correct for shocks.

Proper shock capturing

It as natural to ask when solving system formulated in total energy to be
conservative in &™ with & defined as

1—n
E" = ZW? 4 Z §p0u2i+%, for all n. (9)
7 7
We will use the fact E™* = E™ and the assumption that for a given n, &™ = E™.

o ——5n+1 . . —
Setting poek;n;:"%l = %p0u21+%' we need to find the formulation of poe;“‘l that
truthfully solve the Euler system formulated in total energy.
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Conservation of total energy and proper shock capturing

(2/2)

Proper shock capturing

éan+1 _Ln — éan+1 _ Emo*

1 n+1 1
_ ol —nx 3 P
= Z (POEi — POE; ) + <§P0u i+l T 5POf3kmi+%)

%

2 T —MN,*
Setting AKH% = PoCiin; 1 — 2pou %, it yields
éan-!—l _&n — gn+1 _ g
> (roer ! —poe™) = AR,
1
> ottt — (poe” + AK;)
[

which naturally yields the definition of poe"H as o€y ntl — =poe;" + AK;. This
way, we really solve the lagrangian system formulated in total energy by correcting
the internal energy terms. This correction is local.
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Point-wise kinetic energies synchronization

A high-order accurate synchronization is introduced on point-wise kinetic energies
according to (10).For the 2"¢ order, the synchronization is equivalent to the

DeBar fix [DeBar, 1974].

Compute the difference AK
between point-wise
computed kinetic energy
and point-wise
reconstructed kinetic
energy.

Distribute AK on the
average values of kinetic
energy and internal energy
on the stencil.

Lemma 2

2
(o} )
_ Tk 1 < it3
AKH% = Poekmi_;% T2 o

n+1__ — N, % ~
PoCkin 1 = P0Ckin; | 1 — E CrAK; py1
k
—n+1l _——n,* ~
POE; =po€;  + E QkJr%AKi«Hch%'

(10)

The kinetic energy synchronization procedure is conservative in total energy.
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~>> From average centered to staggered point-wise
cea : e

bei) = Z Qrot 1 Pe(i)+k+3
k

— ~ with £(i) = { 4 on primal grid
Pe(i) = ZQH%%@HH% i
k

'+% on dual grid (11)

Table 3 :  Coefficients for the computation of staggered point-wise values from average
values and vice versa.
Order Qir Qs Qus  Qur ||Qir Qus  Qus  Qur
2" 2 0 0 0 1 0 0 0
v 7 =1 3 =1
th 3 th E 122 01 O %1 2%1 011 0
4™ and 5 60 15 60 0 720 450 1440 0
67" and 7" 533 —139 29 =T 68323 —353 1879 —T91
840 840 840 280 120960 4480 120960 120960

CEA/DAM/DIF | February 9, 2016 | PAGE 19/49



w1 he  Cook-Cabot  breaking  wave test  problem
C2A [Cook and Cabot, 2003] (1/2)

Breaking wave

The Cook-Cabot breaking wave test problem is an initially C*° test case that will
transform into a shock. Initial conditions are described in (12) with pg = 1073,
po =106, v = % and a = 0.1. Boundary conditions are periodic and the fluid is
supposed to be a perfect gas.

p = po(l + asin(2rz))

_ p

b= Doy,
B o 6oy for —0.5<z<0.5 (12)
- S0

U = ~—1 (CO - C)

" For this set of initial conditions, two of the three caracteristics are initially
constant, with the third satisfying a Burgers-like equations”

([Cook and Cabot, 2003]). The exact solution until ¢ < Tispeck is the initial profile
advected with velocity u — c.
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The  Cook-Cabot

breaking

[Cook and Cabot, 2003] (2/2)
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Figure 1 : Pressure and density profiles for the Cook-Cabot breaking wave test-case at

t=0,t < Tshock, t > T'shock
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The modified Cook-Cabot breaking wave test problem (1/2)

This time, we are not using a perfect gas, but a gas whose EQOS is not convex.
The initial conditions satisfies (13).

Modified breaking wave

p = po(l(;r f;/SZin(Qm)ﬁ) @ = 0.7
J— - 2
c(p) = Vp 2+Blp | B1 = 00375 1/2=F)
)= [P with § = 24 (13)
c PO — 1.4
= [, po = 109

Once again, the exact solution until t < Tspeck is the initial profile advected with
velocity u — c.
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The  Cook-Cabot  breaking wave test problem
[Cook and Cabot, 2003] (2/2)

1003 T T T T T 24 — .
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Figure 2 :  Pressure and density profiles for the modified Breakingwave test-case at
t=0,t < Tshock, t > T'shock
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Advantage of the staggered

centered schemes 7 cells / A

schemes over Godunov cell-

1.0005

" Referente
YHORK:

1001 |

1.0008

Reference
YHORK-

0.9995

0.9995

Figure 4 :  Acoustic wave with harmonic source - Difference between the GoHy schemes
[Duboc et al., 2010] (cell-centered), the GAD scheme [Heuzé et al., 2009] (2" order
cell-centered), the BBC scheme (2"d order staggered) and the new staggered schemes
for order 2 and 3
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Advantage of the staggered schemes over Godunov cell-

centered schemes 7 cells / A
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Figure 5 :  Acoustic wave with harmonic source - Difference between the GoHy schemes
[Duboc et al., 2010] (cell-centered), the GAD scheme [Heuzé et al., 2009] (2" order
cell-centered), the BBC scheme (2"d order staggered) and the new staggered schemes
for order 4 and 6
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1D-Lagrange-Remap Eulerian
schemes




C@_a Deformed primal and dual grids

To get back to the original primal and dual grid, we need to perform a projection
from the deformed grids to the original grids. From (5) and (6), the primal
deformed grid is known.

Deformed dual grid

After the Lagrange step, the dual deformed grid {2}"*'} is computed by

high-order interpolation of the primal deformed grid {mf:j}
2

T = Zrk (xi+k+% + xi—k—%) (14)

k>0

with 7y, coefficients in Table 2.
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Projection

Projection of p, pe on the primal grid and of p, pu, peyin on the dual one !

Xo.,
—n+1 1 OJ+% 41
pPY; = / po(x, t"" " )dx
J A.’L' XOj,l
2
1 i1 i+l Xo;,1
= — / podr + / popdx + / ppdx
A‘II’. Xo,_l T, 1 ., 1
i—3 i—3g ity

Which is equivalent to the flux-form:
—ntl  —ntl Tjrs — Xojyl X Tji—g — Xoj-31 *
po; = pod; — [W(p@jﬂ - JZ’AIM(PQ’))]’_;}

(pq&);Jrlare computed by Lagrange interpolation or Gauss quadrature of the
2

desired order.

LProjection of peyin is unusual for staggered ones but is the key for proper conservation of
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Properties of the projection

Kinetic synchronization procedure

After each remap, the Kinetic synchronization procedure is applied to correct the
internal energy.

Lemma 3

The projection with kinetic synchronization procedure is conservative in mass,
momentum and total energy.

Proof.

The projection by itself is conservative in all quantities remap. So mass and
momentum are obviously conserved.

As the projection is conservative in internal and kinetic energies, it is conservative
for total energy. Besides, kinetic synchronization procedure is also conservative.
So the resulting projection is conservative in mass, momentum and total

energy. L]
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Kinetic synchronization for the Sod shock tube[Sod, 19

Sod-Eract u 26 —— Sty b
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f 000000
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16 . . . . . . . . . 27 . . . . . . . .
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Figure 6 : Respect of Rankine-Hugoniot jump relations (internal energy profile with 400
cells)
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cea
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with kinetic synchronization

Figure 7 : L'-error in both space and time on acoustics (left) and the Cook-Cabot
breaking wave test problem (right)
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Con Shu-Osher test case [Shu and Osher, 1989] (1/3)

Figure 8 : Difference between staggered scheme and cell-centered GoHy scheme
[Duboc et al., 2010] on Shu-Osher test case (nbCell = 400, CFL=0.2, Ordre 2 3 5,
Cg =C, =3.0).
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Shu-Osher test case [Shu and Osher, 1989] (2/3)

55
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w
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O ——————
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1 2 25

Figure 9 : Difference between staggered scheme (order 2, 3, 4 et 5) and an direct
eulerian code [Martin et al., 2006] WENO5-RK3 on Shu-Osher test case (nbCell = 200,
CFL=0.2, Order2 a5, Cg = C, = 3.0).
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Shu-Osher test-case [Shu and Osher, 1989] (3/3)

55 T T T
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Figure 10 : Difference between staggered scheme (order 5, 6, 7 et 8) and an direct
eulerian code [Martin et al., 2006] WENO5-RK3 on Shu-Osher test case (nbCell = 200,
CFL=0.2, Order2 a5, Cg = C, = 3.0).
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nD Cartesian grids extension via
high-order accurate directionnal
splitting




nD system and positioning of variables

The 1D schemes (5-10) are now to be used with a dimensional splitting method
(DSM) on the nD system

Euler system

8,5P+V(ﬁ) o 2 0t o pIn
{at<p<1>>+v<<f>® +f—o, Wt q"(e) and f‘(m?)‘

Arakawa C-type staggering

For the sake of simplicity, we only detail the 2D case. A C-type staggering is
retained: variables are indexed ¢; ; for ¢ € {po, poT, po€},

¢i+%,j for (b S {pOapOuapOekin,u} and ¢i,j+% for ()b € {p07p007p06kin,v}-

For a grid with N2N cells, we have to keep in memory 9N? variables, whereas for
MAC-type it is only 4N?2 ([Herbin et al., 2013]).
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Details for one sweep along x-direction
cea p along

As previous 1D schemes are based on a 1D finite volume formulation, it is
mandatory to add a transverse interpolation to deduce 1D-cell-average values
from 2D-cell-average ones. The procedure originates from [Duboc et al., 2010]
extended here to staggered grids.

Sweep along z-direction

Interpolate along the y-direction to get 1D-cell-average values of the
conservative variables according to (7). This way, we only get 1D-cell-average
values along the x-direction.

Apply the 1D Lagrange scheme with extra equations for v contributions to
momentum and kinetic energy (9;pov = O:poexiny = 0). Remap fluxes must
be performed on three different grids.

Reconstruct the 2D fluxes from the 1D Lagrange and remap fluxes according
to (7).

Apply the reconstructed 2D fluxes on 2D-cell-average values.
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Theoretical results and comments
cea

Lemma 4

The resulting 2D Cartesian grid schemes are conservative in mass, momentum and
total energy.

Proof.

With the C-type staggering of variables, the 2D schemes satisfy Lemmas 1, 2 and
3 direction by direction and so are globally conservative in mass, momentum and
total energy for all dimensional splitting. O

Remarks

The high-order DSM have negative time steps which are easily handled as we
focus during the remap on the displacement of the Lagrangian grid.
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2D isentropic Yee Vortex test case

No artificial viscosities/hyperviscosities nor limiters are used in the Lagrange and
remap steps. The point-wise kinetic energy synchronization procedure is applied
on all cases.
The 2D vortex advection test case is used to assess the accuracy of the schemes.
The initial condition is given by (11). Computations are performed on a
[—10 : 10]? domain till t=1 with CFL = 0.9, v = 1.4 and 3 = 5. The Ll-errors in
both space and time are computed as

——exact

errp =Y, At Ax- Ay S, ey — p@ s (87| with @ = (1,4, ).

Initial conditions for the Yee Vortex

1

2 —

po=(1- BZHF 1) 7
1—r2

o=T+ fe = - (—y,2)!
Po= Pg

(16)
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Figure 11 : Experimental order of convergence (EOC) on the 2D advected vortex test
case from 2nd to 9th-order and L'-error in both space and time with respect to the
number of cells per direction.
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Sedov test-case
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Figure 12 : Sedov blastwave at T' = 1.0 for the 3"% method with 150 cells in each
direction
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cea Acoustic propagation in a perfect gas (1/2)
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Figure 13 : Difference between 2nd order cell-centred scheme on 2000x2000 cells and
4th order staggered scheme on 200x200 cells
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Acoustic propagation in a perfect gas (2/2)
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Figure 14 : Diagonal restitution of the acoustic waves for both staggered and
cell-centred 2nd and 4th order schemes
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ced Acoustic propagation with a sound speed gradient (1/2)
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C@@ Acoustic propagation with a sound speed gradient (2/2)
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cea Vortex-Pairing test-case [Tsoutsanis et al., 2015] (1/4)

Figure 17 :  Vortex-Pairing at t = 0.37T for the 3" and 7" method with 100 cells in
each direction
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cea Vortex-Pairing test-case [Tsoutsanis et al., 2015] (2/4)

Figure 18 : Vortex-Pairing at t = 0.57 for the 3" and 7*" method with 100 cells in
each direction
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C@Zl Vortex-Pairing test-case [Tsoutsanis et al., 2015] (3/4)

Figure 19 : Vortex-Pairing at t = 0.87T for the 3" and 7" method with 100 cells in
each direction
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Cea Vortex-Pairing test-case [Tsoutsanis et al., 2015] (4/4)

AL/

Figure 20 : Vortex-Pairing at ¢t = 17T for the 3" and 7*" method with 100 cells in each
direction
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Conclusions




Main results
New high-order accurate numerical schemes:

Formulated in internal and kinetic energies,
Conservative in mass, momentum and total energy,

Up to 9" order accuracy in 1D due to R—K sequences available
[Verner, 2013], and 8" order accuracy in nD due to DSM used
[Yoshida, 1990],

C-type staggering of variables which enables better resolution for
aeroacoustic waves.

Perspectives
» Consistency in the sense of Lax to be proven.
& Discrete entropy results.
= Multi-physics extensions (elastic-plastic models, LES/ILES ...)
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