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Abstract
We consider a class of staggered grid schemes for solving the 1D Euler equations in internal energy formulation. The proposed schemes are applicable to arbitrary equations of state and high-order accurate in both space and time on smooth flows. Adding a discretization of the kinetic energy
equation, a high-order kinetic energy synchronization procedure is introduced, preserving globally total energy and enabling proper shock capturing. Extension to 2D Cartesian grids is done via C-type staggering and high-order dimensional splitting. Numerical results are provided up to 8th
order accuracy. Stability and reconstruction procedure for boundary conditions is then discussed.

Introduction
In the late 1940s, the first shock capturing hydrodynamic scheme by von Neumann and Richtmyer [9] was a staggered 1D Lagrange explicit
scheme, formulated in internal energy with artificial viscosity and 2nd order accuracy in space and time on smooth flows.
In 1961, a key contribution to 1D Lagrange schemes was provided by Trulio and Trigger [7] who identified the lack of conservation of total
energy with the original scheme and proposed an implicit conservative version, retaining spatial staggering, without temporal staggering.
In the early 1970s, pioneered by DeBar, several multifluid Eulerian hydrocodes with interface reconstruction on 2D Cartesian grids [2, 6]
relied on the Trulio-Trigger implicit Lagrangian scheme, making use of a Lagrange-remap approach with dimensional splitting. Later, a
strictly explicit conservative version of the Trulio-Trigger scheme was reported in [10] on 2D Cartesian grids, in a 1D Lagrange-remap
setting with Strang dimensional splitting. Recent works on staggered schemes as in [4] proposed a way of controlling kinetic energy for
accurate shock capturing.
In [1], we proposed an extension path of such schemes to high-order accuracy with a finite volume approach, combining high-order
Runge-Kutta time integration in the Lagrange phase, high-order 1D spatial reconstructions and remap. We give in the following the
mainline of such a path, and propose a short sight of stability and reconstruction of boundary conditions.

1D staggered Lagrange-Remap scheme
First, let us consider the 1D hydrodynamics system (1) closed with an arbitrary EOS such that p = EOS(τ, ε) where ρ = 1/τ , u, p, e, ε,
ekin = u2/2 denote respectively the mass density, the velocity, the pressure and the total, internal and kinetic energies. Let us denote ρ0 the
initial mass density. Introducing the change of variable (x , t)→ (X , t) satisfying ρdx = ρ0dX and using e = ε + ekin, (1) rewrites (2) in
Lagrangian coordinates:

∂tρ + ∂x (ρu) =0
∂t (ρu) + ∂x

(
ρu2 + p

)
=0

∂t (ρe) + ∂x (ρue + pu)=0
, (1)


∂t (ρ0τ )− ∂Xu =0
∂t (ρ0u) + ∂Xp =0
∂t (ρ0ε) + p∂Xu =0
∂t (ρ0ekin) + u∂Xp=0

. (2)

The principle of the Lagrange-remap approach selected here is to integrate in time the Lagrangian system (2) followed by a conservative
remap of the variables on the initial grid. We consider a primal uniform Cartesian grid {xi+1

2
} with ∆X = xi+1

2
− xi−1

2
and a dual grid {xi}

with xi = 1
2(xi+1

2
+ xi−1

2
). In the following, φ and φ will respectively denote the space averaged value of φ and its point-wise value.

Lagrange step
We consider Nth order explicit schemes with the following notations for Runge-Kutta sequences: αm is the time step for the mth sub-cycle,
am,l the m, l term of the Butcher table and θl the lth reconstruction coefficient for the last step. The artificial viscosity possibly applied for
strong shocks is denoted q with Π = p + q.



ρ0τ
n+αm
i = ρ0τ

n
i + ∆t

∆X

m−1∑
l=0

am,ldu
n+αl
i

ρ0un+αm
i+1

2
=ρ0un

i+1
2
− ∆t

∆X

m−1∑
l=0

am,ldΠn+αl
i+1

2

ρ0ε
n+αm
i = ρ0ε

n
i − ∆t

∆X

m−1∑
l=0

am,lΠδu
n+αl
i

xn+αm
i+1

2
= xn

i+1
2

+ ∆t
m−1∑
l=0

am,lu
n+αl
i+1

2

pn+αm
i = EOS(τ n+αm

i , εn+αm
i )

, (3)



ρ0τ
n+1
i = ρ0τ

n
i + ∆t

∆X

s−1∑
l=0

θldu
n+αl
i

ρ0un+1
i+1

2
= ρ0un

i+1
2
− ∆t

∆X

s−1∑
l=0

θldΠn+αl
i+1

2

ρ0ε
n+1
i = ρ0ε

n
i − ∆t

∆X

s−1∑
l=0

θlΠδu
n+αl
i

ρ0ekin
n+1
i+1

2
=ρ0ekin

n
i+1

2
− ∆t

∆X

s−1∑
l=0

θluδΠ
n+αl
i+1

2

xn+1
i+1

2
= xn

i+1
2

+ ∆t
s−1∑
l=0

θlu
n+αl
i+1

2

pn+1
i = EOS(τ n+1

i , εn+1
i )

, (4)

where dφ is the difference between consecutive point-wise values: dφi = φi+1
2
− φi−1

2
and dφi+1

2
= φi+1 − φi .

To achieve high-order resolution, it is mandatory to compute the point-wise (resp. average) values from the average (resp. point-wise) ones
with high-order accuracy. Although other reconstructions may be used, centered and symmetric ones are sufficient for uniform Cartesian
grids. 

φξ(i) =
∑

k

Ckφξ(i)+k

φξ(i) =
∑

k

Ĉkφξ(i)+k

δφξ(i) =
∑
k≥0

dk

(
φξ(i)+k+1

2
− φξ(i)−k−1

2

) ,


φξ(i) =

∑
k

Qk+1
2
φξ(i)+k+1

2

φξ(i) =
∑

k

Q̂k+1
2
φξ(i)+k+1

2

, with ξ(i) =

{
i on primal grid

i + 1
2 on dual grid . (5)

Lemma

For all Runge-Kutta sequences, all artificial viscosities, all spatial reconstructions, the schemes (3-5) formulated in internal energy are
conservative in mass, momentum and total energy.

Proof.
Conservation of mass and momentum is immediate, we only prove the conservation of total energy.

∆E =
∑

i

(
ρ0etot

n+1
i − ρ0etot

n
i
)

=
∑

i

(
ρ0ε

n+1
i − ρ0ε

n
i
)

+
∑

i

(
ρ0ekin

n+1
i+1

2
− ρ0ekin

n
i+1

2

)
= − ∆t

∆X

∑
i

s∑
l=1

θl

(
Πδu

n+αl
i + uδΠ

n+αl
i+1

2

)
= − ∆t

∆X

∑
i

s∑
l=1

∑
k

∑
k ′
θl Ĉkdk ′(Πn+αl

i+k un+αl
i+k+k ′+1

2
+ un+αl

i+k+1
2
Πn+αl

i+k+k ′+1 − Πn+αl
i+k un+αl

i+k−k ′−1
2
− un+αl

i+k+1
2
Πn+αl

i+k−k ′).

Making the change of index i ← i + k ′ in the first term and i ← i + k ′ + 1 in the second term of the RHS we get the result for wall (with
non-trivial definitions of ghost-cell values) or periodic boundary conditions.

∆E = − ∆t
∆X

∑
i

s∑
l=1

∑
k ,k ′

θl Ĉkdk ′(Πn+αl
i+k−k ′u

n+αl
i+k+1

2
+ un+αl

i+k−k ′−1
2
Πn+αl

i+k − Πn+αl
i+k un+αl

i+k−k ′−1
2
− un+αl

i+k+1
2
Πn+αl

i+k−k ′) = 0.

Remap step
After the Lagrange step, the dual deformed grid {xn+1

i } is computed by high-order interpolation of the primal deformed grid {xn+1
i+1

2
} as

xi =
∑

k≥0 rk
(
xi+k+1

2
+ xi−k−1

2

)
. All variables (ρφ) for φ ∈ {1, ε} are remapped on the primal grid {xi+1

2
} and for φ ∈ {1, u, ekin} on the

dual grid {xi} according to :

ρφ
n+1
i =

1
∆X

∫ xi+1
2

xi−1
2

ρφ(x , tn+1)dx =
1

∆X

∫ xn+1
i−1

2

xi−1
2

ρφdx +

∫ xn+1
i+1

2

xn+1
i−1

2

ρφdx +

∫ xi+1
2

xn+1
i+1

2

ρφdx

 ,
written in conservative flux-form:

ρφ
n+1
i = ρ0φ

n+1
i −

xn+1
i+1

2
− xi+1

2

∆X
(ρφ)∗i+1

2
−

xn+1
i−1

2
− xi−1

2

∆X
(ρφ)∗i−1

2

 . (6)

To compute (ρφ)∗i+1
2
, we use the high-order Lagrange polynomial Pφ

up interpolating point-wise values of Hφ
up(X ) =

∫ X
−xn+1

up−N
2 +1

2

(ρ0φ)(y)dy on

the deformed grid, with a stencil of length (N + 1) leading to:

(ρφ)∗i+1
2

=
1

xn+1
i+1

2
− xi+1

2

(Pφ
up(xn+1

i+1
2

)− Pφ
up(xi+1

2
)),where up =

{
i if xn+1

i+1
2
> xi+1

2

i + 1 otherwise
. (7)

Point-wise kinetic energy synchronization step
A high-order accurate synchronization is introduced on point-wise kinetic energies according to (8).

1 Compute the difference ∆K between point-wise
remapped kinetic energy and point-wise
reconstructed kinetic energy.

2 Distribute ∆K on the average values of kinetic
energy and internal energy on the stencil.



∆Ki+1
2

= ρekin
n+1
i+1

2
− 1

2

(
(ρu)n+1

i+1
2

)2

ρn+1
i+1

2

ρekin
n+1
i+1

2
← ρekin

n+1
i+1

2
−
∑

k

Ĉk∆Ki+k+1
2

ρεn+1
i ← ρεn+1

i +
∑

k

Q̂k+1
2
∆Ki+k+1

2
.

(8)

Lemma

The kinetic energy synchronization procedure is conservative in total energy.

Proof.
For wall (still with non trivial definitions of ghost-cell values) or periodic boundary conditions, we have:

∆E =
∑

i

(∑
k ′

Q̂k ′+1
2
∆Ki+k ′+1

2
−
∑

k

Ĉk∆Ki+k+1
2

)
= 0.

2D Extension
The 1D schemes (3-8) are now to be used with a dimensional splitting method (DSM) on the 2D system{

∂tρ +∇.(ρ~u) = 0,
∂t(ρ~Φ) +∇.(ρ~Φ⊗ ~u + ~f ) = 0,

with ~Φ =

(
~u
e

)
and ~f =

(
pIn
p~ut

)
. (9)

A C-type staggering is retained: variables are indexed φi ,j for φ ∈ {ρ0, ρ0τ, ρ0ε}, φi+1
2 ,j

for φ ∈ {ρ0, ρ0u, ρ0ekin,u} and
φi ,j+1

2
for φ ∈ {ρ0, ρ0v , ρ0ekin,v}.

As previous 1D schemes are based on a 1D finite volume formulation, it is mandatory to add a transverse interpolation to deduce
1D-cell-average values from 2D-cell-average ones. The procedure originates from [3] extended here to staggered grids. A sweep along the
x-direction proceeds as follows:

1 Interpolate along the y -direction to get 1D-cell-average values of the conservative variables according to (5). This way, we only get
1D-cell-average values along the x-direction.

2 Apply the 1D Lagrange scheme with extra equations for v contributions to momentum and kinetic energy (∂tρ0v = ∂tρ0ekin,v = 0).
Remap must be performed on three different grids.

3 Reconstruct the 2D fluxes from the 1D Lagrange and remap fluxes according to (5).
4 Apply the reconstructed 2D fluxes on 2D-cell-average values.

Lemma
The resulting 2D Cartesian grid schemes are conservative in mass, momentum and total energy.

Proof.
With the C-type staggering of variables, the 2D schemes verify Lemmas 1 and 2 direction by direction and so are globally conservative in
mass, momentum and total energy for all dimensional splitting.

Numerical Results
No artificial viscosities/hyperviscosities nor limiters are used in the Lagrange and remap steps. The point-wise kinetic energy
synchronization procedure is applied on all cases.
The Shu-Osher test case [5] is initialized as (10) on a [−5 : 5] domain with a Mach 3 shock wave interacting with a sinusoidal density field.
Computations till t=1.8 with CFL = 0.2 are reported in Figure 1(a) and highlight the robustness and high resolution of the 6th and 9th
order schemes with only 200 cells.
The 2D vortex advection test case is used to assess the accuracy of the schemes under IEEE-754 norm for double precision. The initial
condition is given by (11). Computations are performed on a [−10 : 10]2 domain till t=1 with CFL = 0.9, γ = 1.4 and β = 5. The
L1-errors in both space and time are computed as errL1 =

∑
n ∆tn ·∆x ·∆y

∑
i ,j ||ρΦ

n
i ,j − ρΦ

exact
i ,j (tn)||L1 with Φ = (1,~u, ε)t and reported on

Figure 1(b) with excellent agreement to expected orders.
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Figure : (a) Shu-Osher test case on 200 cells for the 6th and 9th order schemes. (b) Experimental order of convergence (EOC) on the 2D advected vortex test case
from 2nd to 9th-order and L1-error in both space and time with respect to the number of cells per direction.

(ρ0, u0, p0) =

{
(27

7 ,
4
√

35
9 , 31

3 ) if x ∈ [−5 : −4[

(1 + sin(5x)
5 , 0, 1) if x ∈ [−4 : 5]

(10)


ρ0=

(
1− (γ−1)β2

8γπ2 e1−r 2
) 1

γ−1

~u0=~1 + β
2πe

1−r2
2 · (−y , x)t

p0= ργ0

(11)

Local stability of boundary conditions
In this part, we attempt to determine a form of local stability criterion for problem with non-periodic boundary conditions.
Let U = (uj)j∈Z, U+ = (uj)j≥1, U− = (uj)j≤0.

1 LetM : RZ −→ RZ be the band-matrix of the interior scheme such that U =MU and suppose M to be unitary stable:

‖MU‖l2 ≤ ‖U‖l2 (12)

2 Let R : RN −→ RN define a reconstruction procedure such that :

U− = RU+,R =

(
R 0
0 0

)
(13)

GivenM, we forge R, in a similar fashion as in [8] using Inverse-Law Wendroff boundary treatment, such that the order of convergence nor
the stability will be altered by the boundary conditions and the reconstruction procedure. We consider the following equation to be solved

∂tρ + ∂xρ = 0 (14)

We consider a C∞ test-case with entering mass boundary condition at the point xs which is not mandatorily a point of the mesh. The
initial data is set to zero and the boundary condition is set as described in (15)

ρ(xs, t) = − e
0.1
t sin(4πt) (15)
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Figure : Computation performed until T = 1.5 and L1-error/EOC function of the number of cells for some reconstructions R with non trivial boundary conditions
with a third-order projection scheme

A standard procedure is developped which is stable without any CFL restriction, consistent to the desired order for all boundary conditions
and for all point xs.
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