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FRIABLE VALUES OF BINARY FORMS

ANTAL BALOG, VALENTIN BLOMER, CÉCILE DARTYGE, AND GÉRALD TENENBAUM

Abstract. Let F ∈ Z[X, Y ] be an integral binary form of degree g � 2, and let

ΨF (x, y) := card{1 � a, b � x : P+(F (a, b)) � y}
where as usual P+(n) denotes the largest prime factor of n. It is proved that ΨF (x, y) � x2 for

y = xg−2+ε in general, and y = x1/
√

e+ε if g = 3. Better results are obtained if F is reducible.

To the memory of our friend and colleague George Greaves

1. Introduction

For an integer n let as usual P+(n) and P−(n) denote respectively the largest and smallest prime
factor of |n| with the conventions P+(±1) = 1, P−(1) = ∞, P+(0) = 0.1 Given a real number y > 1,
an integer n is called y-friable (or sometimes y-smooth) if P+(n) � y. Friable numbers have proved
to be very useful in many branches of number theory, both theoretically (e.g. in connection with
Waring’s problem) and practically (e.g. for factoring algorithms). See [Gr] for a recent overview.

When the friability parameter y exceeds a power of x, friable numbers occur with positive density
among integers less than or equal to x. Indeed, for any fixed ε > 0, we have, as x tends to infinity,

Ψ(x, xε) := card{1 � a � x : P+(a) � xε} ∼ �(1/ε)x

where � is the Dickman function. It is, however, very often a hard problem to establish that a
given sequence contains a positive proportion of friable numbers, even if we content ourselves with
a relatively modest friability parameter y.

In this article, we consider integral binary forms F ∈ Z[X,Y ], and define

ΨF (x, y) := card{1 � a, b � x : P+(F (a, b)) � y}.
Without loss of generality we can assume that F is “squarefree”, that is, its irreducible factors are
distinct. We are interested in determining values of y as small as possible such that we can still
guarantee a bound of the type

(1.1) ΨF (x, y) � x2.

If F is a linear form, one can trivially choose y = xε, and this is best possible. If F = X2 + Y 2,
Moree [Mo] (see also [BW, TW1, HTW]) showed that (1.1) holds again with y = xε. Actu-
ally the main result of [TW1] evaluates friable sums of fairly general multiplicative functions and
furnishes corresponding asymptotic formulae in a much larger (x, y)-domain, certainly including
exp((log x)ε) � y � x. It is not hard to see that this result generalizes to arbitrary irreducible
binary quadratic forms, noting that the representation function is a linear combination of multi-
plicative functions attached to certain ring class characters of the underlying quadratic number
field. For higher degree, little has been known so far. We shall prove the following general theorem.

Theorem 1. Let F = F (X,Y ) be a binary form with integer coefficients, degree t � 2 and no
repeated irreducible factor. Let g be the largest degree of an irreducible factor of F and let k (resp.

2000 Mathematics Subject Classification. 11E76, 11N25, 11N36, 11Y05.
Key words and phrases. Friable integers, binary forms, sieves.
1For the purpose of this paper, the value of P+(0) is irrelevant, since for a binary form F there are at most � x

pairs (a, b) ∈ [1, x]2 such that F (a, b) = 0. The above definition is chosen to simplify the presentation.
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�) denote the number of distinct irreducible factors of F having degree g (resp. g − 1). Given any
positive real number ε, the estimate

ΨF (x, y) �F,ε x2

holds for all large x provided y � xαF +ε, where the exponent αF is defined by

αF :=




g − 2/k if k � 2,
g − 1 − 1/(� + 1) if k = 1 and (g, t) �= (2, 3),
2/3 if (g, k, t) = (2, 1, 3).

As is well-known, irreducibility over Q is the same as irreducibility over Z. Thus, distinct factors
of F are understood as distinct up to a scalar. Irreducible binary forms correspond to the case
(k, �) = (1, 0). The theorem provides for these polynomials the exponent αF = g − 2. In the
opposite direction, the theorem provides nontrivial results for simultaneous friable values of an
arbitrary number of, say, binary linear forms. It also reproves the exponent αF = 0 for a reducible
or irreducible quadratic form F .

We obtain a better range for y when F is a cubic form. This is due to the fact that, when
deg(F ) = t � 3, the level of distribution of the sequence {F (a, b)} for 1 � a, b � x, given by
Proposition 2 below, exceeds xt/2.

Theorem 2. Let F ∈ Z[X,Y ] be an integral binary cubic form. Let

αF :=
{

1/
√

e, if F is irreducible;
0, if F is reducible.

Then
ΨF (x, y) �F,ε x2

provided y � xαF +ε.

We have 1/
√

e = 0.606 . . ., so x1/
√

e = (x3)0.202.... As a comparison, Theorem 1 yields αF = 1
if the cubic form F is irreducible and αF = 2/3 or 1/3 if F is reducible (depending on whether F
decomposes into a quadratic and a linear form, or into three linear forms).

It is certainly also an interesting question how small y can be chosen if we drop the requirement
to get a positive proportion of y-friable values. Here we only make the simple observation that
ΨF (x, xε) � x holds for any ε and any F : just consider the values F (a, ca) for xε-friable integers a
and a suitable constant c ∈ Z such that F (a, ca) is not constantly zero.

That friable values of binary forms play a central role in the number field sieve may provide
further motivation for our results. Indeed, suppose we want to factorize a large integer N . Let
f ∈ Z[X] be an integral polynomial of degree d and m such that N = f(m). Let F be the cor-
responding homogenized binary form F (a, b) = bdf(a/b). An important step of the number field
sieve is to find sufficiently many pairs (a, b) such that F (a, b)(a− bm) is friable. Therefore the study
of the function ΨF (x, y) yields information on the complexity of the factoring algorithm and will
influence the choice of various parameters of the algorithm. The interested reader will find a detailed
presentation of the number field sieve in the monograph of Crandall and Pomerance [CP, chapter 6].

The first key ingredient in the proof of both theorems is a result on the distribution of the values
F (a, b) among arithmetic progressions, see section 2. Work of G. Greaves [G2] (see also [Dan]) shows
that — at least for an irreducible form — the level of distribution of the set {F (a, b) : 1 � a, b � x}
is x2−ε. The proof of Theorem 1 then follows along the lines of [DMT], although the details are
somewhat more involved in the present case. For cubic forms, we have a little more elbow room,
and we count solutions to F (a, b) = uvw where the integers u, v, w have restricted sizes and have
their prime factors in certain prescribed intervals. In the reducible case, we need a generalization
of a large sieve type inequality for roots of quadratic congruences due to Fouvry and Iwaniec [FI].
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This may be useful in other situations, too, and we state and prove it in Section 5.

Acknowledgements. The first two authors would like to thank for the invitation and excellent
working conditions at the Université Nancy 1, where this paper was worked out.

2. Preliminaries

2.1. Generalities. Throughout the paper we shall (without loss of generality) always assume that
all binary forms are primitive, that is, the greatest common divisor of their coefficients is 1. Given
a binary form F (X,Y ), a real number x � 1 and a positive integer d, we define

Ad(x;F ) := card{1 � a, b � x : F (a, b) ≡ 0 (mod d)}.
We consider the approximation

(2.1) Ad(x;F ) =
γF (d)

d2
x2 + rd(x),

where
γF (d) := card{0 � u, v < d : F (u, v) ≡ 0 (mod d)}

is a multiplicative function and rd(x) is an error term. When F (X,Y ) is irreducible and not linear,
Greaves [G1, G2]2 proved that the error term is small on average over d: for x � 1, z � 1 and any
ε > 0 we have [G2, 2.4.4]

(2.2)
∑
d�z

|rd(x)| �ε,F (z + x)zε.

A similar form of this relation is proved by S. Daniel [Dan, Lemma 3.3]: if t := deg F , we have

(2.3)
∑
d�z

sup
|∂R|�M

∣∣∣∣∣
∑

(a,b)∈R
F (a,b)≡0 (mod d)

1 − γF (d) volR
d2

∣∣∣∣∣ �ε,F M
√

z{log(2z)}νt + z{log(2z)}3t−1,

where νt := t(1 + 2t)t+1, R is any compact subset of R2, volR designates its volume and |∂R| the
length of its boundary.

Let us temporarily assume that F is irreducible and set

�F (n) := card{1 � a � n : F (a, 1) ≡ 0 (modn)}.
We then have (see [G2, 2.2.2, 2.2.5])

(2.4) γF (p) = (p − 1)�F (p) + 1, γF (p2) = p(p − 1)�F (p2) + p2,

if p does not divide the leading coefficient of F (X, 1); in particular γF (p) �= 0, γF (p2) �= 0 in this
case. For t = 3 and all primes p, the following general bounds hold

(2.5) γF (pν) � p1+[ν/3] (ν � 1).

This follows by combining [Dan, (7.2)–(7.4)] on noting that Daniel’s function �(d) is our function
γF (d). We also recall that γF (p) is p on average: indeed, we have [G2, 2.3.1]

(2.6)
∑
p�ξ

γF (p) log p

p2
= log ξ + O(1) (ξ � 1).

More precisely, it is a classical result going back (at least) to Dedekind (see e.g. [Dan, pp. 126-7] or
[T1, (3.35)]) that

(2.7)
∑
n�1

γF (n)
ns+1

= ζK(s)G (s)

2 Note that these works employ a different normalization for the multiplicative function appearing in the main
term of (2.1).
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where G is an Euler product, absolutely convergent in �s > 1 − 1/t, K := Q(ϑ) for some root ϑ of
F (X, 1) and ζK is the Dedekind zeta function of the field K.

2.2. A summatory function linked to polynomial congruences. In the proof of Theorem 2,
in the case when F cubic and irreducible, we need an asymptotic formula for the sum of γF (n)/n
over integers without small prime factors. (This is needed for the evaluation of the u and w-sums in
(4.6) below.) We formulate the result in a somewhat more general context. Its full strength will not
be needed for our present purposes, but it may be useful for further reference in similar situations.

Let K/Q be now an algebraic number field and ζK be the corresponding Dedekind zeta function.
We let � and ω denote respectively the Dickman function and the Buchstab function, see [T2, p.
366, 399] For ε > 0, we introduce the domain

(Hε) x � 3, exp
{
(log log x)5/3+ε

}
� z � x.

We also define, for z � 2,

Lε(z) := exp
{
(log z)3/5−ε

}
, Zε := exp

{
(log z)3/2−ε

}
.

For x � z � 2, we write systematically u := (log x)/ log z and define

H(u) := exp{u/(1 + log u)2}.
We denote by ζ(s) the Riemann zeta function and introduce the partial Euler product

ζ(s, z) :=
∏
p�z

(
1 − p−s

)−1 (�s > 0).

Proposition 1. Let f be a multiplicative function with associated Dirichlet series F (s) :=
∑

n�1 f(n)n−s

absolutely convergent for �s > 1. Assume that

F (s) = ζK(s)G (s)

where G is given by an Euler product that is absolutely convergent in a suitable half-plane �s � 1−δ
with δ > 0. Then there exists an absolute constant c > 0 such that, for any given ε > 0 and uniformly
in the domain Hε, we have

∑
n�x

P−(n)>z

f(n) =
(
xω(u) − z

) eγ

ζ(1, z)
+ O

(
x�(u)

(log z)2
{
H(u)−c + Z−1

ε

})
.

Proof. Let F (s; z) designate the subseries of F (s) restricted to z-friable integers n. Let �̂
denote the Laplace transform of the Dickman function �, viz.

�̂(u) :=
∫ ∞

0

e−us�(u) du (s ∈ C).

From formula (3.35) of [T1], we see that Lemma 4.1 of [HTW] may be applied to F , providing the
estimate

(2.8) F (s; z) = F (s)(s − 1)(log z)�̂
(
(s − 1) log z

){
1 + O

( 1
Lε(z)

)}

whenever z � 2, �s > 1 − 1/(log z)2/5+ε, |�s| � Lε(z). We obtain the stated result by reproducing
step by step the computations of the proofs of Theorem III.6.7 and Corollary III.6.7.5 of [T2, pp.
408-417], simply replacing the function ζ(s)/ζ(s, z) by F (s)/F (s; z), which satisfies the same as-
ymptotic formula, given by (2.8), in the same range Hε. This is proved, in particular, by appealing
to the fact that ζK(s) has a Vinogradov-type zero-free region analogous to that of ζ(s). We note
that the necessary analogue of formula (III.6.72) of [T2], which follows from a simple form of the
approximate functional equation for ζ(s), is provided by Lemma 4.4 of [HTW].
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2.3. The level of distribution of the sequence {F (a, b)}a,b∈N. In this section we adapt Greaves’
method to obtain a variant of (2.2) related to binary forms that need not be irreducible. We
consider m distinct irreducible binary forms F1, . . . , Fm, and write F = (F1, . . . , Fm). For all
d = (d1, . . . , dm) ∈ Nm and x � 1, we write

F (a, b) ≡ 0 (modd)

to mean that Fj(a, b) ≡ 0 (mod dj) for 1 � j � m, and define

A(x;F ,d) := card{1 � a, b � x : F (a, b) ≡ 0 (modd)}.
Our generalization is stated as follows.

Proposition 2. Let ε > 0 and 0 � s � m. Assume that F1, . . . , Fs are linear forms and that
Fs+1, . . . , Fm are forms of degree � 2. Then, uniformly for D1 � 1, . . . ,Dm � 1, x � 1, we have

(2.9)
∑

d1�D1

· · ·
∑

dm�Dm

µ2(∆m)
∣∣∣A(x;F ,d) − x2

∏
1�j�m

γFj (dj)
d2

j

∣∣∣ � (
xĎs + Ď2

sD̂s + D
)

Dε,

with
∆m :=

∏
1�j�m

dj , Ďs := 1 +
∑

1�j�s

Dj , D̂s :=
∏

s<j�m

Dj , D :=
∏

1�j�m

Dj .

When F has no linear factor, we have s = 0, and our definition of Ďs ensures that Ďs �= 0 even
in this case. The upper bound in (2.9) is then (x + D)Dε.

We confined ourselves to proving a simple result which is sufficient for the proof of Theorem 1.
With a little more work, the condition that the dj are squarefree and pairwise coprime could be
relaxed.

Proof. We detect congruences via exponential sums. We have

A(x;F ,d) =
1

∆2
m

∑
0�g,h<∆m

∑
0�u,v<∆m

F (u,v)≡0 (mod d)

∑
1�a,b�x

e
(

g(u − a) + h(v − b)
∆m

)
.

The main contribution arises from g = h = 0. Since (di, dj) = 1 for all i �= j, this yields a term
x2

∏
1�j�m{γFj (dj)/d2

j}. To estimate the remaining terms, we consider separately those pairs (g, h)
such that g = 0 or h = 0. Writing

S(d; g, h) :=
∑

0�u,v<∆m

F (u,v)≡0 (mod d)

e
(

gu + hv

∆m

)
,

we have

(2.10) A(x;F ,d) = x2
∏

1�j�m

γFj (dj)
d2

j

+ R1(d) + R2(d),

with

R1(d) :=
x

∆2
m

∑
1�h<∆m

(S(d; 0, h) + S(d;h, 0))
∑

1�a�x

e
(
−ha

∆m

)

� x

∆m

∑
1�h<∆m

|S(d; 0, h) + S(d;h, 0)|
min(h,∆m − h)

� x

∆m

∑
1�h�∆m/2

|S(d; 0, h)| + |S(d;h, 0)|
h

,

R2(d) :=
1

∆2
m

∑
1�g,h<∆m

S(d; g, h)
∑

1�a,b�x

e
(
−ga − hb

∆m

)
�

∑
1�g,h�∆m/2

|S(d; g, h)| + |S(d;−g, h)|
gh

.
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We proceed to bound the exponential sums S(d, g, h). Put ∆′
m := ∆m/d1. Since (d1,∆′

m) = 1,
the Chinese remainder theorem implies that each pair {u, v} with 1 � u, v � ∆m has a representation
in the form u = u1∆′

m + u2d1, v = v1∆′
m + v2d1 with 0 � u1, v1 < d1 and 0 � u2, v2 < ∆′

m. Since
the forms Fj are homogeneous, the congruence conditions become

Fj(u, v) ≡ 0 (mod dj) ⇔
{

Fj(u2d1, v2d1) ≡ 0 (mod dj) if j �= 1
F1(u1∆′

m, v1∆′
m) ≡ 0 (mod d1) if j = 1

⇔
{

Fj(u2, v2) ≡ 0 (mod dj) if j �= 1
F1(u1, v1) ≡ 0 (mod d1) if j = 1.

Thus we obtain

S(d; g, h) =
∑

0�u,v<d1
F1(u,v)≡0 (mod d1)

e
(

gu + hv

d1

) ∑
0�u2,v2<∆′

m

Fj(u2,v2)≡0 (mod∆′
m)

e
(

gu2 + hv2

d2 · · · dm

)

=
∏

1�j�m

∑
0�u,v<dj

Fj(u,v)≡0 (mod dj)

e
(

gu + hv

dj

)
=:

∏
1�j�m

Sj(dj ; g, h),
(2.11)

say. When dj = p is a prime and deg(Fj) � 2, Greaves (see [G1] or [G2]) proved that

(2.12) Sj(p; g, h) �
(
Fj(−h, g), p

)
.

This inequality is also satisfied when deg(Fj) = 1, i.e. Fj is of type Fj(X,Y ) = αjX + βjY with
(αj ,βj) = 1. Indeed, if (αj , p) = 1, we have

Sj(p; g, h) =
∑

0�u,v<p
u≡−αjβjv (mod p)

e
(

gu + hv

p

)
,

where αj is defined modulo p by the equation αjαj ≡ 1 (mod p). Thus

(2.13) Sj(p; g, h) =
∑

0�v<p

e
(

v(h − gᾱjβj)
p

)
=

{
p if − αjh + βjg ≡ 0 (mod p),
0 otherwise

and (2.12) is still satisfied (with implicit constant 1) in this case. If p | αj and therefore p � βj , then
Fj(u, v) ≡ 0 (mod p) if and only if v = 0, so

(2.14) Sj(p; g, h) =
{

p if p | g,
0 otherwise.

Thus (2.12) holds unconditionally. Successive applications of the Chinese remainder theorem (using
the fact that the dj are squarefree) and (2.12) yield

Sj(dj ; g, h) =
∏
p|dj

Sj(p; g, h) � C
ω(dj)
j (Fj(−h, g), dj) ,

where Cj > 0 depends only of Fj . Thus, there exists C = C(F ) > 0 such that

(2.15) S(d, g, h) � Cω(∆m)
∏

1�j�m

(Fj(−h, g), dj) .

Moreover, we bear in mind that when Fj is linear we also have from the Chinese remainder theorem,
(2.13) and (2.14), that

(2.16) Sj(dj ; g, h) =
{

dj if Fj(−h, g) ≡ 0 (mod dj),
0 otherwise.
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We are now in a position to estimate the contributions to (2.9) of the error terms Rj(d) in (2.10).
Let 0 < ε1 < ε. The case of R2(d) is typical. We observe that when deg Fj � 2, we always have
Fj(−h, g) �= 0 in (2.15). Indeed (0, 0) is the only solution in Z2 of the equation Fj(a, b) = 0 because
Fj is irreducible and non-linear. (See [Dar, p. 51] for a proof of this assertion.) We also remark (in
the case s �= 0) that if (g, h) satisfy Fi(−h, g) = 0 for some 1 � i � s then Fj(−h, g) �= 0 for all
1 � j � s such that j �= i.

We handle separately the contribution of those pairs (g, h) such that Fj(−h, g) = 0 for some
1 � j � s. We write

(2.17) R2(d) = T0(d) +
∑

1�j�s

Tj(d)

where in T0(d) the summation comprises all 1 � g, h � ∆m such that F (−h, g) �= 0 and in Tj(d)
with 1 � j � s, the summation is defined by the conditions 1 � g, h � ∆m and Fj(−h, g) = 0.

We first consider the contribution of T0(d) to the left-hand side of (2.9). We have∑
d1�D1

· · ·
∑

dm�Dm

µ(∆m)2T0(d) �
∑

d1�D1

· · ·
∑

dm�Dm

∆ε1
m

∑
1�g,h�∆m/2
F (−h,g)�=0

1
gh

∏
1�j�m

|(Fj(−h, g), dj)|

� Dε1
∑

1�g,h�D/2
F (−h,g)�=0

1
gh

∏
1�j�m

∑
dj�Dj

∣∣(Fj(−h, g), dj

)∣∣.

Now we note that for all integers D � 1, N � 1, we have

(2.18)
∑
d�D

(N, d) =
∑
d�D

∑
t|(N,d)

ϕ(t) �
∑

t|N, t�D

ϕ(t)D/t � Dτ(N),

where τ(N) denotes the number of divisors of N . Inserting this in the above bound yields

(2.19)
∑

d1�D1

· · ·
∑

dm�Dm

µ(∆m)2T0(d) � D1+ε1
∑

1�g,h�D/2
F (−h,g)�=0

1
gh

∏
1�j�m

τ
(
|Fj(−h, g)|

)
� D1+ε.

Next, we estimate the contributions to (2.9) of the quantities Tj(d) for 1 � j � s. Since in these
summations we have Fj(−h, g) = −αjh + βjg = 0, we may replace the variable h by gβj/αj . Note
that we must have αj �= 0 since ghβj �= 0. We define ∆s :=

∏
1�i�s di. By (2.16) we have

∑
d1�D1

· · ·
∑

dm�Dm

µ(∆m)2Tj(d) �
∑

d1�D1

· · ·
∑

dm�Dm

∆ε1
m

∑
1�g�∆m/2, αj |g

di|Fi(−gβj/αj ,g) (j �=i�s)

∆s

g2

∏
s<r�m

|(Fr(−h, g), dr)|.

Let ε2 ∈]ε1, ε[, where ε is given in Proposition 2 and ε1 was defined after (2.16). First, we use (2.18)
to estimate the dj-partial sums for s < j � m much in the same way as we did for the terms T0(d).
We obtain∑

d1�D1

· · ·
∑

dm�Dm

µ(∆m)2Tj(d) � D̂sD
ε2

∑
d1�D1

· · ·
∑

ds�Ds

µs(∆m)
∑

1�g�∆sD̂s, αj |g
di|Fi(−gβj/αj ,g) (j �=i�s)

∆s

g2
.

For 1 � i � s, i �= j, the congruence Fi(−gβj/αj , g) ≡ 0 (mod di) is equivalent to

g

αj
≡ 0

(
mod

di

(di,αjβi − αiβj)

)
.

Since the di are mutually coprime we have

lcm
j �=i�s

{
di

(di,αjβi − αiβj)

}
=

∆s

Kdj
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where K = K(d) satisfies
K |

∏
1�i�s

i�=j

(αjβi − αiβj)

and is therefore bounded uniformly with respect to d. Thus there exists K0(d) ∈ N, K0(d) � 1,
such that, whenever g satisfies the conditions di | Fi(−gβj/αj , g) for 1 � i � s, i �= j, then
∆s/{K0(d)dj} | g. Writing g = ∆sg

′/{K0(d)dj}, we infer that∑
d1�D1

· · ·
∑

dm�Dm

µ(∆m)2Tj(d)

� D̂sD
ε2

∑
d1�D1

· · ·
∑

ds�Ds

µ(∆s)2
∑

1�∆sg′/{K0(d)dj}�∆sD̂s

d2
j

∆sg′2

� D2
j D̂sD

ε.

(2.20)

The contribution to (2.9) of the terms R1(d) may be handled similarly. We appeal to (2.11),
(2.15) and (2.16). If there are no defective factors Fj(X,Y ) = ±X or Fj(X,Y ) = ±Y , then we have
Fj(−h, 0) �= 0 and Fj(0, h) �= 0 for all h �= 0 and all 1 � j � m. With computations parallel to those
employed to estimate the contribution to (2.9) of the terms T0(d), we obtain∑

d1�D1

· · ·
∑

dm�Dm

µ(∆m)2|R1(d)| � xDε.

If, for instance, we have F1(X,Y ) = X then S1(d1; g, 0) = d1 for all g and d1. We obtain

R1(d) � xd1C
ω(∆m)

∆m

∑
1�h�∆m/2

1
h

∏
2�j�m

∣∣(Fj(−h, 0), dj)
∣∣·

Arguing as for the estimation of the terms Tj(d) (j �= 0), we obtain∑
d1�D1

· · ·
∑

dm�Dm

µ(∆m)2|R1(d)| � DεD1x.

Similarly, if F1(X,Y ) = X,F2(X,Y ) = Y , we have∑
d1�D1

· · ·
∑

dm�Dm

µ(∆m)2|R1(d)| � Dε(D1 + D2)x,

and so in any case

(2.21)
∑

d1�D1

· · ·
∑

dm�Dm

µ(∆m)2|R1(d)| � DεĎsx

Combining (2.19), (2.20) (summed over 1 � j � s) and (2.21) completes the proof of Proposition 2.

3. Proof of Theorem 1

If G(X,Y ) is an irreducible factor of F with degree < αF , then we have

P+(G(a, b)) � xαF = o(y)

for all 1 � a, b � x. Thus, irreducible factors of F having small degree may be discarded. Let m be
the integer defined by

m :=
{

k if k � 2
� + 1 if k = 1.

Then m is the number of distinct irreducible factors of F having degree � αF . If m = k, we write
the factorization of F in the form:

F (X,Y ) = G(X,Y )
∏

1�j�k

Fj(X,Y )βj ,



FRIABLE VALUES OF BINARY FORMS 9

where F1, . . . , Fk are the distinct (up to scalars) irreducible factors of degree g of F and all irreducible
factors of G have degree at most g − 1. If m > k (i.e. k = 1, � � 1, m = � + 1), then we write the
factorization of F as

F (X,Y ) = H(X,Y )
∏

1�i�m

Fi(X,Y )βi ,

where F1, . . . , F� are the distinct irreducible factors of F of degree g − 1 and Fm is the (only)
irreducible factor of F of degree g.

The arguments of the various proofs in [DMT] were based on properties of arithmetic functions
related to the number of divisors of polynomial values in prescribed intervals. Here we adapt the
ideas, and retain the main notations, of [DMT]. For m-dimensional vectors w = (w1, . . . , wm) and
z = (z1, . . . , zm), the quantity HF (x;w,z) is defined as the number of integer pairs (a, b) ∈ [1, x]2

such that, for all j ∈ [1, k], the number Fj(a, b) has at least one divisor dj with wj < dj � zj .
We note at the outset that if k � 2, then there exists a constant K, depending only on F , such

that

(3.1) ΨF (x, y) � HF (x;w,z)

whenever

(3.2) Kxg/y < wj � zj � y (1 � j � k).

Indeed, if (a, b) is counted by HF (x;w,z), then Fj(a, b) = djd
′
j with Kxg/y < dj � y for each j,

whence |d′j | � |Fj(a, b)|y/(Kxg) � y, and so P+
(
F (a, b)

)
� y.

In the case k = 1, there exists K > 0, depending only on F , such that (3.1) holds provided

(3.3) Kxg−1/y < wj � zj � y (1 � j � �), Kxg/y < wm � zm � y.

Let δ ∈]0, 1/(1 + m2)[. Using Proposition 2, we shall show that

(3.4) HF (x;w,z) � x2

for

zj :=




x(2−δ)/k−(j−1)δ if k � 2 and 1 � j � k,
x(1−δ)/m−(j−1)δ if k = 1 and 1 � j � �,
x1+(1−δ)/m if k = 1 and j = m,

wj := zj/xδ (1 � j � m).

We note that, with the above choice of parameters, the intervals ]wj , zj ] are disjoint.
Let us first assume deg(F ) � 4. When k � 2, conditions (3.2) are fulfilled for y = xαF +ε with

αF as in Theorem 1, if δ is sufficiently small in terms of ε and k. The required lower bound hence
follows from (3.1). When k = 1, g � 3, we arrive at the same conclusion by noting that (3.3) holds
for small enough δ. In the case k = 1, g = 2, we have � � 2. Therefore m � 3, and so the first set
of conditions in (3.3) holds for small enough δ. However, the inequality zm � y is not necessarily
satisfied and we adapt the definition of HF (x;w,z) by requiring that the divisor dm is itself friable.
We postpone this case as well as the discussion of the cases deg(F ) = 2, 3 to the end of the proof.

Let us first assume (g, k) �= (2, 1) (and deg(F ) � 4), and prove (3.4) in this case. Let w,z be as
above. We observe that

(3.5) BF (a, b) :=
∏

1�j�m

∑
pj |Fj(a,b)
wj<pj�zj

1 �
(

max1�j�m log(Kxg)
log wj

)m

�
(

m2g

1 − δ(1 + m2)

)m

for 1 � a, b � x. Hence

HF (x;w,z) �
∑

1�a,b�x

BF (a, b) =
∑

w1<p1�z1

· · ·
∑

wm<pm�zm

∑
1�a,b�x

pj |Fj(a,b) (1�j�m)

1.
(3.6)
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Our choice of z guarantees that z1 · · · zm < x2−η for sufficiently small η > 0. Moreover, the primes
p1, . . . , pm in (3.6) are distinct since ]wj , zj ]∩]wh, zh] = ∅ if j �= h. By Proposition 2 it follows that

(3.7) HF (x;w,z) � x2
∏

1�j�m

∑
wj<pj�zj

γFj (pj)
p2

j

+ O
(
x2−η/2

)
.

By (2.6) and partial summation we have for all 1 � j � m,

(3.8)
∑

wj<pj�zj

γFj (pj)
p2

j

= log
( log zj

log wj

)
+ O

( 1
log wj

)
.

Inserting (3.8) in (3.7) confirms (3.4) and completes the proof of Theorem 1 in the case (g, k) �= (2, 1).

To handle the case (g, k) = (2, 1) (still assuming deg(F ) � 4), we replace the weights BF (a, b) by

(3.9) B∗
F (a, b) :=

( ∑
sm<pm�tm
um<qm�vm

pmqm|Fm(a,b)

1

) ∏
1�j��

∑
pj |Fj(a,b)
wj<pj�zj

1,

where pj , qm denote primes and

tm = um := x
1
2−δ+(1−δ)/(2m), sm := tmx−δ, vm := umxδ.

If B∗
F (a, b) �= 0, then the divisor dm = pmqm of Fm(a, b) is y-friable and hence Fm(a, b) is also

y-friable. The other steps are as in the previous case. We have

ΨF (x, y) �
∑

1�a,b�x

B∗
F (a, b) �

∑
w1<p1�z1

· · ·
∑

sm<pm�tm
um<qm�vm

∑
1�a,b�x

pj |Fj(a,b) (1�j��)
pmqm|Fm(a,b)

1.

Applying Proposition 2 and using the fact that γFm is multiplicative to separate the summations
over pm and qm, we obtain the lower bound ΨF (x, y) � x2 as before. This ends the proof of Theo-
rem 1 in the case deg(F ) � 4.

It remains to handle the cases deg(F ) = 2, 3. Then, in (3.9), the divisors dj = pjqj ∈]wj , zj ]
may not be y-friable, and we modify the weights accordingly. Since the corresponding results will
be improved in Theorem 2 for cubic forms and are essentially known for quadratic forms, we only
provide a brief description.

(a) F is a cubic form. If F is irreducible, we replace the weights BF (a, b) defined in (3.5) by

BF (a, b) :=
∑

p1p2|F (a,b)

x1−δ<p1�x

x1−2δ<p2�x1−δ

1.

The proof may then be completed by computations very similar to those described in the case
(g, k) = (2, 1), deg(F ) � 4. If F = F1F2 where Fj is, for j = 1, 2, an irreducible binary form of
degree j, we choose

BF (a, b) :=
∑

p1|F1(a,b)

1
∑

p2q2|F2(a,b)

1,

where the primes p1, p2, q2 are subject to the conditions

x(1/3)−δ < p1 � x1/3, x(2/3)−δ < p2 � x2/3, x(2/3)−2δ < q2 � x(2/3)−δ.
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When F = F1F2F3 is a product of three linear factors we select

BF (a, b) :=
∏

1�j�3

∑
pjqj |Fj(a,b)

1,

subject to the conditions x(1/3)−(j−1/2)δ < pj � x(1/3)−(j−1)δ and x(1/3)−jδ < qj � x(1/3)−(j−1/2)δ.

(b) F is a quadratic form. When F is irreducible we take

BF (a, b) :=
∑

x2−2δ<d�x2−δ

P+(d)<y, P−(d)>xη

d|F (a,b)

1 � 22/η,

where δ and η are sufficiently small parameters and x is sufficiently large. The lower bound∑
x2−2δ<d�x2−δ

P+(d)<y, P−(d)>xη

d|F (a,b)

γF (d)
d2

� 1

is then derived from the inequality∑
x2−2δ<d�x2−δ

P+(d)<y, P−(d)>xη

d|F (a,b)

γF (d)
d2

�
∏

1�j�J

∑
xjη<pj�x(j+1)η

γF (pj)
p2

j

,

where J is chosen in such a way that

2 − 2δ < 1
2J(J + 1)η, 1

2J(J + 3)η < 2 − δ.

This is indeed possible provided δ and η/δ are small enough, for instance η = δ2. It then only
remains to apply (3.8) to the sums over pj . The last case, i.e. F = F1F2 is a product of two linear
forms, is essentially trivial, as explained in the proof of Theorem 2, and we skip the details here.

4. Cubic forms — the irreducible case

4.1. The combinatorial setup. Let F be a primitive irreducible cubic form. By [G2, p. 37] the
form F cannot have a fixed divisor other than 1 and 2, i.e. γF (p) < p2 if p > 2. If γF (2) = 22, then
F ∗(X,Y ) := 1

2F (X, 2Y ) is an integral primitive irreducible form without fixed prime divisor, and
Theorem 2 for F ∗ implies the result for F . Thus we can assume henceforth

(4.1) γF (p) < p2

for all p. Let S0 be the set of primes dividing the discriminant3 or the leading coefficients of F , and
let S denote the union of S0 and the set of those primes satisfying �F (p) = 0. Then S0 is a finite
set depending only on F , and by Hensel’s lemma we have

(4.2) �F (p2) �= p�F (p)

for all p �∈ S . For this and the following sections we use the notation

Pz :=
∏
p�z

p, P∗
z :=

∏
p�z
p�∈S

p, P0
z :=

∏
p�z

p�∈S0

p

We study y-friable values of F (a, b) by considering factorizations |F (a, b)| = uvw, where u and v
vary in prescribed ranges (so eventually w as well), and P+(uvw) � y, (uw,Pz) = 1, 2 � z � y � x.
We choose

z = xη

3 The discriminant of F is in fact the discriminant of the polynomial F (X, 1).
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a small power of x. Then any F (a, b) has at most a bounded number of such factorizations. We
are free to impose further conditions on v to make computations more comfortable. For example,
we can provide (uw, v) = 1 by requiring P+(v) � z, and ease the application of multiplicativity by
asking that v is square-free. For the application of the sieve, we shall also need to exclude a few bad
primes from v, hence we require v | P∗

z . In other words, u and w are free of prime factors below z
or above y, while v is composed of some primes below z but not in S . We will use three different
levels of small parameters and put

ε > δ := ε2 > η := ε3 > 0.

For parameters U, V to be fixed later, we have

card{1 � a, b � x : P+(F (a, b)) � y} � S :=
∑

1�a,b�x
|F (a,b)|=uvw

U/xε<u�U, V/xδ<v�V

P+(uw)�y
(uw,Pz)=1, v|P∗

z

1.

This last sum counts all five-tuples (a, b, u, v, w) satisfying the long list of conditions. The condition
P+(w) � y is controlled by counting all w first and subtracting the contribution of those having
P+(w) > y; when doing this second stage we can drop the condition P+(u) � y as we only need a
lower bound. In other words

(4.3) S �
∑

Ux−ε<u�U
P+(u)�y
(u,Pz)=1

∑
V x−δ<v�V

v|P∗
z

∑
1�a,b�x

F (a,b)≡0 (mod uv)
(F (a,b)/(uv),Pz)=1

1 −
∑
w

P+(w)>y
(w,Pz)=1

∑
V x−δ<v�V

v|P∗
z

∑
1�a,b�x

F (a,b)≡0 (mod vw)
(F (a,b)/(vw),Pz)=1

U/xε<|F (a,b)|/(vw)�U

1.

First realize that the innermost sum in the second term is obviously empty if

w > W := x3+ε+2δ/(UV ).

On the other hand, for any given W0, the contribution of those terms with w � W0 can be bounded
by (2.3): they contribute at most

�
∑

w�W0

∑
v�V

(v,w)=1

∑
|F (a,b)|�vwU

F (a,b)≡0 (mod vw)

1

�
∑

w�W0

∑
v�V

γF (v)γF (w)(vwU)2/3

v2w2
+ O(xη(V W0 + (UV W0)1/3(V W0)1/2))

�(UV W0)2/3 + xη{V W0 + U1/3(V W0)5/6}.

By choosing the parameters, we have to provide that the above bound is � x2−η, as well as we
need that UV � x2−2δ, V W � x2−2δ (to leave room for a sieving). The best choice is

W = U :=x1+ε+4δ, U0 := U/xε

V :=x1−ε−6δ, V0 := V/xδ

W0 :=x1+δ = W/xε+3δ.

(4.4)

With these bounds we can drop the uncomfortable conditions on the size of |F (a, b)| in the second
term in (4.3). Next the conditions (w,Pz) = 1 in the first term and (u,Pz) = 1 in the second term
can be controlled with a fundamental lemma type sieve. For a general formulation of a sieve method,
see [HR]. There are sieving weights λ±

d , supported on d � D = xδ, d|Pz such that
∑

d|n λ±
d

�
� the
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characteristic function of (n,Pz) = 1. Using these weights in the appropriate place we arrive at

S �
∑

U0<u�U
P+(u)�y
(u,Pz)=1

∑
V0<v�V

v|P∗
z

∑
d�D
d|Pz

λ−
d

∑
1�a,b�x

F (a,b)≡0 (mod uvd)

1

−
∑

W0<w�W
P+(w)>y
(w,Pz)=1

∑
V0<v�V

v|P∗
z

∑
d�D
d|Pz

λ+
d

∑
1�a,b�x

F (a,b)≡0 (mod vwd)

1 + O(x2−η).

At this stage, we derive from (2.2) the following relation

(4.5) S �
∑

U0<u�U
P+(u)�y
(u,Pz)=1

∑
V0<v�V

v|P∗
z

∑
d�D
d|Pz

λ−
d γF (uvd)x2

(uvd)2
−

∑
W0<w�W
P+(w)>y
(w,Pz)=1

∑
V0<v�V

v|P∗
z

∑
d�D
d|Pz

λ+
d γF (vwd)x2

(vwd)2
+ O(x2−η).

We plainly have (uw, vd) = 1. Hence we have to compute

T± :=
∑

V0<v�V
v|P∗

z

∑
d�D
d|Pz

λ±
d γF (vd)
(vd)2

,

and (4.5) becomes

(4.6) S � x2T−
∑

U0<u�U
P+(u)�y
(u,Pz)=1

γF (u)
u2

− x2T+
∑

W0<w�W
P+(w)>y
(w,Pz)=1

γF (w)
w2

+ O(x2−η).

Remark. Although a big chunk of computation is still ahead, we have at this point a flash of the
final result. Suppose that y = xϑ. Since z = xη = Dε, we expect that, for suitable constants c > 0,
κ(ε), we have

T− ∼ T+ ∼ c

log z

∑
V0<v�V

v|P∗
z

γF (v)
v2

∼ κ(ε) > 0.

Indeed, it is expected that an interval, the endpoints of which being two fixed, distinct powers of z,
captures a positive proportion of the friable sum∑

v|P∗
z

γF (v)
v2

� log z.

Bearing in mind that γF (q)/q is 1 on average, we similarly expect that, with a suitable constant
b > 0, we have ∑

U0<u�U
P+(u)�y
(u,Pz)=1

γF (u)
u2

∼ b
(
1 − log

( log U

log y

)) log(U/U0)
log z

∼ b

ε2

(
1 − log

1
ϑ

)
,

and, much in the same way,∑
W0<w�W
P+(w)>y
(w,Pz)=1

γF (w)
w2

∼ b log
( log W

log y

) log(W/W0)
log z

∼ b

ε2
log

1
ϑ
·

Finally these expectations lead to

S �
{
1 − 2 log

1
ϑ

+ o(1)
} bκ(ε)x2

ε2
·
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This exceeds a positive constant times x2 precisely when ϑ > 1/
√

e.

4.2. Estimation of the main term. We return to (4.6). For any fixed v|P∗
z we note that

γF (v) �= 0 by (2.4) and (4.2), and we define

gv(p) :=
γF (pv)
pγF (v)

=




γF (p)
p

if p � v,

γF (p2)
pγF (p)

if p | v.

By (4.1), (2.4) and (2.5) we conclude (see also [G2, 2.2.11]) that, uniformly in v,

gv(p) = O(1), gv(p) < p.

This last inequality needs the condition v | P∗
z , as it is not true for �F (p) = 0, p | v, for example.

Next we check that the function gv(d) := γF (vd)/(dγF (v)) is multiplicative. This follows from
the well-known general fact that, for any multiplicative function f and any fixed integer m such that
f(m) �= 0, the function fm(n) = f(mn)/f(m) is multiplicative. Indeed, writing µp for the p-adic
valuation of m, we have

fm(n) =
∏

pν‖n

f
(
pν+µp

)
f
(
pµp

) (n � 1).

We can now apply a fundamental lemma type sieve estimate for T±. What we need is implicit
in [HR, Theorem 7.1]. We get

T± =
∑

V0<v�V
v|P∗

z

γF (v)
v2

∑
d�D
d|Pz

λ±
d gv(d)

d

=
∑

V0<v�V
v|P∗

z

γF (v)
v2

{
1 + O

(
e−(log D)/ log z

)} ∏
p�z

(
1 − gv(p)

p

)

=
{
1 + O

(
e−1/ε

)} ∏
p�z

(
1 − γF (p)

p2

) ∑
V0<v�V

v|P∗
z

γ∗
F (v)
v2

·

where, for shorter reference we have written

(4.7) γ∗
F (v) := γF (v)

∏
p|v

p2 − γF (p2)/γF (p)
p2 − γF (p)

·

This is still a multiplicative function. Note that by (2.4) we have γ∗
F (p) = 0 if �F (p) = 0, but p does

not divide the leading coefficient of F (X, 1). Thus, we can include those primes into the v-sum, and
only need to exclude the primes in S0, that is

T± =
{
1 + O

(
e−1/ε

)} ∏
p�z

(
1 − γF (p)

p2

) ∑
V0<v�V

v|P0
z

γ∗
F (v)
v2

·

By (2.7), the product is � A/ log z where A is a positive constant. Moreover, by [TW2, Theorem
3.2], the v-sum is

{1 + o(1)}e−γ

∫ (1−ε−6δ)/ε3

(1−ε−7δ)/ε3
�(t) dt

∏
p|P0

z

(
1 +

γ∗
F (p)
p2

)
= {κ0(ε) + o(1)} log z,

say.
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Put κ(ε) := Aκ0(ε). Substituting into (4.6), we arrive at

S �
{
1 + O

(
e−1/ε

)}
x2κ(ε)




∑
U0<u�U
P+(u)�y
(u,Pz)=1

γF (u)
u2

−
∑

W0<w�W
P+(w)>y
(w,Pz)=1

γF (w)
w2




+ O(x2−η)

�
{
1 + O

(
e−1/ε

)}
x2κ(ε)




∑
U0<u�U
(u,Pz)=1

γF (u)
u2

− 2
∑

W0<w�W
P+(w)>y
(w,Pz)=1

γF (w)
w2




+ O(x2−η),

(4.8)

as the interval ]U0, U ] is contained in the interval ]W0,W ]. We evaluate the sums over u and w by
Proposition 1. By (2.5) and (2.7), the arithmetic function n �→ γF (n)/n satisfies the hypotheses of
Proposition 1. We recall the choices (4.4) of the relevant parameters as well as D = xδ, z = xη = Dε.
From Proposition 1, we obtain

∑
n�ξ

(n,Pz)=1

γF (n)
n

=
{
1 + O

(
e−1/ε

)} ξ

log z
,

whenever D < ξ � U , while an elementary argument using (2.6) furnishes
∑
n�ξ

(n,Pz)=1

γF (n)
n

� ξ

log z
+ 1

for all ξ � 1. By partial summation, we infer that
∑

U0<u�U
(u,Pz)=1

γF (u)
u2

=
{
1 + O

(
e−1/ε

)} log(U/U0)
log z

,

and ∑
W0<w�W
P+(w)>y
(w,Pz)=1

γF (w)
w2

=
∑

y<p�W

γF (p)
p2

∑
W0/p<w�W/p

(w,Pz)=1

γF (w)
w2

=
∑

y<p�W

γF (p)
p2

{
1 + O

(
e−1/ε

)} log(W/W0)
log z

= {1 + O(ε)} log
( log W

log y

) log(W/W0)
log z

·

Suppose that y = xϑ. Substituting the last two displays into (4.8), we arrive at

S �
{
1 + O

(
e−1/ε

)}
x2κ(ε)

(
log(U/U0)

log z
− 2 log

( log W

log y

) log(W/W0)
log z

)
+ O(x2−η)

=
{
1 + O

(
e−1/ε

)}{
ε − 2(ε + 3δ) log

(1 + ε + 4δ
ϑ

)}κ(ε)
ε3

x2 + O(x2−η)

�
{
1 − 2 log

1
ϑ

+ O(ε)
}κ(ε)

ε2
x2 + O(x2−η).

This completes the proof of Theorem 2 in case the form is irreducible.
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5. Cubic forms — the reducible case

There are two possibilities for a reducible cubic form F : either F = F1F2 where F1 is linear and
F2 is quadratic, or F = F1F2F3 for three linear forms F1, F2, F3.

5.1. Three linear forms. Let us start with the second case, and let us assume that two of the
three linear forms

Fi(a, b) = αia + βib, αi,βi ∈ Z, 1 � i � 3,

say F1 and F2, are linearly independent over Q. Let A =
(

α1 β1
α2 β2

)
∈ GL2(Q), and set ∆ := detA �= 0.

If we write r = F1(a, b), s = F2(a, b), then ( r
s ) = A ( a

b ), and therefore

F3(a, b) = α′
3r + β′

3s, where (α′
3, β′

3) := (α3, β3)A−1 ∈
(

1
∆

Z
)2

.

Thus
S := card{(r, s) : ∆ | r,∆ | s,A−1 ( r

s ) ∈ [1, x]2, P+(rs(α′
3r + β′

3s)) � y}
is a lower bound for the number of 1 � a, b � x such that F (a, b) is y-friable. Fix ε > 0 and assume
y = xε. Notice that [c1x, c2x] × [c3x, c4x] ⊆ A([1, x]2) for suitable (positive or negative) constants
c1 �= c2, c3 �= c4, and let

A := {α′
3r : r ∈ [c1x, c2x],∆ | r, P+(r) � y}, B := {β′

3s : s ∈ [c3x, c4x],∆ | s, P+(s) � y}.
Then |A | · |B| � x2 and A ,B ⊆ [−c5x, c5x] for some constant c5 > 0. By a result of La Bretèche
[Br, Théorème 2] (which holds in the same way and with the same proof for A ,B ⊆ Z, not only
for A ,B ⊆ N), we obtain

S � card{(a, b) ∈ A × B : P+(a + b) � y} � |A | · |B| � x2.

If all three linear forms are linearly dependent, La Bretèche’s theorem gives the same result imme-
diately. It is clear that the same result holds for a reducible quadratic form.

5.2. A linear and a quadratic form. Let us now turn to the harder case F = F1F2 where

F1(a, b) = α1a + β1b, F2(a, b) = α2a
2 + β2ab + γ2b

2

where α1,α2,β1,β2, γ2 ∈ Z and F2 is irreducible of discriminant ∆ = β2
2 − 4α2γ2 which is not a

perfect square. In particular, α2 �= 0. Since not both α1 and β1 are 0, we can assume that α1 �= 0.
Let A =

(
α1 β1
0 1

)
, and change variables ( r

s ) := A ( a
b ). Then

α2
1F2(a, b) = αr2 + βrs + γs2 =: F̃ (r, s)

where α = α2 �= 0,β = α1β2 − 2β1α2, γ = β2
1α2 − β1β2α1 + γ2α

2
1, and the discriminant of F̃ is

∆̃ := α2
1∆. By the same argument as above,

card
{
(r, s) : r ≡ β1s (modα1), A−1 ( r

s ) ∈ [1, x]2, P+(r F̃ (r, s)) � y
}

is a lower bound for the number of 1 � a, b � x such that F (a, b) is y-friable. Again as above, this is

� card{(r, s) ∈ [c1x, c2x] × [c3x, c4x] : P+(r F̃ (r, s)) � y}
for suitable constants c1 < c2, c3 < c4, and by changing the sign of the middle term of F̃ if necessary,
we can assume that c1, . . . , c4 > 0. Let f be a smooth nonnegative function supported on I :=
[c3x, c4x] such that supI |f (j)(t)| �j x−j for all j ∈ N and

∫
I
f(t) dt = c0x for some c0 > 0. Let

0 < ε < 1/10 and put D := x2−ε/2, y := xε, z := xε/100. Then we can bound the previous display
from below by

(5.1) �
∑

x−ε/20D�d�D
(d,Pz)=1

P+(d)�y

∑
c1x�r�c2x
P+(r)�z

∑
F̃ (r,s)≡0 (mod d)

f(s),
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since there is only a bounded number of ways to write F̃ (r, s) = dd′ with d as required in the
summation condition, and all pairs (r, s) of this form yield a y-friable value of F̃ (r, s). We transform
the innermost sum by splitting s into residue classes modulo d and applying Poisson summation. In
this way we obtain

∑
F̃ (r,s)≡0 (mod d)

f(s) =
∑

s (mod d)

F̃ (r,s)≡0 (mod d)

1
d

∑
h∈Z

e
(

hs

d

)
f̂

(
h

d

)

where

(5.2) f̂(z) :=
∫ ∞

−∞
f(t)e(−zt) dt � x

(1 + |z|x)A

for any A � 0 (after [A] + 1 partial integrations), and f̂(0) = c0x. Let

(5.3) γh,r(d) :=
∑

s (mod d)

d|F̃ (r,s)

e
(

hs

d

)
.

The term h = 0 will contribute the main term

(5.4) M := c0x
∑

D/xε/20�d�D
(d,Pz)=1

P+(d)�y

1
d

∑
c1x�r�c2x
P+(r)�z

γ0,r(d)

to (5.1), while we treat the remaining part,

E :=
∑
h�=0

∑
x−ε/20D�d�D

(d,Pz)=1

P+(d)�y

1
d

∑
c1x�r�c2x
P+(r)�z

γh,r(d)f̂
(

h

d

)
,

as an error term. First we observe that by choosing A large enough in (5.2), we can truncate the
h-sum at H := Dx(ε/6)−1 = x1−ε/3 with a negligible error, say � 1/x. Next we open the Fourier
transform and perform the change of variables τ := ht/H, obtaining

E �
∑

D/xε/20�d�D

1
d

∫ ∞

−∞

∣∣∣∣∣
∑

0<|h|�H

H

h
f

(
Hτ

h

) ∑
c1x�r�c2x
P+(r)�z

γh,r(d)

∣∣∣∣∣dτ + O

(
1
x

)

=
∑

D/xε/20�d�D

1
d

∫ c4x

−c4x

∣∣∣∣∣
∑

H|τ |/(c4x)<|h|�H|τ |/(c3x)
τh>0

H

h
f

(
Hτ

h

) ∑
c1x�r�c2x
P+(r)�z

γh,r(d)

∣∣∣∣∣dτ + O

(
1
x

)(5.5)

To estimate the inner sum, we use the following large sieve inequality which is a slight generalization
of [FI, Lemma 3].

Proposition 3. Let F (X,Y ) = αX2 + βXY + γY 2 ∈ Z[X,Y ] be an arbitrary (positive definite
or indefinite, not necessarily primitive) quadratic form whose discriminant ∆ = β2 − 4αγ is not a
perfect square. Define γh,r(d) as in (5.3) with F̌ replaced by F . For any sequence ξh,r of complex
numbers, positive real numbers D,H,R, and any δ > 0, we have

∑
d�D

∣∣∣ ∑
h�H

∑
r�R

ξh,rγh,r(d)
∣∣∣ �δ,F D1/2(D + HR)1/2

(∑
h,r

|ξh,r|2
)1/2

(DHR)δ.
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We postpone the proof of this estimate to the next section and proceed with bounding the error
term (5.5). This is

� xε/20

D
HD1/2(Hx)1/2

∫ c4x

−c4x

(
Rx

Hτ

)1/2

dτ(DHR)δ � xε/20x4δHR1/2x3/2

D1/2
= x2−ε/60

on choosing δ = ε/240. This is plainly acceptable.

Let us now turn to the main term M defined in (5.4). We first observe that our summation
conditions imply (r, d) = 1, so that γ0,r(d) =: g(d) is independent of r. It therefore remains to show
that

(5.6)
∑

D/xε/20�d�D
(d,Pz)=1

P+(d)�y

g(d)
d

� c(ε) � 0

for some constant c(ε). For a prime p � 2α∆̃ we have g(p) = 1 + (∆̃|p) ∈ {0, 2} which depends only
on p modulo ∆̃. Let

∑∗
p denote a sum over primes satisfying g(p) = 2. For such primes, we have

g(pν) � 2 for all integers ν � 1. Let

ε

80
< ε0 :=

ε

40

(
40 − 11ε

40 − 10.5ε

)
<

ε

40
, I := [xε0 , xε/40], k :=

[
80
ε

− 20
]
∈ N.

Note that xkε/40 � x2−ε/2 = D and xkε0 � x2−11ε/20 = Dx−ε/20. Thus the left hand side of (5.6)
can be bounded below by ( ∑

p∈I

∗ 1
p

)k

� c(ε).

This completes the proof of the Theorem.

5.3. A large sieve inequality. We prove Proposition 3. The basic device is a well-spacing property
of the fractions ν/d (mod 1), where d ∼ D and ν runs through the solutions of F (ν, 1) ≡ 0 (mod d);
we follow closely the argument of [FI], where the case F (r, s) = r2 + s2 is treated. The underlying
idea goes back to Hooley [Ho], see also [To]. In the sequel, all implicit and explicit constants depend
at most upon F , and the word “bounded” is understood as “bounded only in terms of F”.

Let us fix a positive integer d. Completing the square, we find a one-to-one correspondence
between the two sets4

{ν (mod d) : F (ν, 1) ≡ 0 (mod d)} and {(ν, k) ∈ (Z/dZ) × Z : (2αν + β)2 − 4αdk = ∆},
and the latter set can be identified with the set of (not necessarily primitive) integral quadratic
forms

(5.7) {aX2 + bXY + dY 2 : b2 − 4ad = ∆, a ≡ 0 (modα), b (mod 2αd), b ≡ β (mod 2α)},
via

(5.8) a = αk and b = 2αν + β.

The group SL2(Z) acts on the set of all integral binary quadratic forms F(∆) of discriminant ∆: if
σ = ( r s

t u ) ∈ SL2(Z) and Q(X,Y ) = aX2 + bXY + cY 2 ∈ F(∆), then Qσ(X,Y ) = Q((X,Y ) · σ) =
aσX2 + bσXY + cσY 2 with

aσ = Q(r, s), bσ = 2art + bru + bst + 2csu, cσ = Q(t, u).

It is known that SL2(Z) � F(∆) = {Q1, . . . , Qh} is finite. For each representative Qj = ajX
2 +

bjXY + cjY
2, say, let Sj(d) be the set of matrices σ = ( r s

t u ) ∈ SL2(Z) such that Qσ
j contributes

4 For the second set, we have identified (non-canonically) the pairs (ν, k) ∈ [0, d[×Z such that (2αν+β)2−4αdk = ∆
with the pairs (ν, k) ∈ (Z/dZ) × Z satisfying this equation
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to (5.7). Clearly we must have Qj(t, u) = d. The set O(Qj) := {σ ∈ SL2(Z) : Qσ
j = Qj} of

automorphisms of Qj acts on Sj(d), and matrices in the same O(Qj)-orbit contribute the same
quadratic form to (5.7). Thus we see that by (5.8) a typical fraction ν/d is of the form

(5.9)
ν

d
=

bσ
j − β

2αd
=

2ajrt + bj(ru + st) + 2cjsu − β

2αQj(t, u)
, with 1 � j � h,

(
r s
t u

)
∈ Sj(d).

We claim that for each σ = ( ∗ ∗
t u ) ∈ Sj(d) there is a representative modulo O(Qj) such that

t, u �
√

d. Indeed, if ∆ < 0, then ( ∗ ∗
t u ) ∈ Sj(d) implies (2ajt + bju)2 − ∆u2 = 4ajd, and

the claim is obvious. If ∆ > 0, we can assume that Qj is a primitive form (otherwise divide
everything by the gcd of the coefficients). Then it is known [La] that O(Qj) is generated by

−I =
(−1

−1

)
and σ0 :=

(
(ξ−bjη)/2 −cjη

ajη (ξ+bjη)/2

)
corresponding to the fundamental solution of Pell’s

equation ξ2 − ∆η2 = 4. For a point P := (x0, y0) ∈ R2 on the hyperbola Qj(x, y) = d, the segment
[P,P · σ0] is a fundamental domain for the action of O(Qj) on the pairs (t, u) with ( ∗ ∗

t u ) ∈ Sj(d),
and hence we can assume that (t, u) is on that segment. Choosing P such that x0, y0 �

√
d, we

obtain the claim also in the indefinite case.

If |t| > |u|, we can write (5.9) as (using ru − st = 1)

(5.10)
ν

d
=

r

αt
− bjt + 2cju + βt

2αtQj(t, u)
=

r

αt
+ O

(
1
d

)

where5 r ≡ ū (mod |t|), and we can assume r � |t| �
√

d. Analogously, if |u| > |t|, we obtain the
expression

ν

d
=

s

αu
− ajt + 2bju + βt

2αuQj(t, u)
=

s

αu
+ O

(
1
d

)

for (5.9) where s ≡ t̄ (mod |u|), and we can assume s � |u| �
√

d. We partition now the (multi-)set{ν

d
(mod 1) : F (ν, 1) ≡ 0 (mod d),D � d � 2D

}
into 2h classes Ci, 1 � i � 2h, according to the representative Qj , 1 � j � h, in (5.9) and according
to |t| > |u| or |u| > |t|, and we consider one of these classes Ci with, say, |t| > |u|. If ( r ∗

t ∗ ) ∈ SL2(Z)
is any matrix, there are at most two choices for ( s

u ) with |t| > |u|. Hence we can partition Ci into a
bounded number of subclasses Ci,k, k � 1, such that the fractions ν/d ∈ Ci,k correspond to matrices
( r s

t u ) with different values of r/(αt) (mod 1). We consider one such subclass and order the fractions
ν/d ∈ Ci,k, viewed as elements of [0, 1[, in ascending order:

ν1

d1
�

ν2

d2
� . . .

Since

(5.11) 0 �=
∣∣∣∣ r1

αt1
− r2

αt2

∣∣∣∣ �
1

αt1t2
� 1

D
,

for two matrices ( r1 ∗
t1 ∗ ) , ( r2 ∗

t2 ∗ ) corresponding to two members in Ci,k, there is a constant L ∈ N large
enough in terms of the implicit constants in (5.10) and (5.11) such that∥∥∥∥νL+�

dL+�
− ν�

d�

∥∥∥∥ � 1
D

for all � ∈ N. Once again we partition Ci,k into a bounded number of subclasses such that any two
fractions ν/d, ν′/d′ in a given subclass satisfy∥∥∥∥ν

d
− ν′

d′

∥∥∥∥ � 1
D

.

5 Here we note that u = 0 can only happen when t = 1, and we interpret 0̄ := 0 (mod 1)
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Applying the classical large sieve inequality (see e.g. [S]) for each subclass separately we conclude∑
D�d�2D

∑
F (ν,1)≡0 (d)

∣∣∣ ∑
n�N

�ne
(νn

d

)∣∣∣2 � (D + N)
∑
n�N

|�n|2

for any sequence �n. Now we are exactly in the situation of [FI, Lemma 2], and we conclude verbatim
as in [FI, pp. 252-254] the proposition.
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Press, Cambridge, 1990. 3, 4
[T2] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge studies in advanced math-

ematics, no. 46, Cambridge University Press (1995). 4
[TW1] G. Tenenbaum, J. Wu, Moyennes de certaines fonctions multiplicatives sur les entiers friables, J. reine angew.

Math. 564 (2003), 119-166 1
[TW2] G. Tenenbaum, J. Wu, Moyennes de certaines fonctions multiplicatives sur les entiers friables, 3, Compositio

Math. 144 no. 2 (2008), 339-376. 14
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Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, POB 127, Budapest H-1364,
Hungary

E-mail address: balog@renyi.hu

Mathematisches Institut, Bunsenstr. 3-5, 37073 Göttingen, Germany
E-mail address: blomer@uni-math.gwdg.de
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