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Abstract We study a shadow limit (the infinite diffusion coefficient-limit) of a sys-
tem of ODEs coupled with a semilinear heat equation in a bounded domain with
Neumann boundary conditions. In the literature, it was established formally that in
the limit, the original semilinear heat equation reduces to an ODE involving the space
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derivation of the limit using the renormalization group (RG) and the center manifold
approaches. The RG approach provides also further approximating expansion terms.
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1 Introduction
intro

In the study of reaction-diffusion equations describing Turing-type pattern formation,
it is necessary to consider very different diffusion coefficients. A number of such
models was proposed in mathematical biology and chemistry, including the activator-
inhibitor model of Gierer and Meinhardt [10], Gray-Scott model [8], Lengyel-Epstein
model [18], and many others [24].

To study spatio-temporal evolution of solutions of such models, it is worthy to
consider a reduced version of the model by letting the large diffusion coefficient
tend infinity. The resulting system is useful only if it is a good approximation of the
original dynamics and preserves the phenomenon of pattern formation. Such model
reduction has been recently proposed also in analysis of reaction-diffusion-ode mod-
els with a single diffusion [20]. Reaction-diffusion-ode models, called also receptor-
based models, arise in description of interactions between intracellular or cell dy-
namics regulated by a diffusive signaling factor. They have already been employed
in various biological contexts, see eg. [14,16,22,23]. In this paper we focus on a
rigorous proof of a large diffusion limit for such models.

A representative example is an ODE system, coupled with a semilinear parabolic
equation with a large diffusion coefficient. Its ratio to the other coefficients is equal
to the inverse of a small parameter ε > 0. In the analysis of the model, we follow
the approach established for problems having two characteristic times. We assume
that Ω is a given open bounded set with a smooth boundary and focus on the Cauchy
problem

∂uε
∂ t

= f(uε ,vε), in (0,T )×Ω ; uε(0) = u0(x), x ∈ Ω , (1)

∂vε
∂ t

=
1
ε

∆vε +Φ(uε ,vε), in (0,T )×Ω , vε(0) = v0(x), x ∈ Ω (2)

∂vε
∂ν

= 0 in (0,T )×∂Ω . (3)

Asymptotic analysis of problem (1)-(3) with ε → 0 has attracted a considerable
interest in the literature in the case where the first equation is a quasilinear parabolic
equation, starting from the papers of Keener [15] and Hale [11].

In our case, the shadow limit reduction of equations (1)-(3) yields the following
system of integro-differential equations

∂u
∂ t

= f(u,v), (4)

dv
dt

=
1
|Ω |

∫
Ω

Φ(u(x, t),v(t)) dx. (5)

For a finite time intervals, convergence of solutions of the ε-problem (1)-(3) to the
solution of the shadow problem (4)- (5) was shown by Marciniak-Czochra and col-
laborators in ref. [20]. An approach using semigroup convergence has been recently



Shadow limit using Renormalization Group method and Center Manifold method 3

established by Bobrowski in ref. [1]. However, its application to system (1)-(3) re-
quired some properties of the solutions which are not satisfied in general.

In this article we present a detailed study of the limit process by comparing so-
lutions of the two systems (1)-(3) and (4)-(5) and proving an error estimate in terms
of ε . The employed methods are the renormalization group technique (RG) and the
center manifold theorem.

The paper is organized as follows. We formally derive the renormalization group
(RG) equation in Section 2. It yields the shadow limit equation and, also, allows to
determine the next order correction term. Next, in Section 3 we prove the approxi-
mation for finite time intervals. The results are given in Theorem 3 , which is proven
in two steps. First we construct appropriate cut-offs and a barrier function and prove
that the difference of solutions is of the order O(ε) in L∞(Ω × (0,T ). Then, using
energy estimates, the perturbation from the mean for the semilinear heat equation (2)
is proven to be of the order O(ε3/2) in L2(0,T ;H1(Ω)). In Section 4 we determine
the center manifold around a critical point for both systems (1)-(3) and (4)-(5). The
main result is obtained in Theorem 4 through a comparison between the constructed
center manifolds. We give their construction and prove that (i) their central spectra
coincide , (ii) the “master” equation is the same and (iii) the reduction function for
the perturbation part from the mean for the semilinear heat equation (2) is of the order
O(ε) in the sup-norm.

2 RG approach to the shadow limit
Sec2

The RG method originates from theoretical physics. It was introduced for singular
perturbation problems by Chen, Goldenfeld and Oono in references [3,4], where the
method was formally applied to several examples. One advantage of the RG method
is that it provides an algorithm for derivation of reduced models. Its first step is a
straightforward perturbation expansion. The expansion usually involves secular terms
that exhibit unbounded growth in time, which can be however removed by the ap-
propriate reparametrization provided by the RG equations. The procedure leads to
correct asymptotic expansions. The RG method allows to identify all multiple scales
present in the problem and provides the result based on a systematic procedure. The
involved computations may be tedious, but they are straightforward.

A mathematically rigorous theory of the RG method was developed for systems
of ordinary differential equations of the form

dx
dt

= Fx+ εh(x, t),

valid for long time intervals. Here F is a matrix with purely imaginary eigenvalues.
In the naive expansion approach secular terms appear and asymptotic expansions are

not valid for the time intervals of the length T =O(
1
ε
). It was shown in references [5],

[6] and [9] that the RG method provides a good approximation also for long times.
Furthermore they pointed out that the RG method unifies the multiple time scale ex-
pansion techniques, the center manifold theory, the geometric singular perturbation
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and other perturbation methods. The RG method has been also applied to some par-
tial differential equations, in particular, to the geostrophic flows, see ref. [29], [25],
[26]. In a recent article [7] Chiba considered approximation of the perturbed higher
order nonlinear parabolic PDEs by simpler amplitude parabolic PDEs. The shadow
limit approximation does not enter into that class of problems. Nevertheless, in this
section we will give a formal derivation of the shadow limit system (4)-(5) from (1)-
(3) using the RG approach. Once the time variable is rescaled, we see immediately
the analogy with the above quoted works. We construct the RG approximation, which
is a simple case of the RG transform αt from Chiba’s articles. It contains the solution
to the shadow limit problem (4)-(5) and the ”coordinate transformation ” εwΦ . wΦ

controls the ”slave” modes in the nonlinearity Φ .

In this paper, we consider the Cauchy’ problem (1)-(3). The nonlinearities f and
Φ are defined on Rm+1, m ≥ 1, and take values in Rm and R1, respectively. It is
assumed that they are C2 with bounded derivatives and that problem (1)-(3) has a
unique globally defined smooth solution.

In order to apply the renormalization group (RG) approach, we change time scale
by setting τ = t/ε . System (1)-(3) becomes

∂uε
∂τ

= εf(uε ,vε) and
∂vε
∂τ

−∆vε = εΦ(uε ,vε), in Ω × (0,T ); (6) shadRG1

∂vε
∂ν

= 0 on (0,T )×∂Ω , uε(0) = u0 and vε(0) = v0 in Ω . (7) shadRG2

2.1 Prerequisites

Before presenting the RG calculations we recall two elementary results from the
parabolic theory and a simple lemma about ODEs with an exponentially decaying
right-hand side.

1. We consider the spectral problem:
Find w ∈ H1(Ω), which is not identically equal to zero, and λ ∈ R such that

−∆w = λw in Ω ;
∂w
∂ν

= 0 on ∂Ω . (8) spect

It admits a countable set of eigenvalues and eigenfunctions {λ j,w j}. The prin-
cipal eigenvalue λ0 = 0 and w0 = 1/

√
|Ω |. λ j tends to infinity as j → ∞. The

eigenfunctions {w j} form an orthonormal basis for L2(Ω) and an orthogonal ba-
sis for H1(Ω).

2. Let U0 ∈ L2(Ω) and F ∈ L2(Ω × (0,T )). Then, the initial/boundary-value prob-
lem

∂U
∂ t

−∆U = F(x, t) in Ω × (0,T ), (9) parab1

∂U
∂ν

= 0 on ∂Ω × (0,T ), U |t=0 =U0 in Ω , (10) parab2
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has a unique variational solution U ∈ L2(0,T ;H1(Ω))∩C([0,T ];L2(Ω)), given
by the separation of variables formula

U(x, t) = ⟨U0 +
∫ t

0
F(· ,s) ds⟩Ω +

∞

∑
j=1

{
(U0,w j)L2(Ω)e

−λ jt

+
∫ t

0
(F(· ,s),w j)L2(Ω)e

−λ j(t−s) ds
}

w j(x), (11) parab3

where the arithmetic mean is

⟨z⟩Ω =
1
|Ω |

∫
Ω

z(x) dx, z ∈ L1(Ω).

boundexp 3. Lemma 1 Let g : R× [0,+∞)→ R, g = g(y, t) be a continuous function that is
Lipschitz in y and satisfies the inequality

|g(y, t)| ≤Ce−γt , for some γ > 0 and all t ∈ [0,+∞). (12) decay1

Then, the solution y for the Cauchy problem

dy
dt

= g(y, t), y(0) = y0, (13) Caupro

is a globally defined function such that

||y||L∞(R+) ≤C and sup
t∈R+

|
∫ t

0
y(s) ds− ty(t)| ≤C. (14) Unifbdd

2.2 Application of RG method

We now proceed by usual RG method steps.

1. We assume that the problem can be solved as a regular perturbation problem and
calculate the straightforward expansion

uε(x,τ) = u0(x,τ)+ εu1(x,τ)+ ε2u2(x,τ)+ . . . ,

vε(x,τ) = v0(x,τ)+ εv1(x,τ)+ ε2v2(x,τ) . . .

It yields

∂
∂τ

(u0 + εu1 + ε2u2 + . . .) = εf(u0,v0)+

ε2(∇uf(u0,v0)u1(τ)+∂vf(u0,v0)v1(τ))+ . . . ,( ∂
∂τ

−∆x

)
(v0 + εv1 + ε2v2 . . .) = εΦ(u0,v0)+

ε2{∇uΦ(u0,v0) ·u1(τ)+
∂Φ
∂v

(u0,v0)v1(τ)}+ . . . .
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Comparing the terms of the order zero we obtain( ∂
∂τ

−∆x

)
v0 = 0 and

∂
∂τ

u0 = 0. (15) RGSP1

Equations (15) yield

u0(x,τ) = A(x) and v0(x,τ) = B+
+∞

∑
j=1

b jw j(x)e−λ jτ , (16) RGSP2

where B is a constant.
On the order O(ε), we obtain

( ∂
∂τ

−∆x

)
v1 = Φ(A,v0), in Ω × (0,T ), (17) RGSP3

∂
∂τ

u1 = f(A,v0), in Ω × (0,T ). (18) RGSP4

We note that f(A,v0) = f(A,v0)− f(A,B)+ f(A,B), with |f(A,v0(τ))− f(A,B)| ≤
C exp{−λ1τ}. Hence, equation (18) leads to

u1(x,τ) = τf(A,B)+C1u(x,τ), (19) RGSP8AA

where C1u is a solution to the Cauchy problem (13) with g j = f j(A,v0)− f j(A,B).
By Lemma 1, the function C1u is uniformly bounded with respect to τ .

We use equation (17) to calculate v1. Once again, we decompose the right-hand
side as Φ(A,v0) = Φ(A,B)+Φ(A,v0)−Φ(A,B). Using formula (11), with the
right-hand side Φ(A,v0)−Φ(A,B) exponentially decreasing in τ , yields a solu-
tion that is uniformly bounded in τ ∈R+. The right-hand side Φ(A,B) is bounded
with respect to τ and it contributes as an affine term in τ:

v1(x,τ) = τ⟨Φ(A,B)⟩Ω +
+∞

∑
j=1

(Φ(A,B),w j)L2(Ω)

w j(x)
λ j

+C1v,

where C1v is a solution of the Cauchy problem (13) with g|Ω | =
∫

Ω (Φ(A,v0)−
Φ(A,B)) dx.
By Lemma 1, the function C1v is uniformly bounded with respect to τ .
Comparing the terms of the order O(ε2) for u2, we obtain

∂
∂τ

u2(x,τ) = ∇uf(u0,v0)u1(x,τ)+∂vf(u0,v0)v1(x,τ) =

τ
(
∇uf(A,B)f(A,B)+∂vf(A,B)⟨Φ(A,B)⟩Ω

)
+∇uf(A,B)C1u(x,τ)+

∂vf(A,B)
(
C1v(x,τ)+

+∞

∑
j=1

(Φ(A,B),w j)L2(Ω)

w j(x)
λ j

)
+O((1+ τ)e−λ1τ), (20) RGSP4A0
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and consequently

u2(x,τ) =
τ2

2

(
∇uf(A,B)f(A,B)+∂vf(A,B)⟨Φ(A,B)⟩Ω

)
+

τ
(

∇uf(A,B)C1u(x,τ)+∂vf(A,B)
(
C1v(x,τ)+

+∞

∑
j=1

(Φ(A,B),w j)L2(Ω)

w j(x)
λ j

))
+C2u(x,τ).

By estimates (14), the function C2u(x,τ) is uniformly bounded in τ .

Next, comparing the terms of the order O(ε2) for v2, we obtain( ∂
∂τ

−∆x

)
v2(x,τ) = ∇uΦ(A,v0) ·u1 +∂vΦ(A,v0)v1 = τ

(
∇uΦ(A,B) · f(A,B)

+∂vΦ(A,B)⟨Φ(A,B)⟩Ω
)
+∇uΦ(A,B) ·C1u +∂vΦ(A,B)

(
C1v(x,τ)

+
+∞

∑
j=1

(Φ(A,B),w j)L2(Ω)

w j(x)
λ j

)
+O((1+ τ)e−λ1τ) in Ω × (0,T ), (21) RGSP4A

together with boundary and initial conditions (10). The separation of variables
formula (11) and Lemma 1 yield

v2(x,τ) =
τ2

2

(
⟨∇uΦ(A,B) · f(A,B)⟩Ω + ⟨∂vΦ(A,B)⟩Ω ⟨Φ(A,B)⟩Ω

)
+

τ
(
⟨∇uΦ(A,B) ·C1u⟩Ω + ⟨∂vΦ(A,B)

(
C1v(x,τ)+

+∞

∑
j=1

(Φ(A,B),w j)L2(Ω)

w j(x)
λ j

)
⟩Ω

)

+τ
+∞

∑
j=1

w j(x)
λ j

(
(∇uΦ(A,B) · f(A,B),w j)L2(Ω)+(∂vΦ(A,B),w j)L2(Ω)⟨Φ(A,B)⟩Ω

)
+C2v(x,τ).

By estimates (14), the function C2v(x,τ) is uniformly bounded in τ .
The approximation takes the form

uε(x,τ) = u0(x,τ)+ εu1(x,τ)+ ε2u2(x,τ)+O(ε3), (22) RGSP5A

vε(x,τ) = v0(x,τ)+ εv1(x,τ)+ ε2v2(x,τ)+O(ε3). (23) RGSP5B

Since solutions u1,v1,u2 and v2 involve terms with polynomials in τ which yield
secular terms in the expansion (23), the approximation is valid only for time in-
tervals with length of the order O(1). In order to have an approximation valid for
longer time intervals, it is necessary to eliminate the secular terms.

2. The idea of the renormalization is to introduce an arbitrary time µ , split τ as τ −
µ+µ and absorb the terms containing µ into the renormalized counterparts A(µ)
and B(µ) of A and B, respectively. We introduce two renormalization constants

Z1 = 1+a1ε +a2ε2,

Z2 = 1+b1ε +b2ε2.
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We renormalize the coefficients A and B using the following expansions

Ak = (1+a1kε +a2kε2)Ak(µ), k = 1, . . . ,m,

B = (1+b1ε +b2ε2)B(µ). (24)

The coefficients a2, a1, b2 and b1 can be chosen to eliminate the terms containing
the secular terms µε , µε2 and µ2ε2. Consequently, only the terms in τ − µ
remain in the approximation.
Inserting formulas (24) into the approximation (22)-(23), we obtain

uk(τ,µ) = u0k(τ)+ εu1k(τ)+ ε2u2k(τ) = (1+a1kε +a2kε2)Ak(µ)+

ε(τ −µ +µ)
(

fk(A,B)+ ε
m

∑
j=1

∂u j fk(A,B)a1 jA j(µ)+ εBb1∂v fk(A,B)
)
+

εC1u,k +
ε2

2
(τ2 −µ2 +µ2)

(
∇uf(A,B)f(A,B)+∂vf(A,B)⟨Φ(A,B)⟩Ω

)
k
+

ε2(τ −µ +µ)
((

∇uf(A,B)C1u(x,τ)
)

k +∂v fk(A,B)
(
C1v(x,τ)+

+∞

∑
j=1

(Φ(A,B),w j)L2(Ω)

w j(x)
λ j

))
+ ε2C2u,k(x,τ), k = 1, . . . ,m. (25) RGSP6A

v(τ,µ) = v0(τ)+ εv1(τ)+ ε2(τ) = B(µ)(1+b1ε +b2ε2)+ ε(τ −µ

+µ)
(
⟨Φ(A,B)⟩Ω + ε

m

∑
j=1

⟨∂u j Φ(A,B)a1 jA j(µ)⟩Ω + ε⟨Bb1∂vΦ(A,B)⟩Ω

)
+εC1v + ε

+∞

∑
j=1

(Φ(A(1+ εa1),B(1+ εb1)),w j)L2(Ω)

w j(x)
λ j

+

ε2

2
(τ2 −µ2 +µ2)

(
⟨∇uΦ(A,B) · f(A,B)⟩Ω + ⟨∂vΦ(A,B)⟩Ω ⟨Φ(A,B)⟩Ω

)
+

ε2(τ −µ +µ)
(
⟨∇uΦ(A,B) ·C1u⟩Ω + ⟨∂vΦ(A,B)

(
C1v(x,τ)+

+∞

∑
j=1

(Φ(A,B),w j)L2(Ω)

w j(x)
λ j

)
⟩Ω +

+∞

∑
j=1

w j(x)
λ j

(
(∇uΦ(A,B) · f(A,B),w j)L2(Ω)+

(∂vΦ(A,B),w j)L2(Ω)⟨Φ(A,B)⟩Ω
))

+ ε2C2v(x,τ)+O(e−λτ)+O(ε3). (26) RGSP6B

Next, we choose the renormalization constants a1k and b1 in such way that the
secular terms in µ of the order O(ε) are eliminated. Consequently, we obtain

a1k(µ)Ak(µ)+µ fk(A,B)+C1u,k = 0,

implying

a1k =− µ
Ak

fk(A,B)−
C1u,k

Ak
, k = 1, . . . ,m. (27) RGSP8
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Analogously, for b1 it holds

b1 =−µ
B
⟨Φ(A,B)⟩Ω − C1v

B
− 1

B

+∞

∑
j=1

(Φ(A,B),w j)L2(Ω)

w j(x)
λ j

. (28) RGSP8A

Now we insert formulas (27) and (28) into (25)-(26). The terms of the order
O(ε2), containing only µ and its powers (the secular terms), are to be elimi-
nated and only terms containing τ − µ and τ2 − µ2 should remain. We achieve
this goal by choosing appropriate {a2k}k=1,...,m and b2, given explicitly by com-
paring the corresponding terms of the order O(ε2). The resulting expressions for
{uk(τ,µ)}k=1,...,m are

uk(τ,µ) = Ak(µ)+ ε(τ −µ)
(

fk(A,B)− ε
m

∑
j=1

∂u j fk(A,B)(µ f j(A,B)+C1u, j)−

ε∂v fk(A,B)
(
µ⟨Φ(A,B)⟩Ω +C1v(x,τ)+

+∞

∑
j=1

(Φ(A,B),w j)L2(Ω)

w j(x)
λ j

))
+

ε2

2
(τ2 −µ2)

(
∇uf(A,B)f(A,B)+∂vf(A,B)⟨Φ(A,B)⟩Ω

)
k
+

ε2(τ −µ)
((

∇uf(A,B)C1u(x,τ)
)

k +∂v fk(A,B)
(
C1v(x,τ)+

+∞

∑
j=1

(Φ(A,B),w j)L2(Ω)

w j(x)
λ j

))
, k = 1, . . . ,m. (29) RGSP66A

and for v(τ,µ)

v(τ,µ) = B(µ)+ ε(τ −µ)
(
⟨Φ(A,B)⟩Ω − ε

m

∑
j=1

⟨∂u j Φ(A,B)(µ f j(A,B)+C1u, j)⟩Ω

−ε⟨∂vΦ(A,B)
(
µ⟨Φ(A,B)⟩Ω +C1v(x,τ)+

+∞

∑
j=1

(Φ(A,B),w j)L2(Ω)

w j(x)
λ j

)
⟩Ω

)
+

ε2

2
(τ2 −µ2)

(
⟨∇uΦ(A,B) · f(A,B)⟩Ω + ⟨∂vΦ(A,B)⟩Ω ⟨Φ(A,B)⟩Ω

)
+

ε2(τ −µ)
(
⟨∇uΦ(A,B) ·C1u⟩Ω + ⟨∂vΦ(A,B)

(
C1v(x,τ)+

+∞

∑
j=1

(Φ(A,B),w j)L2(Ω)

w j(x)
λ j

)
⟩Ω +

+∞

∑
j=1

w j(x)
λ j

(
(∇uΦ(A,B) · f(A,B),w j)L2(Ω)+

(∂vΦ(A,B),w j)L2(Ω)⟨Φ(A,B)⟩Ω
))

+O(e−λτ)+O(ε3). (30) RGSP66B
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3. The parameter µ is arbitrary and the solution does not depend on it. Therefore,
we take the condition of tangentiality

∂u(τ,µ)
∂ µ

|µ=τ = 0, ,

∂v(τ,µ)
∂ µ

|µ=τ = 0, for all τ. (31)

After noticing that terms multiplying ε2τ and ε2 in the equation for uk cancel and
that in the equation for v from O(ε2) terms only the last two remain, we arrive at
the RG equations

∂A(x,τ)
∂τ

= εf(A(x,τ),B(τ)), for τ > 0; (32) RGeqSP1

dB(τ)
dτ

= ε⟨Φ(A(·,τ),B(τ))⟩Ω + ε2
+∞

∑
j=1

w j(x)
λ j

(
(∇uΦ(A,B) · f(A,B),w j)L2(Ω)+

(∂vΦ(A,B),w j)L2(Ω)⟨Φ(A,B)⟩Ω
)
, for τ > 0. (33) RGeqSP1B

Returning to the original variable t = ετ , we obtain the desired approximation

∂A(x, t)
∂ t

= f(A(x, t),B(t)), for t > 0; (34) RGeqSP1A

dB(t)
dt

= ⟨Φ(A(·, t),B(t))⟩Ω + ε
+∞

∑
j=1

w j(x)
λ j

(
(∇uΦ(A,B) · f(A,B),w j)L2(Ω)+

(∂vΦ(A,B),w j)L2(Ω)⟨Φ(A,B)⟩Ω
)
, for t > 0. (35) RGeqSP1BA

Note that x ∈ Ω is now just a parameter in (34). For t = O(1) the initial time layer
effects became negligible and the approximation is expressed by A(x, t).
The correct behavior for small times is described by the initial time layers, as in
the classical literature (see e.g. [19], [27] and [28]).

3 The shadow limit through energy estimates
Sec4

Existence results for the shadow problem

We start by summarizing properties of the shadow system (4)-(5):

∂A
∂ t

= f(A,B,x, t) on Ω × (0,T ); A(x,0) = u0(x) on Ω ; (36)

dB
dt

= ⟨Φ(A,B,x, t)⟩Ω on (0,T ); B(0) = ⟨v0⟩Ω , (37)

where Ω is a bounded open set in Rn, with a smooth boundary.

We make the following Assumptions:

A1. f is a C1 function of x ∈ Ω and a continuous function of t. Φ is a continuous
function in (x, t) ∈ Ω × [0,T ].
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A2. f and Φ are C1 functions in Rm+1 and locally Lipschitz in (A,B) ∈ Rm+1.
A3. u0 ∈ L∞(Ω), v0 ∈ H1(Ω)∩L∞(Ω).

Applying Picard iteration to our infinite dimensional setting yields

shlimex Theorem 1 Under Assumptions A1–A3, there is a constant T0 > 0 such that problem
(36)-(37) has a unique solution {A,B} ∈C1([−T,T ],L∞(Ω)m ×R), for all T ≤ T0.

Regularity with respect to the space is not restricted to L∞(Ω). Let B(Ω) be a vector
space of all functions defined everywhere on Ω that are bounded and measurable
over Ω . B(Ω) becomes a Banach space when equipped with the norm ||g||B(Ω) =
sup
x∈Ω

|g(x)|.

bdddef Corollary 1 Let Assumptions A1–A3 hold. Then, if in addition u0 ∈ B(Ω)m, there
is a constant T0 > 0 such that problem (36)-(37) has a unique solution {A,B} ∈
C1([−T,T ],B(Ω)m ×R), for all T ≤ T0.

An analogous result, with B(Ω) replaced by C(Ω), holds if we assume u0 ∈
C(Ω).

Differentiability properties can be shown along the same lines:

H1reg Proposition 1 Let Assumptions A1–A3 hold. Then, if in addition u0 ∈H1(Ω)m, there
is a constant T0 > 0 such that problem (36)-(37) has a unique solution {A,B} ∈
C1([−T,T ],(H1(Ω)m ∩L∞(Ω)m)×R), for all T ≤ T0.

If, in addition to Assumptions A1–A3, we assume

A4. There exist continuous functions c,k, defined on R with values in R+, such that

||f(y, ·, t)||H1(Ω)m + |⟨Φ(y, ·, t)⟩Ω | ≤ c(t)+ k(t)|y|Rm+1 , ∀y ∈ Rm+1, (38) Growth

then every maximal solution to problem (36)-(37) is global.

Auxiliary problems for analysis of the ε-problem.

In the following we introduce two auxiliary problems.
The first problem is linked to the fact that in the shadow limit equation, only the

mean of Φ appears. We have to take care of the replacement of Φ by its spatial mean
and to introduce a correction wΦ by

−∆xwΦ = Φ(A,B,x, t)−⟨Φ(A,B,x, t)⟩Ω in Ω , (39) Average1a

∂wΦ

∂ν
= 0 on ∂Ω , ⟨wΦ⟩Ω = 0. (40) Average1b

Problem (39)-(40) admits a unique variational solution wΦ ∈C([0,T ];H1(Ω)). Fur-
thermore, wΦ ∈C([0,T ];W 2,r(Ω)), for all r ∈ [1,+∞).

Next ∂twΦ satisfies

−∆x∂twΦ = ∇AΦ∂tA+∂BΦ∂tB+∂tΦ −⟨∇AΦ∂tA⟩Ω−
⟨∂BΦ∂tB⟩Ω −⟨∂tΦ⟩Ω ∈C([0,T ];L∞(Ω)); (41) derPhi1

∂∂twΦ

∂ν
= 0 on ∂Ω , ⟨∂twΦ⟩Ω = 0. (42) derPhi2
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Therefore

∂twΦ ∈C([0,T ];W 2,r(Ω)), ∀r ∈ [1,+∞).

The second one is linked to the fact that the shadow approximation uses only the
space average of the initial value v0 of v. It creates an initial time layer given by( ∂

∂τ
−∆x

)
ξ i(x,τ) = 0 in Ω × (0,+∞), (43) Initlay1

∂ξ i

∂ν
= 0 on ∂Ω × (0,+∞), ξ i(x,0) = v0(x)−εwΦ(x,0)−⟨v0⟩Ω in Ω . (44) Initiallay2

Assumption A.3. and the separation of variables for the heat equation yield

ξ i(x,τ) =
∞

∑
j=1

e−λ jτ(ṽ0,w j)L2(Ω)w j(t) ∈ L2(0,T ;H1(Ω))∩C([0,T ];L2(Ω)), (45) Sepvarw

for all finite positive T , with ṽ0 = v0−εwΦ(x,0). Furthermore, by a simple compari-
son principle ṽ0 ∈ L∞(Ω) implies ξ i ∈ L∞(Ω ×(0,T )). Note that ṽ0 ∈ H1(Ω) implies
∂tξ i ∈ L2(Ω × (0,T )) and ξ i ∈ L∞(0,T ;H1(Ω)). In the remainder of this section, we

use the initial layer function ξ i,ε(x, t) = ξ i(x,
t
ε
).

Well-posedness of the ε-problem

Next, we focus on a short time well-posedness of the ε-problem (1)-(3). Here we
consider a more general variant of the problem given by:

∂uε
∂ t

= f(uε ,vε ,x, t), in (0,T )×Ω ; uε(0) = u0(x), x ∈ Ω ; (46) shadG1

∂vε
∂ t

− 1
ε

∆vε = Φ(uε ,vε ,x, t), in (0,T )×Ω ; (47) shadG2

vε(0) = v0(x), x ∈ Ω ;
∂vε
∂ν

= 0 in (0,T )×∂Ω . (48) shadG3

Existence of a mild solution for a short time follows from the standard theory, see
e.g. the textbook of Henry [13] or ref. [21].

For completeness of the presentation, in the remainder of this section we pro-
vide an independent proof of the short time existence and uniqueness of solutions of
ε-problem (46)-(48). Using an explicit decomposition of the solution, we link the ex-
istence time interval of system (46)-(48), to the existence time interval of the reduced
problem (36)-(37). The proposed decomposition provides dependence of the spatial
regularity of the solution on the regularity of the initial datum. Moreover, it proves to
be useful in the error estimation in Theorem 3 showing that that the time existence
interval for variational solutions of problem (46)-(48) is always greater or equal to
the existence time interval for problem (36)-(37).
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We start by recalling some classical results on linear parabolic equations from the
monograph [17], chapter IV, subsection 9. Let us consider the following problem

∂ z
∂ t

− 1
ε

∆z = FΦ(x, t), in (0,T )×Ω ; (49) LadshadG2

z(0) = 0, x ∈ Ω ;
∂ z
∂ν

= 0 in (0,T )×∂Ω . (50) LadshadG3

For FΦ ∈ L∞(Ω × (0,T )), the problem (49)-(50) has smooth solutions. The corre-
sponding functional space for the solutions is

W 2,1
q (QT ) = {ϕ ∈ Lq(QT ) |∂ r

t Ds
xϕ ∈ Lq(QT ) for 2r+ s ≤ 2 },

with QT = Ω × (0,T ) and 1 ≤ q <+∞.

The solutions are characterized by the following result:

Proposition 2 ([17]) Let FΦ ∈ L∞(Ω), q > max{3,(n+2)/2} and 0 < κ < 2− (n+
2)/q. Then the solution to (49)-(50) is an element of W 2,1

q (QT ) and

||z||Cκ,κ/2(QT )
≤C′||z||W 2,1

q (QT )
≤C||FΦ ||Lq(QT ). (51) aprioriq

If q > n+2, then ∇xz is also Hölder continuous in x and t.

Now we are ready to prove a local in time existence of unique solutions to system
(46)-(48).

prop1 Theorem 2 Let Assumptions A1–A3 hold and let v0 ∈ H1(Ω)∩L∞(Ω). Then, there
exists T0 > 0 such that problem (46)-(48) has a unique solution {uε ,vε}∈C1([0,T ];L∞(Ω))m×
(L2(0;T ;H1(Ω))∩L∞(QT )), ∂tvε ∈ L2(Ω × (0,T )).

Proof of Theorem 2.
The proof is based on Schauder’s fixed point theorem.
We introduce a convex set

K = {z ∈ X = L2(0,T ;H1(Ω))∩C([0,T ];L∞(Ω))| ||z||X ≤ R}

and search for a solution in the form

uε = A+U,

vε = B+ εwΦ +ξ i,ε +V.

In the decomposition, ξ i,ε contains the information about the initial condition. V
is a smooth function needed for application of the compact embedding in the proof.
The decomposition allows proving the result without supposing a high regularity of
the initial condition v0. Note that for sufficiently small T , the functions A and B are
well-defined.

Let V (1) ∈ K. Then we define U as a solution of the following problem

∂U
∂ t

= f(A+U,V (1)+B+ εwΦ +ξ i,ε ,x, t)− f(A,B,x, t) in (0,T ); U(x,0) = 0, (52) Schaud1
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for almost all x ∈ Ω . Assumptions A1–A3 and boundedness of wΦ and ξ i,ε yield
that problem (52) has a unique solution U ∈ C1([0,T ];L∞(Ω)), T ≤ T0, such that
||U||C([0,T0];L∞(Ω)m) ≤CKT , where CK depend on R, but not on V (1).

Next, we define V as the solution of the equation

∂V
∂ t

− 1
ε

∆V

= Φ(U+A,V (1)+B+ εwΦ +ξ i,ε ,x, t)−⟨Φ(A,B,x, t)⟩Ω +∆wΦ − ε∂twΦ

= Φ(U+A,V (1)+B+ εwΦ +ξ i,ε ,x, t)−Φ(A,B,x, t)− ε∂twΦ

in (0,T )×Ω ; (53) shadGVV2

V (x,0) = 0, x ∈ Ω ;
∂V
∂ν

= 0 in (0,T )×∂Ω . (54) shadGVV3

Existence of a unique solution V ∈ L2(0,T ;H1(Ω)), ∂tV ∈ L2((0,T )×Ω) of prob-
lem (53)-(54) is straightforward (see e.g. [13]) and the basic energy estimate implies

||V ||L∞(0,T0;L2(Ω))+ ||V ||L2(0,T0;H1(Ω)) ≤
R
2

, for a sufficiently small T0.

Next for sufficiently small T0, estimate (51) yields

||V ||C([0,T ];L∞(Ω)) ≤
R
2
. (55) secondpart

Now we define the nonlinear mapping T : K → L2(0,T ;H1(Ω))∩C([0,T ];L∞(Ω)),
T ≤ T0, by T (V (1)) = V . The above discussion yields T (K) ⊆ K. Next T is obvi-
ously continuous with respect to the strong topology on K. Finally, T maps K into a
ball in W 2,1

q (QT ), for any q < +∞. By (51), W 2,1
q (QT ) is for q > max{3,(n+ 2)/2}

compactly imbedded into C(QT ) and, also, into L2(0,T ;H1(Ω)).Therefore the range
of T is precompact in K for T ≤ T0 and, by Schauder’s theorem, the problem has
at least one fixed point in K. Furthermore, from regularity of the ODE solutions we
conclude that U ∈C1([0,T ];L∞(Ω))m.

Now uε = U + A ∈ C1([0,T ];L∞(Ω))m and vε = V + B + εwΦ + ξ i,ε ∈
L2(0;T ;H1(Ω))∩L∞(QT ), and ∂tvε ∈ L2((0,T )×Ω).

The regularity and Lipschitz property imply uniqueness. 2

An error estimate for the shadow approximation on finite time intervals

Now we introduce the error functions by

Uε = uε −A and Vε = vε −B− εwΦ −ξ i,ε . (56) Error1

Our goal is to estimate the error functions and to show that they are small in a suitable
norm. Such estimates allow to conclude that problems (46)-(48) and (36)-(37) have
the same maximal time existence interval. Note that the nonlinearities are Lipschitz
functions on any cylinder where a solution exists.
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The function Vε is given by

∂Vε
∂ t

− 1
ε

∆Vε = Φ(Uε +A,Vε +B+ εwΦ +ξ i,ε ,x, t)−Φ(A,B,x, t)− ε∂twΦ

in Ω × (0,T ); (57) shadGVErr1

Vε(x,0) = 0, x ∈ Ω ;
∂Vε
∂ν

= 0 in ∂Ω × (0,T ). (58) shadGVErr2

We start with an L∞ error estimate.
Our first cut-off function is

Θ(z) =

−ε log(1/ε), for z <−ε log(1/ε);
z, for − ε log(1/ε)≤ z ≤ ε log(1/ε);
ε log(1/ε), for z > ε log(1/ε).

(59) Ucut

Next, we write the right hand side in equation (57) as

Φ(Uε +A,Vε +B+ εwΦ +ξ i,ε ,x, t)−Φ(A,B,x, t) = ∇AΦ(A,B,x, t)Uε+

∂BΦ(A,B,x, t)(Vε + εwΦ +ξ i,ε)+F(Uε ,Vε + εwΦ +ξ i,ε), (60)

where F is quadratic in its variables. Following ideas of the center manifold theory
(see e.g. [2], we construct a convenient cut-off in F . We use the second cut-off func-
tion ρ : R→ [0,1], being a C∞ function with compact support and satisfying

ρ(ζ ) =
{

1, for |ζ | ≤ 1;
0, for |ζ | ≥ 2. (61) Tronc1

Next we set F̃ε(y,z) = ρ(
|z|√

ε
)F(Θ(y1), . . . ,Θ(yn),z). It is straightforward to see that

|F̃ε(y,z)|= O(1)|(y,z)|2, | d
dy

F̃ε(y)|= O(1)|(y,z)|, ||F̃ε ||C1 = O(1)
√

ε, ||F̃ε ||C = O(1)ε.

Our cut-off of the higher order terms in (3) is

Fε(y,z, t) = ρ(
|z|√

ε
)F(Θ(y1), . . . ,Θ(yn),z)(1−ρ(

2tλ1

−ε logε
))+

ρ(|z|)ρ( 2tλ1

−ε logε
)F(Θ(y1), . . . ,Θ(yn),z). (62) Tronc2

A direct calculation gives

quadcut Lemma 2 There is a constant C > 0, independent of ε , such that for all (y,z, t) we
have

|Fε(y, t)| ≤Cε +C1{t≤−ε logε/(2λ1)}. (63) Tronc3
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We search to prove an L∞-bound for Vε . In order to do it we introduce a problem
where the higher order nonlinearities are cut:

∂βε
∂ t

− 1
ε

∆βε = ∇AΦ(A,B,x, t)(Θ(U1,ε), . . . ,Θ(Un,ε))+∂BΦ(A,B,x, t)(βε+

εwΦ +ξ i,ε)− ε∂twΦ +Fε in Ω × (0,T ); (64) shadGVcut1

βε(x,0) = 0, x ∈ Ω ;
∂βε
∂ν

= 0 on ∂Ω × (0,T ). (65) shadGVcut2

Linftdiff Proposition 3 Let Assumptions A1–A3 hold and let v0 ∈H1(Ω)∩L∞(Ω), u0 ∈L∞(Ω)n.
Then there exists a constant C > 0, independent of ε , such that for ε ≤ ε0 we have

sup
(x,t)∈Ω×(0,T )

|βε(x, t)| ≤Cε log(
1
ε
). (66) LinfPDE

Proof We test equation (64) by (βε −CM(t))+, where CM is a nonnegative function
to be determined. It yields the variational equality

1
2

d
dt

∫
Ω
(βε −CM(t))2

+ dx+
1
ε

∫
Ω
|∇(βε −CM(t))+|2 dx+∫

Ω
(βε −CM(t))+

( d
dt

CM −∇AΦ(A,B,x, t)(Θ(U1,ε), . . . ,Θ(Un,ε))−Fε + ε∂twΦ−

∂BΦ(A,B,x, t)(CM + εwΦ +ξ i,ε)
)

dx =
∫

Ω
∂BΦ(A,B,x, t)(βε −CM(t))2

+ dx. (67) Linftvareq

Now, if CM is chosen in the way that the third term at the left hand side of (67) is
nonnegative, then (65) and Gronwall’s inequality would give (βε −CM(t))+ = 0 a.e.
on Ω × (0,T ), i.e. βε(x, t)≤CM(t) a.e. on Ω × (0,T ).

Let us now construct an appropriate barrier function CM . We recall that ∇AΦ(A,B,x, t)
and ∂BΦ(A,B,x, t) are bounded functions. Next, estimate (63) and boundedness of
∂twΦ yield that the term in question in nonnegative if

d
dt

CM = µCM +C1(ε log(
1
ε
)+1{t≤−ε logε/(2λ1)}) on (0,T ); CM(0) = 0, (68) Barrier1

where µ = ||∂BΦ(A,B,x, t)||L∞(Ω×(0,T )) and C1 is a constant in the estimate for the
terms which do not contain CM . After integration of Cauchy’s problem (68), we find
out that CM(t)≤Cε log( 1

ε ) on (0,T ). This proves the upper bound in (66).
Proving the lower bound is analogous. 2

Next, we study the initial value problem for Uε , defined by (56):

∂Uε
∂ t

= f(A+Uε ,Vε +B+ εwΦ +ξ i,ε ,x, t)− f(A,B,x, t) in (0,T ); Uε(x,0) = 0, (69) Schaud1G

for almost all x∈Ω . We write the nonlinearities at the right hand side in the following
form:

f(A+Uε ,Vε +B+ εwΦ +ξ i,ε ,x, t)− f(A,B,x, t) = ∇Af(A,B,x, t)Uε+

∂Af(A,B,x, t)(Vε + εwΦ +ξ i,ε)+G(Uε ,Vε + εwΦ +ξ i,ε), (70) NonlODE
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where G is quadratic in its arguments. As before, we will slightly modify arguments
in G and consider the function Gε given by

Gε(y,z) = G(Θ(y1), . . . ,Θ(yn),z) (71) Modifnon

and consider the problem

∂γε
∂ t

= ∇Af(A,B,x, t)γε +∂Af(A,B,x, t)(βε + εwΦ +ξ i,ε)+

Gε(γε ,βε + εwΦ +ξ i,ε) in (0,T ); γε(x,0) = 0, (72) Schaud1Err

for almost all x∈Ω . The explicit representation formula for the solutions to the linear
nonautonomous systems of ODEs and estimate (66) yield

ErrorG2 Lemma 3 The solution γε to Cauchy problem (72) satisfies the estimate

sup
(x,t)∈Ω×(0,T )

|γε(x, t)| ≤Cε log(
1
ε
). (73) Errorestim2

Linftyerror Proposition 4 The functions Uε and Vε , defined by (56), satisfy the L∞ error estimate

||Uε ||L∞(Ω×(0,T ))m + ||Vε ||L∞(Ω×(0,T )) ≤Cε . (74) Linftyerrest1

Proof Due to estimates (66) and (73), (γε ,βε) satisfies the same equations as (Uε ,Vε).
Therefore, by uniqueness, γε = Uε and βε = Vε . Estimates (66) and (73) imply

||Uε ||L∞(Ω×(0,T ))m + ||Vε ||L∞(Ω×(0,T )) ≤Cε log(
1
ε
). (75) Linftyerrest12

Next we write system (57)-(58), (72) dans la forme

∂Vε
∂ t

− 1
ε

∆Vε = ∇AΦ(Aε ,Bε ,x, t)Uε +∂BΦ(Aε ,Bε ,x, t)(Vε+

εwΦ +ξ i,ε)− ε∂twΦ in Ω × (0,T ); (76) shadcut1

Vε(x,0) = 0, x ∈ Ω ;
∂Uε
∂ν

= 0 on ∂Ω × (0,T ); (77) shadcut2

∂Uε
∂ t

= ∇Af(Aε ,Bε ,x, t)Uε +∂Af(Aε ,Bε ,x, t)(Vε + εwΦ +ξ i,ε) in Ω × (0,T ); (78) shadcut3

Uε(x,0) = 0 x ∈ Ω , (79) shadcut4

where (Aε ,Bε) are intermediate values. After (67) and (73), we know that the coeffi-
cients ∇AΦ , ∂BΦ , ∇Af and ∂Af are uniformly bounded on Ω × (0,T ), independently
of ε . After repeating the calculations from Proposition 3 and Lemma 3, we obtain
estimate (74). 2

It is convenient to decompose it to Vε = ⟨Vε⟩Ω +Hε , ⟨Hε⟩Ω = 0 and estimate
both terms, ⟨Vε⟩Ω and Hε , separately.

Using a constant as a test function in (76) and applying Gronwall’s inequality
yield
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lemma1 Corollary 2 Let (Uε ,Vε) be given by (69), (57)-(58). Then

||Uε ||L∞(Ω×(0,T ))m ≤C(T )ε and || d
dt

Uε(t)||L∞(Ω)m ≤C(T )(ε + e−λ1t/ε); (80) perturbErr0

||⟨Vε⟩Ω ||L∞(0,T ) ≤C(T )ε and | d
dt
⟨Vε⟩Ω (t)| ≤C(T )(ε + e−λ1t/ε). (81) perturbErr1

Next we estimate the perturbation term Hε = Vε −⟨Vε⟩Ω .

prop2 Proposition 5 The perturbation term Hε satisfies the estimate

||Hε ||2L∞(0,T ;L2(Ω))+
1
ε
||∇Hε ||2L2(Ω×(0,T ))n ≤C(T )ε2. (82) perturbErr2

Proof of Proposition 5. We use Hε as a test function for equation (57). It yields a
standard energy equality

1
2

d
dt

∫
Ω

H2
ε dx+

1
ε

∫
Ω
|∇Hε |2 dx =

∫
Ω

∂BΦ(Aε ,Bε ,x, t)H2
ε dx+∫

Ω

(
∇AΦ(Aε ,Bε ,x, t)Uε − ε∂twΦ+

∂BΦ(Aε ,Bε ,x, t)(⟨Vε⟩Ω + εwΦ +ξ i,ε)
)
Hε dx, (83) Lenergy

where (Aε ,Bε) are intermediate values. The nonlinear term at the second line of
(83) is a Lipschitz function in the first two arguments and we estimate integrals of
products of various components of the approximation by Hε . The leading order terms
are ∫

Ω

√
ε|ξ i,ε | |Hε |√

ε
dx ≤ C0

ε

∫
Ω
|Hε |2 dx+C1ε

∫
Ω
|ξ i,ε |2 dx and∫

Ω

√
ε|Uε |

|Hε |√
ε

dx ≤ C0

ε

∫
Ω
|Hε |2 dx+C1ε

∫
Ω
|Uε |2 dx ≤ C0

ε

∫
Ω
|Hε |2 dx+C1ε3.

Next we take sufficiently small C0 and apply Poincaré’s inequality ||Hε ||L2(Ω) ≤
Cp||∇Hε ||L2(Ω) in the energy estimate. It yields

d
dt

∫
Ω

H2
ε dx+

1
ε

∫
Ω
|∇Hε |2 dx ≤C

∫
Ω

H2
ε dx+Cε3 +Cε

∫
Ω
|ξ i,ε |2 dx. (84) Grono

After integrating in time from 0 to t and using the decay in time of ξ i,ε , we obtain
the assertion of the Proposition.2

coroT Theorem 3 Under Assumptions A1–A3, it holds

||uε −A||L∞(Ω×(0,T ))) ≤C(T )ε, (85) vectErr

||⟨vε⟩Ω −B||L∞(0,T ) ≤C(T )ε, (86) meanErr

√
ε||vε −ξ i,ε −B||L∞(Ω×(0,T ))+ ||∇(vε −ξ i,ε − εwΦ)||L2(Ω×(0,T ))n ≤C(T )ε3/2 (87) perturbErr

on every time existence interval (0,T ) for problem (36)-(37), i.e. the maximal time
existence interval for the shadow problem.
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Proof of Theorem 3. The proof is a direct consequence of Corollary 2 and Proposition
5. 2

Corollary 3 If in addition Assumption A4 holds, then estimates (85)-(87) hold for all
T <+∞.

4 The shadow limit using a local center manifold theorem in Banach spaces
Sec5

The weak point of the results obtained in preceding section is that the estimates de-
pend on the length of the time interval T . Since our basic tool was Gronwall’s in-
equality, the constants exhibit an exponential dependence on T . To obtain estimates
for long time intervals, we have to change the strategy.

A good approach is to eliminate the perturbation term Hε through an estimate
independent of T . Then {uε ,⟨Vε⟩Ω} satisfies the system

duε
dt

= f(uε ,Bε + εwϕ +ξ i,ε +Hε ,x, t) on Ω × (0,T ); uε(x,0) = u0(x) on Ω ; (88) shadowAP

dBε
dt

= ⟨Φ(uε ,Bε + εwϕ +ξ i,ε +Hε ,x, t)⟩Ω on (0,T ); Bε(0) = ⟨v0⟩Ω . (89) shadowBP

We note that system (88)-(89) is a nonlocal and nonlinear perturbation of system (36)-
(37). So its behavior for small ε , at arbitrary times, is linked to the long time behavior
of system (36)-(37). We limit our considerations to the case of the autonomous system
(36)-(37) in the paragraphs which follow.

The center manifold theorem for system (36)-(37)

We start by proving the center manifold theorem for system (36)-(37). We recall
that it is non-local in x and we have to consider (36)-(37) as an ODE in an appropriate
Banach space.

Using spectral problem (8) and smoothness of the boundary of the bounded do-
main Ω , it is easy to prove that there is a smooth orthonormal basis { 1√

|Ω |
,w1, . . .}

for H1(Ω).
The function A can be represented through Fourier series

Ak(x, t) = ⟨Ak(· , t)⟩Ω +
∞

∑
j=1

Ak j(t)w j(x), k = 1, . . . ,m, (90) coeff

which converges in H1(Ω) for every t ≥ 0.
If we calculate the Fourier coefficients {Ak j}k∈{1,...,m}, j∈N, then A is determined.
We study behavior in a neighborhood of an equilibrium point {A∗,B∗}. For sim-

plicity we assume {A∗,B∗}= 0 and set

f(A,B) = ∇Af(0)A+∂Bf(0)B+g(A,B); (91) exp1

Φ(A,B) = ∇AΦ(0) ·A+∂BΦ(0)B+gΦ(A,B); (92) exp2
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where

g ∈C2, g(0) = 0 and ∇A,Bg(0) = 0

gΦ ∈C2, gΦ(0) = 0 and ∇A,BgΦ(0) = 0.

After multiplying equation (36) by w j and integrating over Ω , we obtain the shadow
limit ODEs system

d
dt

B = ∇AΦ(0) · ⟨A⟩Ω +∂BΦ(0)B+ ⟨gΦ(A,B)⟩Ω ; (93) sysSHL4

d
dt
⟨A⟩Ω = ∇Af(0)⟨A⟩Ω +∂Bf(0)B+ ⟨g(A,B)⟩Ω ; (94) sysSHL3

⟨A⟩Ω (0) = ⟨u0⟩Ω ; B(0) = ⟨v0⟩Ω . (95) sysSHL5

d
dt

Ak j(t) =
m

∑
r=1

(∇Af(0))krAr j +(gk(A,B),w j)L2(Ω), k = 1, . . . ,m, j ≥ 1; (96) sysSHL1

Ak j(0) = (u0
k ,w j)L2(Ω); (97) sysSHL2

The unknowns are B and the Fourier coefficients from (90).
Next we introduce the operator L, which denotes the linearization of our shadow

limit ODE system:

– L is defined on the Hilbert space W =Rm+1⊕ℓ2(N)m, with ℓ2(N)= {z=(z1, . . . ,) |
∑∞

j=1 z2
j <+∞}, as a block-diagonal operator

Lφ =⊕+∞
k=0(Lφ)k, φ = {b0,a0,a1, . . .}.

ak = (a1k, . . . ,amk) contains the components of the kth Fourier coefficient and the
blocks (Lφ) j are given by

(Lφ)0 = Λ0

[
b0
a0

]
=

[
∂BΦ(0) ∇AΦ(0)
∂Bf(0) ∇Af(0)

][
b0
a0

]
,

(Lφ) j = ∇Af(0)a j, j = 1,2, . . .

– First block corresponds to the restriction of L to Rm+1. It corresponds to the lin-
earized ODEs for B and <A>Ω . Obviously, L maps Rm+1 into itself. Next blocks
are built from m times m matrices, corresponding to the Fourier coefficients Ak.
Invariance is again obvious.

– Hence, L is a bounded linear operator, defined on W with values in the same
space.

Let us study the spectrum of L:
If Lα = 0, α ̸= 0, then either ∇Af(0) has a zero eigenvalue or Λ0 has it or both.

Due to the block structure, L is surjective if and only if it is injective. Consequently,
its spectrum contains only eigenvalues and their number is smaller or equal to 2m+1.
We write the spectrum σ as σ = σ+∪σc ∪σ−, where

– σ+ = {λ ∈ σ |ℜλ > 0 } (the unstable spectrum).
– σc = {λ ∈ σ |ℜλ = 0 } (the central spectrum).
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– σ+ = {λ ∈ σ |ℜλ < 0 } (the stable spectrum).

In order to construct the center manifold description for problem (36)-(37) we use the
theory from the book of Haragus and Iooss [12], chapter 2. In addition to the above
established properties of the operator L and the functional space W , one has to check
the following hypothesis

Spectral decomposition hypothesis ([12], page 31) The set σc consists of a finite
number of eigenvalues with finite algebraic multiplicities.

Note that if 0 is an eigenvalue for ∇Af(0), then the corresponding eigenspace is infi-
nite dimensional. Hence we assume

A5. All eigenvalues of ∇Af(0) are with non-zero real part. σc is linked to Λ0 and it
is not empty.

Next let Pc ∈ L (W ) be the spectral projector corresponding to σc. Then

P2
c = Pc, PcLu = LPcu, ∀u ∈W and Im Pc is finite dimensional.

Let Ph = I −Pc. Then

P2
h = Ph, PhLu = LPhu, ∀u ∈W and Ph ∈ L (W ).

Let E0 = Im Pc= Ker Ph ⊂W , Wh = Im Ph = Ker Pc ⊂W. Then, it holds

W = E0 ⊕Wh.

Obviously, dim E0 ≤ m+ 1 and it is linked to the eigenvalues of Λ0 with ℜλ = 0.
Assumption A5 yields existence of γ > 0 such that

inf
λ∈σ+

ℜλ > γ and sup
λ∈σ−

ℜλ <−γ.

Let η ∈ [0,γ ] and

Cη(R,W ) = {u ∈C(R,W ) | ||u||Cη = sup
t∈R

(e−ηt ||u(t)||W )<+∞}.

Cη(R,W ) is a Banach space.
We search to solve the evolution problem

duh

dt
= Lhuh + f (t) (98) expevol

in Cη(R,W ) and to prove that it defines a linear map Kh, Kh f = uh, which is contin-
uous from Cη(R,W ) to itself. Lh is the restriction of L to Wh = PhW .

First we remark that the initial value is determined by the exponential growth and
A j, j ≥ 1, are given by

A j(t) =−
∫ +∞

t
e∇Af(0)(t−s)P+ f j(s) ds+

∫ t

−∞
e∇Af(0)(t−s)P− f j(s) ds,

A j = (A1 j, . . . ,Am j), j ≥ 1.
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For the remaining part we have

d
dt

Ph

[
⟨A⟩Ω

B

]
=

[
∇Af(0) ∂Bf(0)

∇AΦ(0) ∂BΦ(0)

]
Ph

[
⟨A⟩Ω

B

]
+

[
fA
fB

]
. (99) eqRest

Since all problems are finite dimensional, we have a unique solution uh ∈ Cη(R,Wh)
and Kh is defined by setting uh = Kh f . Continuity of Kh is obvious.

Consequently, we have checked all assumptions of Theorem 2.9 from book [12],
i.e. the continuity of the operator L and choice of the functional space W , the spectral
decomposition, following from Assumption A5, and the solvability of problem (98).
We conclude

CMTHI1 Proposition 6 Let Assumptions A1-A3, A5 hold. Then there exists a mapΨ ∈C1(E0,Wh),
with

Ψ(0) = 0, ∇Ψ(0) = 0, (100) tangent1

and a neighborhood N of 0 in W =Rm+1 ⊕ ℓ2(N)m such that the local center mani-
fold

M0 = {uc +Ψ(uc) | uc ∈ E0 } ⊂W (101) manif1

has the following properties:

(i) M0 is locally invariant, i.e. if u = (B,A) = (b0,a0,a1, . . .) is a solution for (93)-
(97) (and consequently for (36)-(37)) satisfying u(0) ∈ M0 ∩N and u(t) ∈ N
for all t ∈ [0,T ], then u(t) ∈ M0 for all t ∈ [0,T ].

(ii) M0 contains the set of bounded solutions of (36)-(37) staying in N for all t ∈R,
i.e. if u is a solution of (36)-(37) satisfying u(t)∈N for all t ∈R, then u(0)∈M0.

effODE1 Corollary 4 Let the assumptions of Proposition 6 hold. Then every solution u =
(B,A) for (36)-(37) which belongs to M0 for all t ∈ (0,T ) ⊂ R is of the form u =
uc +Ψ(uc) and uc satisfies

d
dt

uc = Lcuc +Pc

[
g

gΦ

]
, (102) CMeq1

where Lc is the restriction of L on E0. Furthermore, the reduction function satisfies
equation

d
dt

Ψ(uc) = LhΨ(uc)+Ph

[
g

gΦ

]
. (103) CMeq2

The center manifold construction for system (1)-(3)

Now we present the center manifold construction for system (1)-(3). In order to
simplify the notation, we denote uε by A.

Next, the unknown function B is replaced by vε , which we expand as

vε = B0 +
∞

∑
j=1

B j(t)w j(x).
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After multiplying equation (1) by w j and integrating over Ω , we obtain

d
dt

Ak j(t) =
m

∑
r=1

(∇Af(0))krAr j +(∂Bf(0)) jB j +(gk(A,B),w j)L2(Ω),

k = 1, . . . ,m, j ≥ 1; (104) sysSHL1O

Ak j(0) = (u0
k ,w j)L2(Ω); (105) sysSHL2O

d
dt
⟨A⟩Ω = ∇Af(0)⟨A⟩Ω +∂Bf(0)B0 + ⟨g(A,B)⟩Ω ; ⟨A⟩Ω (0) = ⟨u0⟩Ω . (106) sysSHL3O

Next we multiply equation (2) by w j and integrate over Ω . It yields

d
dt

B0 = ∇AΦ(0) · ⟨A⟩Ω +∂BΦ(0)B0 + ⟨gΦ(A,B)⟩Ω ; B0(0) = ⟨v0⟩Ω . (107) sysSHL5O

d
dt

B j(t) = (∂BΦ(0)−
λ j

ε
)B j(t)+∇AΦ(0) ·A j +(gΦ(A,B),w j)L2(Ω), (108) sysSHL6O

B j(0) = (v0,w j)L2(Ω), j ≥ 1. (109) sysSHL7O

The new operator L1 is is defined on W 1 =Rm+1⊕ℓ2(N)m+1, as a block-diagonal op-
erator. For φ = {b0,a0,a1,b1,a2,b2, . . .}, with ak = (a1k, . . . ,amk), the block (L1φ)k

is defined as follows:
First block corresponds to the restriction of L1 to Rm+1 and it reads as before:

(L1φ)0 = L1|Rm+1φ = Λ0

[
b0
a0

]
.

Obviously, L1 maps Rm+1 into itself. Next blocks are slightly different and built from
m+1 times m+1 matrices, corresponding to the action of L1 on {ak,bk}. They read

Λ1 =

[
∇Af(0) ∂Bf(0)

∇AΦ(0) ∂BΦ(0)− λ j
ε

]
.

Invariance is again obvious. Hence, L1 is a bounded linear operator, defined on W
with values in the same space.

Since

det(Λ1 −λ Im+1) = det(Λ0 −λ Im+1)−
λ1

ε
det(∇Af(0)−λ Im),

the classical perturbation theory for the eigenvalues yields that there is q > 0 such
that the first m eigenvalues of matrix Λ1 correspond to an O(ε1/q) perturbation of
the eigenvalues of ∇Af(0). Using assumption A5, for ε ≤ ε0, we obtain again that
the real parts of these eigenvalues are different from zero. Finally, the last eigenvalue
is −λ j/ε +O(1) and belongs to σ−. Again, problem (98) has a unique solution and
Theorem 2.9, page 34, [12] holds true. Hence we have an analogue of Proposition
6 and Corollary 4. We note that in both case we have the same space E0. The new
equation (102), for u1

c , differs only in the nonlinear part. Equation (103) now reads

d
dt

Ψ(u1
c) = LhΨ(u1

c)+Ph

[
g

gΦ

]
. (110) CMeq3
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estimatedef Theorem 4 Let assumptions of Proposition 6 hold. Then, every solution of problem
(1)-(3), which belongs to M0 for all t ∈ (0,T ) ⊂ R, is of the form u1 = u1

c +Ψ(u1
c).

Functions B j tend exponentially to a corresponding solution of system (1)-(3) on M0
and ||B j||L1(R+)

≤Cε . Moreover, the distance between the bounded solutions of prob-
lem (1)-(3) and its shadow approximation (36)-(37) with the same initial conditions
is smaller than Cε in L∞(R+).

Proof of Theorem 4. The result is a consequence of the term −λ jB j/ε in equation
(108).
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