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Introduction

This paper contains the main parts of the proofs of the results announced in [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF]. We recall below some notations and the main result of this paper but we recommend to the reader to study first [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF]. Let d ∈ N * , D a non-empty subset of {1, . . . , d} and D c = {1, . . . , d} r D its complement. Let R D = {N r : r ∈ D} be a multiset of |D| non-negative integers. The main goal of our work is to obtain an asymptotic formula for Π * d (n, R D ), the number of unequal partitions of n with exactly N r parts congruent to r modulo d for all r ∈ D. We adopt the convention Π * d (0, R D ) = 1 if R D = {0, ..., 0} and 0 otherwise.

Recall that if n > 1 and Π * d (n, R D ) > 1 then n satisfies (1•1) n ≡ R D (mod δ),
where R D = P r∈D rN r and δ is the g. c. d. of the elements of D c ∪{d}. In the introduction of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF], we observed that the N r , r ∈ D may be expected to be close to k 0 with (1•2)

k 0 := 2 √ 3 log 2 π √ n d .
More precisely we suppose that for all r ∈ D we have

(1•3) |N r -k 0 | 6 n 1 4 √ log n d 1/3 |D| 2/3 w(n) ,
where w(n) is a non-decreasing function such that w(n) → ∞ if n → ∞. Let us recall the main result of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF] Theorem 1.1. Let ε > 0. The following two propositions hold. (i) Let d 6 n 1/4-ε , D = {1, . . . , d} and n ≡ R D (mod d). Let R = R D = {N 1 , . . . , N d } be a multiset of integers satisfying (1•3). Then we have

Π * d (n, R D ) = (1 + o(1))q(n) d q 1 -12(log 2) 2 π 2 ≥ d 2 √ 3n ¥ d/2 × exp n - 2 √ 3 log 2 2 π °1 -12(log 2) 2 π 2 ¢√ n ≥ d X r=1 (N r -k 0 ) ¥ 2 - πd 2 √ 3n d X r=1 (N r -k 0 ) 2 o .
(ii) We suppose now that d 6 n 1/6-ε and D ⊂ {1, . . . , d}. Then under (1•1) and (1•3) we have

Π * d (n, R D ) = q(n) δ(1 + o(1)) q 1 -12|D|(log 2) 2 dπ 2 ≥ d 2 √ 3n ¥ |D|/2 × exp ≥ - 2 √ 3(log 2) 2 π ≥ 1 -12|D|(log 2) 2 dπ 2 ¥ √ n ≥ X r∈D (N r -k 0 ) ¥ 2 - πd 2 √ 3n X r∈D (N r -k 0 ) 2 ¥ .
First we complete the proof of Theorem 1.1 in the case D = {1, . . . , d}, after we will handle the complementary case when D c 6 = ∅. The last sections are devoted to the proofs of the different corollaries of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF].

The term S 2

We begin to assume that (2•1)

d 6 n 1 2 -ε
with some fixed positive ε and

(2•2) |k -k 0 | = o ≥ √ n d ¥ . Let (2•3) x 0 := π 2 √ 3n , t := dx 0 . Then (2•4) k 0 t = k 0 dx 0 = log 2.
We also suppose that

(2•5) |N r -k 0 | = o ≥ √ n d ¥ (r = 1, . . . , d).
In Section 4 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF] we proved that as n → ∞ then we have

(2•6) d Y r=1 g N r (dx 0 ) = exp ≥ π 2 12x 0 + (log 2) 2 2x 0 + o( √ n) ¥
According to the notations of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF] Sections 3 and 4, we have

|S 2 | 6 d 2π Z 3πx 0 6|y|6π/d n d Y r=1 |g N r (d(x 0 + iy))| o exp((n -R -Q)x 0 ) dy.
The main part of this section is the following lemma Proof. This time we start out from the first expression of g k and develop the logarithms:

(2•7)

g k (w) = exp ≥ k X ν=1 log 1 1 -exp(-νw) ¥ = exp ≥ k X ν=1 ∞ X m=1 1 m exp(-νmw) ¥ = exp ≥ ∞ X m=1 1 m k X ν=1 exp(-νmw) ¥ = exp ≥ k X ν=1 exp(-νw)+ ∞ X m=2 1 m k X ν=1 exp(-νmw) ¥ .
We take the moduli

|g k (w)| 6 exp ≥Ø Ø Ø k X ν=1 exp(-νw) Ø Ø Ø + ∞ X m=2 1 m k X ν=1 exp(-νmt) ¥ = g k (t) exp ≥Ø Ø Ø k X ν=1 exp(-νw) Ø Ø Ø - k X ν=1 exp(-νt) ¥ = g k (t) exp ≥ |1 -exp(-kw)| | exp(w) -1| - 1 -exp(-kt) exp(t) -1 ¥ 6 g k (t) exp ≥ 1 + exp(-kt) | exp(w) -1| - 1 -exp(-kt) exp(t) -1 ¥ .
When |=m w| 6 π,

| exp(w) -1| 2 = (exp(t) -1) 2 + 4e t (sin(b/2)) 2 > 4(sin(b/2)) 2 > 4|b| 2 π 2 , thus |g k (w)| 6 g k (t) exp ≥ 1 + exp(-kt) 2 π |=m w| - 1 -exp(-kt) exp(t) -1 ¥ if |=m w| 6 π. Therefore, 3πx 0 6 |y| 6 π/d implies that |g k (d(x 0 + iy))| 6 g k (dx 0 ) exp ≥ 1 + exp(-kdx 0 ) 2 π d|y| - 1 -exp(-kdx 0 ) exp(dx 0 ) -1 ¥ 6 g k (dx 0 ) exp ≥ 1 + exp(-kdx 0 ) 6dx 0 - 1 -exp(-kdx 0 ) exp(dx 0 ) -1 ¥ . By (1•2), (2•1), (2•2), (2•3), (2•4), |g k (d(x 0 + iy))| 6 g k (dx 0 ) exp ≥ 3 2 + o(1) 6dx 0 - 1 2 + o(1) exp(dx 0 ) -1 ¥ = g k (dx 0 ) exp ≥ 3 2 + o(1) 6dx 0 - 1 2 + o(1) dx 0 + O(1) ¥ = g k (dx 0 ) exp ≥ - 1 + o(1) 4dx 0 ¥ .
This ends the proof of Lemma 2.1.

u t By (2•5) we obtain for S 2 , (2•8) |S 2 | 6 n d Y r=1 g N r (dx 0 ) o exp ≥ - 1 + o(1) 4x 0 ¥ exp((n -R -Q)x 0 ) = exp ≥ π √ n √ 3 - √ 3n 2π + o( √ n) ¥ ,
by (2•6) and according to the estimates of Q and R obtained in Sections 2 and 4 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF].

The term S 1

Next, we will try to give a similar and simple estimation for n - 

|g k (d(x 0 + iy))| 6 g k (dx 0 ) exp ≥ - √ 3n 1/4+2ε 27π 5 d ¥ .
(ii) Under the notations and hypotheses

(1•2), (2•1), (2•2), (2•3), (2•4), for n -3 4 + ε 3 6 |y| 6 n -5 8 +ε we have |g k (d(x 0 + iy))| 6 g k (dx 0 ) exp ≥ - √ 3n 2ε/3 27π 5 d ¥ .
Proof of (i). We suppose that n -5 8 +ε 6 |y| 6 3πx 0 . By (2•7) we have

g k (w) = exp ≥ k X ν=1 exp(-νw) + ∞ X m=2 1 m k X ν=1 exp(-νmw) ¥ .
We study again |g k (w)|:

|g k (w)| 6 exp ≥ <e ≥ k X ν=1 exp(-νw) ¥ + ∞ X m=2 1 m exp(-νmt) ¥ = g k (t) exp ≥ k X ν=1 <e (exp(-νw)) - k X ν=1 exp(-νt) ¥ = g k (t) exp ≥ k X ν=1 exp(-νt)(<e exp(-νib) -1) ¥ = g k (t) exp ≥ k X ν=1 exp(-νt)(cos(νb) -1) ¥ = g k (t) exp ≥ -2 k X ν=1 exp(-νt) sin 2 °ν|b| 2 ¢ ¥ . Let K 0 := b k 0 3 log 2 c. If k = k 0 + o °√n d ¢ then k > K 0 for n large enough : |g k (w)| 6 g k (t) exp ≥ -2 K 0 X ν=1 exp(-νt) sin 2 °ν|b| 2 ¢ ¥ 6 g k (t) exp ≥ -2 K 0 X ν=1 exp(-k 0 t) sin 2 °ν|b| 2 ¢ ¥ = g k (t) exp ≥ - K 0 X ν=1 sin 2 ≥ ν|b| 2 ¥¥ .
Writing w = d(x 0 + iy) and using the inequality | sin t| > 2|t| π for |t| 6 π/2 , we obtain

|g k (d(x 0 + iy))| 6 g k (dx 0 ) exp ≥ - K 0 X ν=1 ≥ νd|y| π ¥ 2 ¥ since νd|y| 2 6 K 0 d3πx 0 2 6 k 0 dπx 0 2 log 2 = π 2 . Since P K 0 ν=1 ν 2 > K 3 0 3 , we have |g k (d(x 0 + iy))| 6 g k (dx 0 ) exp ≥ - °d|y| π ¢ 2 K 3 0 3 ¥ 6 g k (dx 0 ) exp ≥ - √ 3n 1/4+2ε π 5 3 3 d ¥ .
(ii) can be obtained similarly. u t

By (2•5), Ø Ø Ø d 2π Z n -5 8 +ε 6|y|63πx 0 n d Y r=1 g N r (d(x 0 + iy)) o exp((n -R -Q)(x 0 + iy)) dy Ø Ø Ø 6 d 2π Z n -5 8 +ε 6|y|63πx 0 Ø Ø Ø d Y r=1 g N r (d(x 0 + iy)) Ø Ø Ø exp((n -R -Q)x 0 ) dy 6 n d Y r=1 g N r (dx 0 ) o exp ≥ - √ 3n 1 4 +2ε π 5 3 3 ¥ exp((n -R -Q)x 0 ).
We have to stop here since the previously error term o( √ n) is rough. Otherwise the above proof can be applied, e. g., for n -3 4 + ε 3 6 |y| 6 n - 5 8 +ε and results that

Ø Ø Ø Ø Ø d 2π Z n -3 4 + ε 3 6|y|6n -5 8 +ε ( d Y r=1 g N r (d(x 0 + iy)) ) exp((n -R -Q)(x 0 + iy)) dy Ø Ø Ø Ø Ø 6 ( d Y r=1 g N r (dx 0 ) ) exp ≥ - √ 3n 2ε/3 π 5 3 3 ¥ exp((n -R -Q)x 0 ).
Finally we obtain for S 1 :

(3•1) |S 1 | ø n d Y r=1 g N r (dx 0 ) o exp ≥ - √ 3n 2ε/3 π 5 3 3 ¥ exp((n -R -Q)x 0 ).

The function g k in the range

|y| < y 1 . Let |y| 6 y 1 = n -3 4 + ε 3 , w = t + ib = dx 0 + idy. Now |b| t = O(n -1 4 + ε
3 ). In this section we work with a general subset D ⊂ {1, . . . , d}. Instead of (2•2) and (2•5), we suppose that 

(4•1) |k -k 0 | 6 n 1 4 √ log n d 1/3 |D| 2/3 w(n) and |N r -k 0 | 6 n 1 4 √ log n d 1/3 |D| 2/3 w(n) (r ∈ D) where w(n) is a non-decreasing function such that w(n) → ∞ if n → ∞.
g k (w) = f (w) exp n - C 2 t + (k -k 0 ) log 2 - (k -k 0 ) 2 t 2 + log 2 2 + ib ≥ C 2 t 2 + k 0 log 2 t -k 0 (k -k 0 ) ¥ + b 2 ≥ C 2 t 3 + k 0 log 2 t 2 + k 2 0 2t ¥ + o ≥ n -ε |D| ¥o .
We have again by Lemma 4.1 of [6]

g k (w) = f (w) exp n - 1 w ∞ X m=1 1 m 2 exp(-kmw) + 1 2 ∞ X m=1 1 m exp(-kmw) + O(k -1 ) o . By (1•2) and (2•2), 1 k = O °d √ n ¢ = O °1 d d 2 √ n ¢ .
Then

1 k = O(n -2ε /d) and |b| t = o(n -ε d -1
). Since now |y| 6 y 1 , it is possible to replace w by t in the different exp(-kmw), in cost of an admissible error term:

Lemma 4.2. (i) We have ∞ X m=1 1 m exp(-kmw) = ∞ X m=1 1 m exp(-kmt) + O °|b| t ¢ .
(ii) We have

1 w ∞ X m=1 1 m 2 exp(-kmw) = 1 w ∞ X m=1 1 m 2 exp(-kmt) - kib w ∞ X m=1 1 m exp(-kmt) - k 2 b 2 2w ∞ X m=1 exp(-kmt) + O ≥ k 3 |b| 3 |w| ¥ ∞ X m=1 m exp(-kmt).
Proof. By standard approximations we have

∞ X m=1 1 m exp(-kmw) = ∞ X m=1 1 m (1 -(1 -exp(-kmib))) exp(-kmt) = ∞ X m=1 1 m exp(-kmt) + ∞ X m=1 1 m exp(-kmt)O(km|b|) = ∞ X m=1 1 m exp(-kmt) + O °k|b| e kt -1 ¢ = ∞ X m=1 1 m exp(-kmt) + O °|b| t ¢ .
This proves (i). Next we prove (ii). We have

1 w ∞ X m=1 1 m 2 exp(-kmw) = 1 w ∞ X m=1 1 m 2 exp(-kmt) exp(-ikmb) = 1 w ∞ X m=1 1 m 2 exp(-kmt) © 1 -ikmb - (kmb) 2 2 + O((km|b|) 3 ) ™ .
It remains to develop to end the proof of Lemma 4.2. u t

We also have

∞ X m=1 m exp(-kmt) = exp(-kt) (1 -exp(-kt)) 2 = 1 (exp(kt) -1)(1 -exp(-kt)) 6 1 (kt) 2 , since for u > 0, e u -1 = u ∞ X n=0 u n (n + 1)! > u ∞ X n=0 u n n!2 n = ue u 2 ,
thus (1 -e -u ) > ue -u/2 and (e u -1)(1 -e -u ) > u 2 . This gives for g k (w) :

g k (w) = f (w) exp n - 1 w ∞ X m=1 1 m 2 exp(-kmt) + ikb w ∞ X m=1 1 m exp(-kmt) + k 2 b 2 2w ∞ X m=1 exp(-kmt) + 1 2 ∞ X m=1 1 m exp(-kmt) + o ≥ n -ε d ¥ + O ≥ k °|b| t ¢ 3 ¥o .
The next step of the proof of Lemma 4.1 consists of "replacing" 1 w by 1 t and computing the terms arisen by this manipulation. We use the formula

(4•3) 1 w = 1 t(1 -(-i b t )) = 1 t ≥ 1 -i b t - b 2 t 2 + O ≥ |b| 3 t 3 ¥¥ .
This gives for g k (w)

g k (w) = f (w) exp n - 1 t ∞ X m=1 1 m 2 exp(-kmt) + ib t 2 ∞ X m=1 1 m 2 exp(-kmt) + b 2 t 3 ∞ X m=1 1 m 2 exp(-kmt) + O ≥ |b| 3 t 4 ¥ + ikb t ∞ X m=1 1 m exp(-kmt) + kb 2 t 2 ∞ X m=1 1 m exp(-kmt) + O ≥ k|b| 3 t 3 log ≥ 1 + 1 e kt -1 ¥¥ + k 2 b 2 2t ∞ X m=1 exp(-kmt) + O ≥ k 2 |b| 3 t 2 (e kt -1) ¥ + 1 2 ∞ X m=1 1 m exp(-kmt) + o ≥ n -ε d ¥ + O ≥ k|b| 3 t 3 ¥o .
We collect the terms with ib, the terms with b 2 :

g k (w) = f (w) exp n - 1 t ∞ X m=1 1 m 2 exp(-kmt) + 1 2 ∞ X m=1 1 m exp(-kmt) + ib ≥ 1 t 2 ∞ X m=1 1 m 2 exp(-kmt) + k t ∞ X m=1 1 m exp(-kmt) ¥ + b 2 ≥ 1 t 3 ∞ X m=1 1 m 2 exp(-kmt) + k t 2 ∞ X m=1 1 m exp(-kmt) + k 2 2t ∞ X m=1 exp(-kmt) ¥ + o ≥ n -ε d ¥ + O ≥ (k + 1 t ) |b| 3 t 3
¥o .

Now we compute the different summations over m. By (4•1), exp(-kmt) is close to exp(-k 0 mt) if m is not too large, but we have again some computations to do to control this approximation. For s = 0, 1, 2:

∞ X m=1 1 m s exp(-kmt) = ∞ X m=1 1 m s exp(-k 0 mt) exp(-(k -k 0 )mt). Since e x = P M n=0 x n n! + P ∞ n=M +1 x n n! , we have Ø Ø Øe x - M X n=0 x n n! Ø Ø Ø 6 |x| M +1 ∞ X n=M +1 |x| n-M -1 n! 6 |x| M +1 e |x| .
Thus we obtain

∞ X m=1 1 m s exp(-kmt) = ∞ X m=1 1 m s exp(-k 0 mt) n 1 -(k -k 0 )mt + 1 2 (k -k 0 ) 2 m 2 t 2 - 1 6 (k -k 0 ) 3 m 3 t 3 + O(|k -k 0 | 4 m 4 t 4 exp(|k -k 0 |mt))
.

By (2•2), exp(|k -k 0 |mt) 6 exp(mk 0 t/2). Next we use the fact that k 0 t = log 2 : ∞ X m=1 1 m s exp(-kmt) = ∞ X m=1 1 m s 2 m ≥ 1 -(k -k 0 )mt + 1 2 (k -k 0 ) 2 m 2 t 2 - 1 6 (k -k 0 ) 3 m 3 t 3 + O(|k -k 0 | 4 m 4 t 4 2 m/2 )) = ∞ X m=1 1 m s 2 m -(k -k 0 )t ∞ X m=1 2 -m m s-1 + 1 2 (k -k 0 ) 2 t 2 ∞ X m=1 2 -m m s-2 - (k -k) 3 6 t 3 ∞ X m=1 2 -m m s-3 + O ≥ |k -k 0 | 4 t 4 ∞ X m=1 2 -m/2 m s-4
¥ .

We obtain for the function g k

g k (w) = f (w) exp n - 1 t ∞ X m=1 1 m 2 2 m + (k -k 0 ) ∞ X m=1 1 m2 m - (k -k 0 ) 2 t 2 ∞ X m=1 2 -m + O(|k -k 0 | 3 t 2 ) + 1 2 ∞ X m=1 1 m2 m + O(|k -k 0 |t) + ib ≥ 1 t 2 ∞ X m=1 1 m 2 2 m - (k -k 0 ) t ∞ X m=1 1 m2 m + O(|k -k 0 | 2 ) + k t ∞ X m=1 1 m2 m -k(k -k 0 ) ∞ X m=1 2 -m + O(kt|k -k 0 | 2 ) ¥ + b 2 ≥ 1 t 3 ∞ X m=1 1 m 2 2 m + O ≥ |k -k 0 | t 2 ¥ + k t 2 ∞ X m=1 1 m2 m + O ≥ k|k -k 0 | t ¥ + k 2 2t ∞ X m=1 2 -m + O(k 2 |k -k 0 |) ¥ + o(n -ε d -1 ) + O ≥ (k + 1 t ) |b| 3 t 3
¥o .

Next we compute the different sums on m:

g k (w) = f (w) exp n - C 2 t + (k -k 0 ) log 2 - (k -k 0 ) 2 t 2 + 1 2 log 2 + ib ≥ C 2 t 2 - (k -k 0 ) t log 2 + k log 2 t -k(k -k 0 ) ¥ + b 2 ≥ C 2 t 3 + k t 2 log 2 + k 2 2t ¥ + O(|k -k 0 | 3 t 2 + |k -k 0 |t + |k -k 0 | 2 |b| + |k -k 0 |b 2 t 2 ) + o ≥ n -ε d ¥ + O ≥ (k + 1 t ) |b| 3 t 3 ¥o .
Then by (4•1) the above error terms give o(n -ε |D| -1 ) and we can replace -k(k -k 0 ) with -k 0 (k -k 0 ) in the coefficient of ib and analogously in that of b 2 . Finally,

g k (w) = f (w) exp n - C 2 t + (k -k 0 ) log 2 - (k -k 0 ) 2 t 2 + log 2 2 + ib ≥ C 2 t 2 + k 0 log 2 t -k 0 (k -k 0 ) ¥ + b 2 ≥ C 2 t 3 + k 0 log 2 t 2 + k 2 0 2t ¥ + o ≥ n -ε |D| ¥o , as claimed in Lemma 4.1. u t
5. The term S 0 , end of the proof of Theorem 1.1 in the case D = {1, . . . , d}.

As a special case of Lemma 4.1 applied with D = {1, . . . , d}, we remark that

g k (dx 0 ) = f (dx 0 ) exp n - C 2 dx 0 + (k -k 0 ) log 2 - (k -k 0 ) 2 dx 0 2 + log 2 2 + o ≥ n -ε d ¥o ,
and

(5•1) d Y r=1 g N r (dx 0 ) = f d (dx 0 ) exp n - C 2 x 0 + d X r=1 (N r -k 0 ) log 2 - dx 0 2 d X r=1 (N r -k 0 ) 2 + d log 2 2 + o(n -ε )}. Since f (w) = exp ≥ π 2 6w + 1 2 log w 2π + O(|w|)) for w → 0 in | arg w| 6 κ < π/2 and <e w > 0, we have for |y| 6 y 1 6 n -3 4 + ε 3 : f (d(x 0 + iy)) = exp ≥ π 2 6d(x 0 + iy) + 1 2 log ≥ d(x 0 + iy) 2π ¥ + O(dx 0 ) ¥ , f d (d(x 0 + iy)) = exp ≥ π 2 6(x 0 + iy) + d 2 log ≥ d(x 0 + iy) 2π ¥ + O(d 2 x 0 ) ¥ = exp ≥ π 2 6x 0 ≥ 1 - iy x 0 - y 2 x 2 0 + O °|y| 3 x 3 0 ¢ ¥ + d 2 log °dx 0 2π ¢ + d 2 log ≥ 1 + iy x 0 ¥ + O(d 2 x 0 ) ¥ = exp ≥ π 2 6x 0 -iy π 2 6x 2 0 - π 2 y 2 6x 3 0 + d 2 log °dx 0 2π ¢ + o(n -ε ) ¥ .
We obtain for the integrand

P := n d Y r=1 g N r (d(x 0 + iy)) o exp((n -R -Q)(x 0 + iy)) = exp n π 2 6x 0 -iy π 2 6x 2 0 - π 2 y 2 6x 3 0 + d 2 log °dx 0 2π ¢ + o(n -ε ) + (n -R -Q)(x 0 + iy) - C 2 x 0 + d X r=1 (N r -k 0 ) log 2 - 1 2 d X r=1 (N r -k 0 ) 2 dx 0 + d 2 log 2 + idy ≥ C 2 dx 2 0 + k 0 log 2 x 0 -k 0 d X r=1 (N r -k 0 ) ¥ + d 2 y 2 ≥ C 2 d 2 x 3 0 + k 0 log 2 dx 2 0 + k 2 0 2x 0 ¥ + o(n -ε o .
We collect terms in iy, y 2 :

P = exp n π 2 6x 0 + d 2 log °dx 0 2π ¢ + (n -R -Q)x 0 - C 2 x 0 + d X r=1 (N r -k 0 ) log 2 - 1 2 d X r=1 (N r -k 0 ) 2 dx 0 + d log 2 2 + iy ≥ n -R -Q - π 2 6x 2 0 + C 2 x 2 0 + dk 0 log 2 x 0 -dk 0 d X r=1 (N r -k 0 ) ¥ + y 2 ≥ - π 2 6x 3 0 + C 2 x 3 0 + dk 0 log 2 x 2 0 + d 2 k 2 0 2x 0 ¥ + o(n -ε ) o .
As a special case, we obtained that

(5•2) n d Y r=1 g N r (dx 0 ) o exp((n -R -Q)x 0 ) = exp n π 2 6x 0 + d 2 log °dx 0 2π ¢ + (n -R -Q)x 0 - C 2 x 0 + d X r=1 (N r -k 0 ) log 2 - 1 2 d X r=1 (N r -k 0 ) 2 dx 0 + d log 2 2 + o(n -ε ) o .
Consequently,

(5•3) n d Y r=1 g N r (d(x 0 + iy)) o exp((n -R -Q)(x 0 + iy)) = n d Y r=1 g N r (dx 0 ) o exp((n -R -Q)x 0 ) × exp n iy ≥ n -R -Q - π 2 6x 2 0 + 1 x 2 0 ∞ X m=1 1 m 2 2 m + dk 0 log 2 x 0 -dk 0 d X r=1 (N r -k 0 ) ¥ + y 2 ≥ - π 2 6x 3 0 + 1 x 3 0 ∞ X m=1 1 m 2 2 m + dk 0 log 2 x 2 0 + d 2 k 2 0 2x 0 ¥ + o(n -ε ) o . The coefficient of y 2 in (5•3) is 1 x 3 0 ≥ - π 2 6 + π 2 12 - log 2 2 2 + dk 0 x 0 log 2 + d 2 k 2 0 x 2 0 2 ¥ = - 2 √ 3 π n 3 2 ≥ 1 - 12 log 2 2 π 2 ¥ ,
where 12 log 2 2

π 2 < 12• 0.49 π 2 < 6 π 2 < 1. The coefficient of iy in (5•3) is n -R -Q - 1 x 2 0 ≥ π 2 6 - ∞ X m=1 1 m 2 2 m -dk 0 x 0 log 2 ¥ -dk 0 d X r=1 (N r -k 0 ) = -R -Q + log 2 2 2x 2 0 -dk 0 d X r=1 (N r -k 0 ) = -2dk 0 d X r=1 (N r -k 0 ) + O(n 3 4 -2ε ).
Since |y|O(n

3 4 -2ε ) = o(n -ε ) we infer from (5•3) that (5•4) n d Y r=1 g N r (d(x 0 + iy)) o exp((n -R -Q)(x 0 + iy)) = n d Y r=1 g N r (dx 0 ) o exp((n -R -Q)x 0 ) × exp n -iy2dk 0 d X r=1 (N r -k 0 ) -y 2 2 √ 3n 3 2 π ≥ 1 - 12 log 2 2 π 2 ¥ + o(n -ε ) o . Let A = 2 √ 3n 3 2 π ≥ 1 -12 log 2 2 π 2 ¥ , (A > 0) and B = 2dk 0 P d r=1 (N r -k 0 ). Then, from (5•4) S 0 = d 2π Z y 1 -y 1 n d Y r=1 g N r (d(x 0 + iy)) o exp((n -R -Q)(x 0 + iy)) dy = d 2π n d Y r=1 g N r (dx 0 ) o exp((n -R -Q)x 0 ) Z y 1 -y 1 exp(-iyB -Ay 2 + o(n -ε )) dy.
Lemma 5.1. We have :

(5•5)

Z y 1 -y 1 exp(-iyB -Ay 2 + o(n -ε )) dy = r π A exp ≥ - B 2 4A ¥n 1 + o(n -ε ) exp ≥ B 2 4A ¥o .
Proof. These are standard manipulations on Gaussian integrals thus we won't write all the details. Let I AB (y 1 ) be the integral of the left hand side of (5•5). Since for |y| 6 y 1 , exp(-iyB -

Ay 2 + o(n -ε )) = (1 + o(n -ε )) exp(-iyB -Ay 2
)), we have :

I AB (y 1 ) = Z +∞ -∞ exp(-iyB -Ay 2 ) dy + O ≥ Z +∞ y 1 exp(-Ay 2 ) dy ¥ + o(n -ε ) Z +∞ -∞ exp(-Ay 2 ) dy.
The main term is a Gaussian integral :

Z +∞ -∞ exp(-iyB -Ay 2 ) dy = r π A exp ≥ - B 2 4A ¥ .
For the error terms we have

Z +∞ y 1 exp(-Ay 2 ) dy ø 1 Ay 1 exp(-Ay 2 1
) and

Z +∞ -∞ exp(-Ay 2 ) ø 1 √ A , the Lemma follows. Furthermore B 2 4A = O ≥ n -3 2 ≥ √ nd n 1 4 √ log n dw(n) ¥ 2 ¥ = o(log n).
Thus the error term in Lemma 5.1 is :

o(n -ε ) exp ≥ B 2 4A ¥ = o(1).
Therefore

S 0 = (1 + o(1)) r π A exp ≥ - B 2 4A ¥ d 2π n d Y r=1 g N r (dx 0 ) o exp((n -R -Q)x 0 ).
Adding the estimates for the trivial parts (see (2•8), (3•1)) we obtain that for n ≡ R (mod d),

(5•6) Π * d (n, R) = n d Y r=1 g N r (dx 0 ) o exp((n -R -Q)x 0 ) × n (1 + o(1)) r π A exp ≥ - B 2 4A ¥ d 2π + O ≥ exp ≥ - 1 + o(1) 4x 0 ¥¥ + O ≥ exp ≥ - √ 3 π 5 3 3 n 1 4 +2ε ¥¥ + O ≥ exp ≥ - √ 3 π 5 3 3 n 2ε/3 ¥¥o = (1 + o(1)) r π A exp ≥ - B 2 4A ¥ d 2π n d Y r=1 g N r (dx 0 ) o exp((n -R -Q)x 0 ).
To end the proof, it remains to insert the classical formula

(5•7) q(n) = (1 + o(1)) 1 4.3 1/4 n 3/4 exp ≥ π √ n √ 3 ¥ ,
and our previous results on the g N r (dx 0 ) (see (5•2)), and to do the convenient computations. We obtain

(5•8) Π * d (n, R) = (1 + o(1))4.3 1/4 q(n) 1 q 1 -12(log 2) 2 π 2 d 2 √ 23 1/4 ≥ d 2 √ 3n ¥ d/2 exp ≥ - B 2 4A + d X r=1 (N r -k 0 ) log 2 -x 0 °R + Q - log 2 2 2x 2 0 ¢ - 1 2 d X r=1 (N r -k 0 ) 2 dx 0 ¥ .
By formulae (2.11) and (2.12) of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF] and by (2•4), we have:

R + Q - log 2 2 2x 2 0 = dk 0 2 + dk 0 d X r=1 (N r -k 0 ) + d 2 d X r=1 (N r -k 0 ) 2 + o( √ n).
Thus the argument of the exponential in (5

•8) is exp ≥ - B 2 4A + ... ¥ = exp ≥ - B 2 4A - log 2 2 -dx 0 d X r=1 (N r -k 0 ) 2 + o(1)
¥ .

Inserting this in (5•8) ends the proof of Theorem 1.1 for D = {1, . . . , d}.

6. First steps of the proof of Theorem 1.1 for D 6 = {1, . . . , d}

Like in Section 3 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF], we apply Lemma 2.1 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF], the Cauchy formula and write z = x 0 + iy:

(6•1) Π * d (n, R D ) = 1 2π Z π -π n Y r∈D c h r (x 0 + iy) o × n Y r∈D g N r (d(x 0 + iy)) o exp °(n -R D -Q D )(x 0 + iy) ¢ dy, with h r (z) = ∞ Y j=0 (1 + exp(-(r + jd)z)).
When D c 6 = ∅ and D c 6 = {d}, the functions h r are not 2π/d-periodic but we still split the integral in intervales of length 2π/d in order to use our previous work on the functions

g k . Π * d (n, R D ) = 1 2π X |λ|6b d-1 2 c Z π d + 2λπ d -π d + 2λπ d ... + B, with B = Ω 0 if d is odd R -π+ π d -π ... + R π π-π d ... = R π+ π d π-π d if d is even.
Next we do some convenient change of variables :

Π * d (n, R D ) = 1 2π X -d 2 <λ6 d 2 Z π d -π d n Y r∈D c h r (x 0 + iy + i 2λπ d ) on Y r∈D g N r (d(x 0 + iy)) o × exp((n -R D -Q D )(x 0 + iy) + (n -R D ) 2iλπ d ) dy = X -d 2 <λ6 d 2 S(λ),
say. We will write the splitting

S(λ) = S 0 (λ) + S 1 (λ) + S 2 (λ),
where in S 0 (λ) the range of integration for y is |y| 6 y 1 , in S 1 (λ) it is for y 1 6 |y| 6 y 2 (with y 2 = 3πx 0 ) and in S 2 (λ) we take y 2 6 |y| 6 π d (cf. (4.11) of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF]).

Upper bounds of S 1 (λ) and S 2 (λ)

To obtain a convenient upper bound of these terms we first remark that

(7•1) |h r (x 0 + iy + 2iπλ d )| 6 h r (x 0 ).
Let j ∈ N. To prove (7•1) it is enough to prove that each T j 6 1 with

T j := Ø Ø Ø1 + exp ≥ -(r + jd)(x 0 + iy + 2iπλ d ) ¥Ø Ø Ø |1 + exp(-(r + jd)x 0 )| .
By a simple computation we have

T 2 j = 1 - 4 exp(-x 0 (r + jd)) sin 2 °y 2 (r + jd) + πλr d ¢ (1 + exp(-x 0 (r + jd))) 2 6 1.
By Lemma 2.1 we have

|S 2 (λ)| 6 n Y r∈D g N r (dx 0 ) on Y r∈D c h r (x 0 ) o exp((n -R D -Q D )x 0 ) exp ≥ |D|(-1 + o(1)) 4dx 0 ¥ .
By Lemma 3.1 we also have

|S 1 (λ)| 6 n Y r∈D g N r (dx 0 ) on Y r∈D c h r (x 0 ) o exp((n -R D -Q D )x 0 ) exp ≥ - |D| √ 3n 2ε/3 27π 5 d ¥ .
If |D| is small, i.e., if |D| 6 dn -ε/3 this last estimate for S 1 (λ) is not sufficient. However, by Lemma 3.1 (i), the contribution of the range n -5/8+ε 6 |y| 6 3πx 0 to S 1 (λ) is

6 n Y r∈D g N r (dx 0 ) on Y r∈D c h r (x 0 ) o exp((n -R D -Q D )x 0 ) exp ≥ - |D| √ 3n 1/4+2ε 27π 5 d ¥ .
Thus it remains to handle the case |D| 6 dn -ε/3 in the range y 1 6 |y| < n -5/8+ε .

• First we study the case λ = 0. We use a similar argument as in the proof of Lemma 3.1.

For any 1 6 r 6 d, let J r denote the set of the integers j such that

(7•2) 1 2x 0 6 r + jd 6 1 x 0 .
Then for j ∈ J r we have

(7•3) exp(-x 0 (r + jd)) (1 + exp(-x 0 (r + jd))) 2 > 1 e(1 + e -1/2 ) 2 .
This gives for the correspondent T j :

T 2 j 6 1 - 4 e(1 + e -1/2 ) 2 sin 2 °y 2 (r + jd) ¢ .
Next, quite like in the proof of Lemma 3.1, we have for n large enough

|h r (x 0 + iy)| 6 h r (x 0 ) ≥ 1 - 4 e(1 + e -1/2 ) 2 y 2 1 4π 2 x 2 0 ¥ |J r |/2 6 h r (x 0 ) exp ≥ - y 2 1 48π 2 dx 3 0 ¥ 6 h r (x 0 ) exp ≥ - √ 3n 2ε/3 2π 5 d ¥ .
This upper bound combined with Lemma 3.1 is sufficient to obtain

|S 1 (0)| 6 n Y r∈D g N r (dx 0 ) on Y r∈D c h r (x 0 ) o exp((n -R D -Q D )x 0 ) exp ≥ - √ 3n 2ε/3 27π 5
¥ .

• Now we suppose that λ 6 = 0. We write λ d = λ 0 d 0 with (λ 0 , d 0 ) = 1 and d 0 > 0.

First we suppose that d 0 > n ε/4 . Since (λ 0 , d 0 ) = 1, there are 

d 0 4 + O(1) integers r 0 ∈ {1, . . . , d 0 } such that λ 0 r 0 d 0 mod 1 ∈ [
∈ D c such that λ 0 r 1 d 0 mod 1 ∈ [ 1 4 , 1 2 ]. For j ∈ J r 1 , |(r 1 + jd)y| ø n -1/8+ε . Thus sin 2 ((r 1 + jd) y 2 + λr 1 π d )) > sin 2 π 6 = 1 4 . This gives Y j∈J r 1 |T j (r 1 )| 2 6 ≥ 11 12 ¥ |J r 1 | 6 exp(- 1 30dx 0 ),
which is a sufficient upper bound. Now we suppose that 2 6 d 0 < n ε/4 . There are d -d d 0 integers r such that d 0 6 |r. For these integers r and j ∈ J r , we have

sin 2 ((r + jd) y 2 + πλr d ) > sin 2 ≥ π 2d 0 ¥ > 1 d 2 .
Since |D| 6 dn -ε/3 , there are at least d/3 such integers r ∈ D c such that d 0 6 |r.

Thus we have :

Y r∈D c |h r (x 0 + iy + 2iπλ d )| h r (x 0 ) 6 Y r∈D c r6 ≡0 (mod d 0 ) Y j∈J r ≥ 1 - 1 6d 2 ¥ 6 exp ≥ - d 48d 3 x 0 ¥ ,
which is a sufficient upper bound when d 6 n 1/4-2ε .

8. The terms S 0 (λ) for λ 6 = 0

We have to consider the integrals

S 0 (λ) = 1 2π Z |y|6y 1 n Y r∈D c h r (x 0 + iy + 2iπλ d ) on Y r∈D g N r (d(x 0 + iy)) o × exp((n -R D -Q D )(x 0 + iy + 2iπλ d 
)) dy.

• First we suppose that there exists r ∈ D c such that λr 6 ≡ 0 (mod d). In the previous section we remarked that

|h r (x 0 + iy + 2iπλ d )| = h r (x 0 ) ∞ Y j=0 ≥ 1 - 4 exp(-x 0 (r + jd)) sin 2 °y 2 (r + jd) + πλr d ¢ (1 + exp(-x 0 (r + jd)) 2 ¥ 1/2 .
We work again with the sets J r defined by (7•2) in the previous section. For j ∈ J r , λr ≡ a (mod d), 1 6 |a| 6 d/2 and |y| 6 y 1 we have:

sin 2 ≥ y 2 (r+jd)+ πλr d ¥ = sin 2 ≥ π|a| d ± |y| 2 (r+jd) ¥ > sin 2 ≥ π|a| d - y 1 x 0 ¥ > sin 2 ≥ π d - y 1 x 0 ¥ > 3 d 2 ,
for n large enough (we recall that d 6 n 1/4-2ε ).

Since |J r | = 1 2dx 0 + O(1) > 1 3dx 0 , we have:

|h r (x 0 + iy + 2iπλ d )| 6 h r (x 0 ) Y j∈J r ≥ 1 - 12 ed 2 (1 + e -1/2 ) 2 ¥ 1/2 6 h r (x 0 ) exp ≥ 1 6dx 0 log °1 - 12 ed 2 (1 + e -1/2 ) 2 ¢ ¥ 6 h r (x 0 ) exp ≥ - 2 ed 3 x 0 (1 + e -1/2 ) 2 ¥ .
Thus if there exists r 0 ∈ D c such that λr 0 6 ≡ 0 (mod d) then (8•1)

|S 0 (λ)| 6 Y r∈D g N r (dx 0 ) Y r∈D c h r (x 0 ) exp((n -R D -Q D )x 0 ) exp ≥ - 2 ed 3 x 0 (1 + e -1/2 ) 2 ¥ .
This upper bound is sufficient only for d 6 n 1/6-ε .

• We suppose now that 

-R D -Q D ≡ 0 (mod d (λ,d) ). Thus exp((n -R D -Q D ) 2iπλ d ) = 1 and S 0 (λ) = S 0 (0).
For D c given, there exists δ integers λ modulo d such that rλ ≡ 0 (mod d) for all r ∈ D c . We summarize these observations in the following lemma.

Lemma 8.1. For d 6 n 1/6-ε we have: 1)).

X -d 2 <λ6 d 2 S 0 (λ) = δS 0 (0)(1 + o(

The function h -1 r in the range |y| 6 y 1

The generating function associated to unequal partitions is

h(z) = Q ∞ j=1 (1 + z j ). For S 0 (0) it remains to handle the integral 1 2π Z |y|6y 1 h(exp(-(x 0 + iy))) n Y r∈D g N r (d(x 0 + iy)) h r (x 0 + iy) o exp((n -R D -Q D )(x 0 + iy)) dy.
In this section we will state an asymptotic estimate related to h -1 r in the range |y| 6 y 1 . The following method looks like the general method of Meinardus [START_REF] Meinardus | Asymptotische Aussagen über Partitionen[END_REF] for studying generating functions associated to partitions (this method is presented in details in the book of Andrews [START_REF] Andrews | The Theory of Partitions[END_REF]). In fact we were also inspired by the chapter on the application of saddle point method to the partitions function in the Master course of Tenenbaum [START_REF] Tenenbaum | Analyse asymptotique et applications[END_REF].

In Lemma 4.1, we obtained an estimation of g k (dw) in function of f (dw). This leads us to try in fact to obtain an estimation of U r (z) := f (dz)h -1 r (z) for |y| 6 y 1 instead of h -1 r (z). This change will make some computations easier. Thus we consider

U r (z) = ∞ Y j=1 (1 -exp(-jdz)) -1 ∞ Y j=0 (1 + exp(-(r + jd)z)) -1 .
The main result of this section is the following lemma Lemma 9.1. Let η > 0. For |y| 6 y 1 and 1 6 r 6 d, we have

U r (z) = exp ≥ π 2 12dz + °r d -1 ¢ log 2 + 1 2 log ≥ dz π ¥ + O(d 1+η r -η |z|) + O(d -1 n -2ε )
¥ .

In the next section we will apply this lemma with η > 0 small enough such that d 2+η |z| 6 n -ε .

Proof. If r = d, there are quite no work to do since

U d (z) = ∞ Y j=1 (1 + exp(-jdz)) -1 (1 -exp(-jdz)) -1 = ∞ Y j=1 (1 -exp(-2jdz)) -1 = f (2dz). Thus U d (z) = exp ≥ π 2 12dz + 1 2 log °2dz 2π ¢ + O(d|z|)
¥ .

Now we suppose that r 6 = d. We prefer to work with

Ũr (z) := ∞ Y j=1 (1 -exp(-jdz)) -1 (1 + exp(-(r + jd)z)) -1 = U r (z)(1 + exp(-rz)) = U r (z)u r (z).
We easily see that

(9•1) u r (z) = (2 + O(r|z|)). Let F (v, s) = P ∞ k=1 exp(-kv) k s . If <e v > 0, then s 7 → F (v, s) is analytic on C.
The first step of the proof is the following result. Lemma 9.2. For r 6 = d, η > 0, z = x 0 + iy with |y| 6 y 1 , we have

log( Ũr (z)) = 1 dz ≥ π 2 6 + F (rz + iπ, 2) ¥ + 1 2 log °dz 2π ¢ - 1 2 F (rz + iπ, 1) + dz 12 ≥ - 1 2 + F (z + iπ, 0) ¥ + O(|z|r -η d 1+η ).
The last term dz 12 ≥ -1 2 + F (z + iπ, 0) ¥ in the above formula could be removed because it is O(|z|r -η d 1+η ). The following proof uses Mellin formula and looks like the general method of Meinardus for studying generating functions associated to partitions. We begin by some standard manipulations

Ũr (z) = exp n - ∞ X j=1 (log(1 + exp(-(r + jd)z)) + log(1 -exp(-jdz)) o = exp n X j,k>1 exp(-jkdz) k ((-1) k exp(-krz) + 1) o . Let us write log( Ũr (z)) = ∞ X m=1 β(m) m exp(-mdz), with β(m) = X jk=m j((-1) k exp(-krz) + 1).
By the Mellin transform formula we have:

log( Ũr (z)) = X m>1 β(m) m • 1 2iπ Z 2+i∞ 2-i∞ Γ(s) (mdz) s ds.
But the Dirichlet series is

X m>1 β(m) m s+1 = X j>1 1 j s X k>1 (1 + (-1) k exp(-krz)) k s+1 = ζ(s)(ζ(s + 1) + F (rz + iπ, s + 1)).
Thus we have log( Ũr (z)) = 1 2iπ

Z 2+i∞ 2-i∞ Γ(s)ζ(s)(ζ(s + 1) + F (rz + iπ, s + 1)) (dz) s ds.
Let η ∈]0, 1[. We move the integral until the line <e s = -1 -η. This gives log( Ũr (z)) = 1 2iπ

Z -1-η+i∞ -1-η-i∞ Γ(s)ζ(s)(ζ(s + 1) + F (rz + iπ, s + 1)) (dz) s ds + Res(1) + Res(0) + Res(-1) + E,
where E is the error term arising from the horizontal branches.

For <e s ∈ [-1 -η, 2] we have:

F (zr + iπ, s + 1) = X `>1 e -2`zr ≥ 1 (2`) s+1 - e rz (2`-1) s+1 ¥ = X `>1 e -2`zr ≥ 1 (2`) s+1 - 1 (2`-1) s+1 ¥ + O ≥ r|z| X `>1 e -2`rx 0 `1+<es ¥ .
When `is small, the term e -`rx 0 is O [START_REF] Andrews | The Theory of Partitions[END_REF]. Thus for -1 -η 6 <e s 6 2, we have :

X `>1 e -2`rx 0 `1+<e s ø X `6100/rx 0 `η + X `>100/rx 0 `ηe -2`rx 0 ø (rx 0 ) -1-η ,
since for the second sum we have

X `>100/rx 0 `ηe -2`rx 0 ø X `>100/rx 0 `e-2`rx 0 (rx 0 ) 1-η ø (rx 0 ) 1-η (1 -exp(-2rx 0 )) 2 .
For the other term we have

Ø Ø Ø X `>1 e -2`rz ≥ 1 (2`) 1+s - 1 (2`-1) 1+s ¥Ø Ø Ø ø (1 + |s|) X `>1 e -2`rx 0 `1-η ø 1 + |s| (rx 0 ) η .
Thus for -1 -η 6 <e s 6 2, we have

(9•2) |F (zr + iπ, s + 1)| ø |s|(rx 0 ) -η + r|z|(rx 0 ) -1-η .
We will also use the following classical results for the functions ζ and Γ in vertical strips:

-there exists H > 0 such that |ζ(s)| ø |=m s| H for -3 6 <e s 6 3 (in fact more generally for <e s ∈ [σ 1 , σ 2 ]) and |=m s| > 1 (cf. [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF] Theorem 12.23 p. 270 for a more precise formulation) ; -for -3 6 <e s 6 3 (or <e s ∈ [σ 1 , σ 2 ]) and |=m s| → +∞, ( [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres, 3 ème édition[END_REF] Corollaire II.0.13 p. 182) we have

Γ(s) = (1 + O(|=m s| -1 )) √ 2π|=m s| <e s-1 2 e -π|=m s|/2 e iα(s) , with α(s) = (=m s) log |=m s| -=m s + 1 2 π(<e s -1 2
) sgn(=m s). With this two formulae and by (9•2) we easily see that (9•3) lim

T →+∞ Z 2±iT -1-η±iT Γ(s)ζ(s)(ζ(s + 1) + F (rz + iπ, s + 1)) (dz) s ds = 0,
and

(9•4) Ø Ø Ø Z <e s=-1-η Γ(s)ζ(s)(ζ(s + 1) + F (rz + iπ, s + 1)) (dz) s ds Ø Ø Ø ø r -η d 1+η |z|.

Now we compute the different residues:

We have

(9•5) Res(1) = Γ(1) °ζ(2) + F (rz + iπ, 2) ¢ dz = 1 dz °π2 6 + F (rz + iπ, 2) ¢ .
In s = 0, we have two poles, one from Γ, the other from the function s 7 → ζ(s + 1). We use the well known results Γ 0

(1) = -γ, ζ(s) = 1 s-1 + γ + O(|s -1|)). Thus Res(0) is the coefficient in s -1 in the following formula: ≥ 1 -γs + O(|s| 2 ) s ¥ (ζ(0) + sζ 0 (0) + O(|s| 2 )) × h 1 s + γ + O(|s|) + F (rz + iπ, 1) i (1 -s log(dz) + O(|s| 2 )). Since ζ(0) = -1 2 , ζ 0 (0) = -1 2 log(2π), we find (9•6) Res(0) = 1 2 ≥ log °dz 2π ¢ -F (rz + iπ, 1)
¥ .

In s = -1, Γ has a simple pole with residue -1 thus we have:

Res(-1) = -ζ(-1)(ζ(0) + F (rz + iπ, 0))dz. Since ζ(-1) = -1 12 , we obtain (9•7) Res(-1) = dz 12 °-1 2 + F (rz + iπ, 0)).
Formulae (9•5), (9•6), (9•7), (9•3), (9•4) end the proof of Lemma 9.2.

Now we have to study the terms F ( * , s) with s = 0, 1, 2. First we have

F (rz + iπ, 0) = ∞ X m=1 (-1) m exp(-mrz) = - 1 1 + exp(rz) = - 1 2 + O(rn -1/2 ),
for |y| 6 y 1 . For the contribution of F (rz + iπ, 1) we have

(9•8) ∞ X m=1 (-1) m+1 2m exp(-mrz) = 1 2 log ≥ 1 + exp(-rz) ¥ = 1 2 log 2 + O(r|z|).
The contribution of F (rz + iπ, 2) is more difficult to handle because of the factor (dz) -1 . We will prove the following lemma Lemma 9.3. For |y| 6 y 1 , we have for d 6 n 1/4-2ε

1 dz F (rz + iπ, 2) = - π 2 12dz + r d log 2 + O(d -1 n -2ε ).
Proof. Let M be an odd integer. We have

1 dz F (rz + iπ, 2) = 1 dz M X m=1 (-1) m exp(-mrz) m 2 + +∞ X m=M +1 (-1) m exp(-mrz) dzm 2 = T 1 + T 2 ,
say. We begin with T 2 . Since the sum is absolutely convergent, we can regroup the terms m = 2`with the terms m = 2`+ 1

|T 2 | 6 1 d|z| +∞ X `= M +1 2 exp(-2`x 0 ) Ø Ø Ø 1 4`2 - exp(-rz) (2`+ 1) 2 Ø Ø Ø 6 1 d|z| +∞ X `= M +1 2 Ø Ø Ø 1 4`2 - 1 + O(r|z|) (2`+ 1) 2 Ø Ø Ø 6 1 d|z| +∞ X `= M +1 2 ≥ 4`+ 1 4`2(2`+ 1) 2 + O °r|z| (2`+ 1) 2 ¢ ¥ ø 1 d|z|M 2 + r dM .
This leads us to choose M the smallest odd integer > n 1/4+ε . For T 1 we use the fact that exp(-mrz) is near 1 if M is not too large. Let J ∈ N to be specified later:

T 1 = 1 dz M X m=1 (-1) m m 2 (1 -mrz + J-1 X j=2 (-1) j m j r j z j j! + O(m J r J |z| J )).
By the same type of argument as for T 2 (which are standard manipulations on alternating series) we show that

1 dz M X m=1 (-1) m m 2 = 1 dz +∞ X m=1 (-1) m m 2 + O °1 d|z|M 2 ¢ = - π 2 12dz + O °1 d|z|M 2 ¢ , and r d M X m=1 (-1) m m = r d +∞ X m=1 (-1) m m + O °r dM ¢ = - r d log 2 + O °r dM ¢ .
Next, for each 2 6 j 6 J -1 we have (recall that r 6 d 6 n 1/4-2ε )

r j |z| j-1 d Ø Ø Ø M X m=1 (-1) m m j-2 Ø Ø Ø ø r j |z| j-1 M j-2 d ø n -(2+j)ε d .
Finally for the last error term we have:

r J |z| J-1 d -1 M X m=1 m J-2 ø (M |z|) J-1 r J d -1 ø n 1 4 -Jε d -1 ,
which is small enough for J = d 5 ε e. This ends the proof of Lemma 9. 

h(exp(-z)) Y r∈D U r (z) = exp ≥ π 2 12z °1 + |D| d ¢ + |D| 2 log z - log 2 2 + X r∈D °r d -1 ¢ log 2 + |D| 2 log °d π ¢ + O(n -ε ) ¥ .
As in the case D = {1, . . . , d} we insert above the two formulae: 

1 z = 1 x 0 - iy x 2 0 - y 2 x 3 0 + O ≥ |y| 3
C D = π 2 12x 0 °1 + |D| d ¢ + |D| 2 log x 0 - log 2 2 + X r∈D °r d -1 ¢ log 2 + |D| 2 log °d π ¢ - C 2 |D| dx 0 + |D| log 2 2 + X r∈D (N r -k 0 ) log 2 - dx 0 2 X r∈D (N r -k 0 ) 2 + (n -R D -Q D )x 0 + O(n -ε ), (10•2) BD = - π 2 12x 2 0 °1 + |D| d ¢ + C 2 |D| dx 2 0 + |D|k 0 log 2 x 0 -dk 0 X r∈D (N r -k 0 ) + n -R D -Q D , (10•3) A D = π 2 12x 3 0 °1 + |D| d ¢ - C 2 |D| dx 3 0 - |D|k 0 log 2 x 2 0 - d|D|k 2 0 2x 0 .
Since k 0 dx 0 = log 2, and

C 2 = π 2 12 -(log 2) 2 2
, A D , BD and C D may be simplified :

A D = π 2 12x 3 0 - |D|(log 2) 2 dx 3 0 = 2 √ 3n 3 2 π ≥ 1 - 12|D|(log 2) 2 dπ 2 ¥ . Recall that k 0 = 2 √ 3n log 2 πd and |N r -k 0 | 6 n 1 4 √ log n d 1/3 |D| 2/3 w(n)
. By Lemma 2.2 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF], for |y| 6 y 1 , we have

y BD = -2ydk 0 X r∈D (N r -k 0 ) + O ≥ n -ε/3 ¥ = yB D + O ≥ n -ε/3 ¥ , say.
We end the computations as in the case D = {1, . . . , d}. Finally we obtain

(10•4) Π * d (n, R D ) = (1 + o(1)) δ 2π r π A D exp ≥ C D - B 2 D 4A D ¥ .
To simplify C D we need some more precise estimations of R D and Q D :

x 0 R D = x 0 k 0 X r∈D r + O(d 2/3 |D| 1/3 n -1/4+ε ), Q D x 0 = dx 0 2 X r∈D (N r -k 0 ) 2 + k 0 dx 0 X r∈D (N r -k 0 ) + x 0 dk 2 0 |D| 2 - d|D|k 0 x 0 2 + O(dn -1/4+ε ).
It remains to insert these different formulae in (10•4) to finish the proof of Theorem 1.1.

Local stability of Π

* d (n, R D )
In this section we settle a result analogous to Corollary 9.1 of [START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF]. If R D = {N r : r ∈ D} and R * D = {N * r : r ∈ D} are two sets of integers satisfying (1•1) and such that N * r is near N r on average then in the estimation of Π * d (n, R D ) given by Theorem 1.1, we may replace the N r by N * r . Like in [START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF] this corollary will be useful for the proofs of the different corollaries announced in the introduction of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF].

Corollary 11.1. Let 0 < ε < 10 -2 , n > n 0 , d 3 |D| 6 n 1/2-3ε and two sets R D = {N r : r ∈ D} ∈ Z |D| , R * D = {N * r : r ∈ D} ∈ R |D| such that (i) (1•1) is satisfied for R D ; (ii) |N r -k 0 | 6 n 1/4 √ log n d 1/3 |D| 2/3 w(n) for all r ∈ D where w(n) is a non decreasing function such that lim u→∞ w(u) = ∞; (iii) P r∈D |N r -N * r | 6 δ + |D| -1, P r∈D |N r -N * r | 2 6 δ 2 + |D| -1. Then we have Π * d (n, R D ) = q(n) δ(1 + o(1)) q 1 -12|D|(log 2) 2 dπ 2 ≥ d 2 √ 3n ¥ |D|/2 × exp ≥ - 2 √ 3(log 2) 2 π ≥ 1 -12|D|(log 2) 2 dπ 2 ¥ √ n ≥ X r∈D (N * r -k 0 ) ¥ 2 - πd 2 √ 3n X r∈D (N * r -k 0 ) 2 ¥ .
Proof. By (iii),

P r∈D |N r -N * r | 6 2d and we have Ø Ø Ø °X r∈D (N r -k 0 ) ¢ 2 - °X r∈D (N * r -k 0 ) ¢ 2 Ø Ø Ø6 °X r∈D |N r -N * r | ¢°2 X r∈D |N r -k 0 | + X r∈D |N r -N * r | ¢ = O ≥ d 2/3 |D| 1/3 n 1/4 √ log n w(n) + d 2 ¥ = o(n 1/2 ).
Similarly we have using also

δ 6 |D| + 1 (since δ 6 min a∈D c a if D c 6 = ∅) Ø Ø Ø X r∈D (N r -k 0 ) 2 - X r∈D (N * r -k 0 ) 2 Ø Ø Ø 6 X r∈D |N r -N * r |(2|N r -k 0 | + |N r -N * r |) ø (δ + |D| -1)|D| -2/3 d -1/3 n 1/4 √ log n w(n) + δ 2 + |D| ø |D| 1/3 d -1/3 n 1/4 √ log n w(n) + δ 2 + |D| = o °√n d ¢ .
This ends the proof of Corollary 11.1.

12. On the normal order of the numbers of parts: proof of Corollary 1.2 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF] Let

C D = d 2 √ 3 log 2 π √ n d 2 - n 1/4 √ log n d 4/3 |D| 2/3 w(n) ed and D D = b 2 √ 3 log 2 π √ n d 2 + n 1/4 √ log n d 4/3 |D| 2/3 w(n) cd. To prove Corollary 1.2 of [6], it is sufficient to show that (12•1) S * := X N r ∈[C D ,D D [ r∈D R D ≡n (mod δ) Π * d (n, R D ) = q(n)(1 + o(1)).
As in [START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF] p. 82, we have to remove the dependence between n and the N r given by the congruence condition modulo δ. If 1 6 ∈ D then δ = 1, there are no difficulty and we take

N * r = N r for all r ∈ D. If 1 ∈ D we write N * 1 = b N 1
δ cδ and N * r = N r for r ∈ D r {1}. Now we will suppose that 1 ∈ D, the proof of the other case being similar. Next we apply Corollary 11.1 with these two sets:

S * = (1 + o(1))q(n) δ q 1 -12|D|(log 2) 2 dπ 2 ≥ d 2 √ 3n ¥ |D|/2 × X C D 6N 1 δ<D D N r ∈[C D ,D D [ r∈Dr{1} exp ≥ - 2 √ 3(log 2) 2 π ≥ 1 -12|D|(log 2) 2 dπ 2 ¥ √ n ≥ δN 1 -k 0 + X r∈Dr{1} (N r -k 0 ) ¥ 2 - πd 2 √ 3n ≥ (δN 1 -k 0 ) 2 + X r∈Dr{1} (N r -k 0 ) 2 ¥¥ .
We apply again Corollary 11.1 with

N * i = t i so that |t i -N i | 6 1 for i ∈ D, we easily see that |δt 0 1 -δN 1 | 2 + X r∈Dr{1} (t r -N r ) 2 6 δ 2 + |D| -1.
Thus we have (after replacing δt 0 1 by t 1 in the integral) :

S * = (1 + o(1))q(n) 1 q 1 -12|D|(log 2) 2 dπ 2 ≥ d 2 √ 3n ¥ |D|/2 × Z D D C D • • • Z D D C D exp ≥ - 2 √ 3(log 2) 2 π ≥ 1 -12|D|(log 2) 2 dπ 2 ¥ √ n ≥ X r∈D (t r -k 0 ) ¥ 2 - πd 2 √ 3n ≥ X r∈D (t r -k 0 ) 2 ¥¥ Y r∈D dt r .
Lemma 12.1. We have

S * = (1 + o(1))q(n) 1 q 1 -12|D|(log 2) 2 dπ 2 ≥ d 2 √ 3n ¥ |D|/2 × Z +∞ -∞ • • • Z +∞ -∞ exp ≥ - 2 √ 3(log 2) 2 π ≥ 1 -12|D|(log 2) 2 dπ 2 ¥ √ n ≥ X r∈D (t r -k 0 ) ¥ 2 - πd 2 √ 3n ≥ X r∈D (t r -k 0 ) 2 ¥¥ Y r∈D dt r + O ≥ q(n) w(n)|D| 5/3 d 1/6 √ log n exp ≥ - πd 1/3 log n 2 √ 3|D| 4/3 w 2 (n) ¥¥ .
Proof. We have to consider the contribution of terms of type

R ∞ D D R D D C D • • • R D D C D • • •. Clearly it is less than Z ∞ D D Z D D C D • • • Z D D C D exp ≥ - πd 2 √ 3n ≥ X r∈D (t r -k 0 ) 2 ¥¥ Y r∈D dt r . But Z D D C D exp ≥ - πd 2 √ 3n (t r -k 0 ) 2 ¥ dt r 6 Z +∞ -∞ exp ≥ - πdt 2 r 2 √ 3n ¥ dt r = s 2 √ 3n d , and Z ∞ D D exp ≥ - πd 2 √ 3n (t r -k 0 ) 2 ¥ dt r 6 Z ∞ D D exp ≥ - πd 2 √ 3n (D D -k 0 )(t r -k 0 ) ¥ dt r = 2 √ 3n πd(D D -k 0 ) exp ≥ - πd 2 √ 3n (D D -k 0 ) 2 ¥ .
We have

d 4/3 |D| 2/3 = d 8/6 |D| 1/2 |D| 1/6 6 d 9/6 |D| 1/2 = (d 3 |D|) 1/2 6 n 1/4-ε . Thus the contribution of some term of type R ∞ D D R D D C D • • • R D D C D • • • to S * is O ≥ q(n) w(n)|D| 2/3 d 1/6 √ log n exp ≥ - πd 1/3 log n 2 √ 3|D| 4/3 w 2 (n) ¥¥ .
Since there are 2|D| such error terms we obtain Lemma 12.1. It remains to compute the main term to finish the proof of Corollary 1.2 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF]. We remark that

(12•2) exp ≥ - 2 √ 3(log 2) 2 π ≥ 1 -12|D|(log 2) 2 dπ 2 ¥ √ n ≥ X r∈D (t r -k 0 ) ¥ 2 - πd 2 √ 3n ≥ X r∈D (t r -k 0 ) 2 ¥¥ = exp(- 1 2 T t M T ), with T =     t 1 -k 0 t 2 -k 0 . . . t D -k 0     ∈ R |D| and M is the symmetric matrix M = (m ij ) 16i,j6|D| defined by m ii 2 = 2 √ 3(log 2) 2 π ≥ 1 -12|D|(log 2) 2 dπ 2 ¥ √ n + πd 2 √ 3n =: V + U (1 6 i 6 |D|) m ij 2 = m ji 2 = 2 √ 3(log 2) 2 π ≥ 1 -12|D|(log 2) 2 dπ 2 ¥ √ n =: V (1 6 i < j 6 |D|).
A classical result on determinant announces that

detM = 2 |D| U |D|-1 (U + |D|V ) = ≥ πd √ 3n ¥ |D| ≥ 1 - 12|D|(log 2) 2 dπ 2 ¥ -1 .
Thus the function (12•2) is proportional to the density of the law of a Gaussian vector with covariance matrix M -1 . We deduce that

Z ∞ -∞ • • • Z ∞ -∞ exp ≥ - 2 √ 3(log 2) 2 π ≥ 1 -12|D|(log 2) 2 dπ 2 ¥ √ n ≥ X r∈D (t r -k 0 ) ¥ 2 - πd 2 √ 3n ≥ X r∈D (t r -k 0 ) 2 ¥¥ Y r∈D d t r = (2π) |D|/2 √ detM -1 .
This ends the proof of Corollary 1.2 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF]. We will handle these cases later. Suppose now that δ = 1.

E * (a, b) = q(n) 1 q 1 -24(log 2) 2 dπ 2 ≥ d 2 √ 3n ¥ × Z D C exp h - ≥ 8 √ 3(log 2) 2 π ≥ 1 -24(log 2) 2 dπ 2 ¥ √ n + πd √ 3n ¥ (t -k 0 ) 2 i dt + o(q(n)) = s d 4 √ 3n q(n) + o(q(n)).
As in the proof of Corollary 1.2 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF] we show that the contributions of

R ∞ D • • • and R C -∞
are small enough. When δ > 1, as explained in [START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF] we fixe some congruence conditions on N a and N b and next do quite the same computations.

14. Comparison between the number of parts in two residue classes: proof of Corollary 1.4 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF] We proceed in the same way as in the previous section. Le ∆ ∈ {0, 1}. We have to estimate We take ∆ = 0 to examine the unequal partitions with N a > N b and ∆ = 1 for the unequal partitions with N a > N b . In the same way as in the proof of Corollary 1.3 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF], we obtain

T * (a, b) = q(n) 1 q 1 -24(log 2) 2 dπ 2 ≥ d 2 √ 3n ¥ × Z ∞ -∞ Z ∞ t b exp h - 2 √ 3(log 2) 2 π ≥ 1 -24(log 2) 2 dπ 2 ¥ √ n (t a + t b -2k 0 ) 2 - πd 2 √ 3n ((t a -k 0 ) 2 + (t b -k 0 ) 2 i dt a dt b + o(q(n)).
In the same way we find a similar formula for T * (b, a). This proves that T * (a, b) = q(n)/2 + o(q(n)).

15. On the d regularity of the unequal partitions: proof of Corollary 1.5 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF] Now we suppose that d is fixed in order to use Corollary 1.3 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF] uniformly. We now study for ∆ = 0 or 1 : We proceed as [START_REF] Dartyge | Dominant residue classes concerning the summands of partitions[END_REF] Sections 12, 13 and like the previous paragraphs of this present paper : W * (a) = q(n) + o(q(n)).

W * (a) = o(q(n)) + d q 1 -12(log 2) 2 π 2 ≥ d 2 √ 3n ¥ d/2
Since f (t 1 , . . . , t d ) is symmetrical the above terms are asymptotically equal :

W * (a) = ≥ 1 d + o(1) ¥ q(n),
as it was conjectured in [START_REF] Dartyge | On the distribution of the summands of unequal partitions in residue classes[END_REF] p.334 and in the introduction of [START_REF] Dartyge | Arithmetic properties of summands of partitions[END_REF]. The proof of the second assertion of Corollary 1.5 of [START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF] is similar. We have only to replace the condition N a > max b6 =a N b by N σ(1) > N σ(2) > • • • > N σ(d) .

Lemma 2 . 1 .

 21 Under the notations and hypotheses (1•2), (2•1), (2•2), (2•3), (2•4), and 3πx 0 6 |y| 6 π/d, we have|g k (d(x 0 + iy))| 6 g k (dx 0 ) exp ≥ -1 + o(1) 4dx 0 ¥ .

(8• 2 )

 2 λr ≡ 0 (mod d) for all r ∈ D c . If D c = {d} then by (1•1), n -R D -Q D ≡ 0 (mod d) and S 0 (λ) = S 0 (0) for all λ. In the general case, if (8•2) holds then we must have d (λ,d) |r. Thus d (λ,d) |δ and again by (1•1), we have n

  3. If we insert (9•8) and Lemma 9.3 in Lemma 9.2 and don't forget (9•1) we obtain Lemma 9.1 in the case r 6 = d. 10. The term S 0 (0), end of the proof of Theorem 1.1

y 1 -y 1

 11 exp(C D + iy BD -y 2 A D ) dy, with (10•1)

13.

  Unequal partitions with equilibrated residue classes: proof of Corollary 1.3 of[START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF] For 1 6 a < b 6 d, let E * (a, b) denote the number of unequal partitions of n such that N a = N b :E * (a, b) = X N a =N b n≡aN a +bN b (mod δ) Π * d (n, R {a,b} ) = X N a =N b N a ∈[C,D] n≡aN a +bN b (mod δ) Π * d (n, R {a,b} ) + o(q(n)),by Corollary 1.2 of [6] applied with w(n) = 2 -2/3 log log n, Next we apply Theorem 1.1 and Corollary 11.1. Here again we have to remove the condition n ≡ aN a + bN b (mod δ) otherwise N a , N b , n wouldn't be independent. If d > 5 then δ = 1. For 2 6 d 6 4, the problematic cases are (a, b, d) ∈ {(1, 2, 2), (1, 2, 3), (1, 3, 4)}.

  T * (a, b) = X N a >N b +∆ n≡R {a,b} (mod δ) Π * d (n, R {a,b} ).

W

  * (a) := X N 1 ,...,N d n≡R (mod d) N a>∆+max b6 =a N b Π * d (n, R).

  5 8 +ε 6 |y| 6 3πx 0 .

	Lemma 3.1. (i) Under the notations and hypotheses (1•2), (2•1), (2•2), (2•3), (2•4), for
	n -5 8 +ε 6 |y| 6 3πx 0 we have

  → 0 with | arg z| 6 κ < π/2. By Lemma 9.1 we have for |y| 6 y 1 :

	Recall that	h(exp(-z)) = exp	≥ π 2 12z	-	1 2	¥ log 2 + O(|z|) ,
	if z					

  Z • • • Z t a >max b6 =a t b f (t 1 , . . . , t d ) dt 1 • • • dt d , with f (t 1 , . . . , t d ) = expBy Corollary 1.3 of[START_REF] Dartyge | Local distribution of the parts of unequal partitions in arithmetic progressions I[END_REF] applied d times (it is why d is fixed), we have

	n	-	2 √ 3 log 2 2 π °1 -12(log 2) 2 π 2	¢√ n	≥ d X r=1 (t r -k 0 ) ¥ 2	-	πd √ 2 3n

d X r=1 (t r -k 0 ) 2 o . d X a=1
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