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On additive decompositions of the set of primitive roots modulo p
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It is conjectured that the set G of the primitive roots modulo p has no decomposition (modulo p) of the form G = A+B with |A| > 2, |B| > 2. This conjecture seems to be beyond reach but it is shown that if such a decomposition of G exists at all, then |A|, |B| must be around p 1/2 , and then this result is applied to show that G has no decomposition of the form

Introduction

Ostmann [START_REF] Ostmann | Additive Zahlentheorie[END_REF] introduced the following definitions : Definition 1.1. If C is a finite or infinite set of non-negative integers, then it is said to be reducible if there are sets A, B of non-negative integers with A + B = C, |A| > 2, |B| > 2. If there are no sets A, B with these properties, then C is said to be primitive. Definition 1.2. An infinite set C of non-negative integers is said to be totalprimitive if every set C 0 which is equal to C apart from a finite number of exceptions (i.e. there is a number

K such that C 0 ∩ [K, +∞[= C ∩ [K, +∞[) is primitive.
He formulated the following conjecture : Conjecture 1 (Ostmann, [START_REF] Ostmann | Additive Zahlentheorie[END_REF]). The set P of the prime numbers is totalprimitive. This conjecture is still open and it seems to be beyond reach at present, although many partial results have been proved (see [START_REF] Sárközy | On additive decompositions of the set of the quadratic residues modulo p[END_REF] for a list of these papers.) In particular, estimates have been given for the counting functions of sets A, B with A + B = P 0 where P 0 is a set which is equal to P apart from a finite number of exceptions. Elsholtz has given the sharpest estimates of this type, and using these estimates he also proved: Theorem 1.3 (Elsholtz,[START_REF] Elsholtz | The inverse Goldbach problem[END_REF]). If P 0 is equal to P apart from a finite number of exceptions, then there are no sets A, B, C of non-negative integers with

A + B + C = P 0 , min(|A|, |B|, |C|) > 2.
In [START_REF] Sárközy | On additive decompositions of the set of the quadratic residues modulo p[END_REF] Sárközy proposed to study finite problems of this type. He remarked that the definitions of reducibility and primitivity can be extended to any group, in particular, to the additive group of F p , thus the reducibility and primitivity of sets of residue classes (or residues) mod p can be defined in the same way as in Definition 1.1. He also introduced the following terminology :

Definition 1.4. If A 1 , A 2 , . . . , A k ⊂ F p , (1•1) A 1 + A 2 + • • • + A k = B and (1•2) min(|A 1 |, . . . , |A k |) > 2,
then (1•1) will be called an (additive) k-decomposition of B; a k-decomposition will always mean a non-trivial one, that is a decomposition satisfying (1•2).

Here we will be interested in 2-decompositions and 3-decompositions only.

In [START_REF] Sárközy | On additive decompositions of the set of the quadratic residues modulo p[END_REF], Sárközy formulated and studied the following conjecture: Conjecture 2 (Sárközy [START_REF] Sárközy | On additive decompositions of the set of the quadratic residues modulo p[END_REF]). Let p be a prime number and let

Q = Q(p) denote the set of the quadratic residues modulo p. If p is large enough, then Q = Q(p) is primitive, i.e., it has no (non-trivial) 2 decomposition.
It turned out that the situation is similar to Ostmann's conjecture: conjecture 2 also seems beyond reach but the following partial results have been proved in [START_REF] Sárközy | On additive decompositions of the set of the quadratic residues modulo p[END_REF].

Theorem 1.5 (Sárközy [6]). If p is a prime large enough and 

U + V = Q is a non-trivial 2-decomposition of Q = Q(p),
A + B + C = Q.
There is another subset of F p which is of special interest : the set of the modulo p primitive roots which we will denote by G = G(p). The aim of this paper is to study this set. We conjecture that the analogue of conjecture 2 also holds: Conjecture 3. If p is a prime number large enough then the set G = G(p) is primitive, i. e., it has no non-trivial 2-decomposition.

Again this conjecture seems to be beyond reach but we will be able to prove partial results analogous to Theorem 1.3, Theorem 1.5, and Theorem 1.6. The crucial tool in the proofs will be an estimate for sums of the form

X g∈G χ(f (g))
which can be derived from Weil's theorem [START_REF] Weil | Sur les courbes algébriques et les variétés qui s'en déduisent[END_REF] and we will use some ideas from [START_REF] Sárközy | On additive decompositions of the set of the quadratic residues modulo p[END_REF], but we will also need some further ideas.

2-decomposition of G.

We will prove Theorem 2.1. If p is a prime large enough and 

(2•1) U + V = G is a non-trivial 2-decomposition of G = G(p),
(2•4) τ (n) < 2 (1+ε) log n log log n for n > n 0 (ε),
and we also have [START_REF] Landau | Handbuch der Lehre von der Verteilung der Primzahlen, I-II[END_REF] p. 217

(2•5) ϕ(n) ¿ n log log n so that the bounds in (2•2) an (2•3) are by at most a factor O(exp(c log p log log p )) apart. Proof. We may assume that (2•6) 2 6 |U| 6 |V|. Let (2•7) U = {u 1 , u 2 , . . . , u k } with 0 6 u 1 < u 2 < . . . < u k < p. For i = 1, . . . , k define u 0 i by u 0 i = u i -u 1 , let U 0 = {u 0 1 , u 0 2 , . . . , u 0 k } = U -{u 1 } where u 0 1 = 0, and set V 0 = V + {u 1 }.
Then clearly (2•1) also holds with U 0 and V 0 in place of U and V, and we have |U 0 | = |U|, |V 0 | = |V| and 0 ∈ U 0 ; thus it suffices to prove the theorem when we have

(2•8) u 1 = 0 in (2•7). By (2•6) and (2•7) we have (2•9) 2 6 |U| = k 6 |V|.
Now we will prove several lemmas.

Lemma 2.2. Let χ be a multiplicative character of order D > 1 of F p . Assume that g(X) ∈ F p [X] has s distinct zeros over the algebraic closure of F p and it is not the constant multiple of the D-th power of a polynomial over

F p . Then Ø Ø Ø X x∈F p χ(g(x)) Ø Ø Ø 6 (s -1)p 1/2 .
Proof. This is a special case of Weil's theorem [START_REF] Weil | Sur les courbes algébriques et les variétés qui s'en déduisent[END_REF] (see also [START_REF] Schmidt | Equations over Finite Fields. An Elementary Approach[END_REF] p.43).

Lemma 2.3. Let χ be a multiplicative character modulo p of order δ. Let f (X) ∈ F p [X] be such that for all d|p -1, f (X d ) is not a constant times the δ-th power of a polynomial of F p [X]. Then we have

(2•10) Ø Ø Ø X g∈G(p) χ(f (g)) Ø Ø Ø 6 τ (p -1)(s -1) √ p,
where s is the number of distinct zeros of f over the algebraic closure of F p .

Proof. Let g 0 be a fixed primitive root of F p . The other primitive roots are g k 0 with (k, p -1) = 1. Thus we have :

X g∈G p χ(f (g)) = p-1 X k=1 (k,p-1)=1 χ(f (g k 0 )).
Next we use the Möbius function to handle the coprimality condition :

X g∈G p χ(f (g)) = X d|p-1 µ(d) X 16k6 p-1 d χ(f (g kd 0 )) = X d|p-1 µ(d) d X x∈F * p χ(f (x d )),
since g kd 0 is periodic in k with period p-1 d . By the condition of Lemma 2.3 we can apply Weil's Theorem for the last character sum and this gives (2•10).

Lemma 2.4. If f (X) ∈ F p [X] is not of the form f (X) = KX t Q(X) δ with K ∈ F * p , t ∈ N, Q(X) ∈ F p [X] and it satisfies Q(0) 6 = 0 (Q can be constant) then f satisfies the condition of Lemma 2.3.
Proof of Lemma 2.4. If f satisfies the conditions in the lemma then f can be written in the form f (X) = X t P (X) where P ∈ F p [X] is of degree > 1, is not a constant times the δ-th power of a polynomial and satisfies P (0) 6 = 0.

Thus we have to study the polynomials f (Y d ) = Y dt P (Y d ) for all d|p -1.

We write

P = P m 1 1 • • • P m s s
where P 1 , . . . , P s are the distinct irreducible factors of P in F p [X]. Since P is not a constant times the δ-th power of a polynomial, there exists i such that m i 6 ≡ 0 (mod δ). We can suppose that m 1 6 ≡ 0 (mod δ).

Let α 1 , . . . , α r be the distinct roots of P 1 in F p . For each 1 6 i 6 r, the equation

Y d = α i has d distinct solutions β i,1 , . . . , β i,d .
Then β 1,1 is a root of P (X d ) of multiplicity m 1 with m 1 6 ≡ 0 (mod δ). We deduce that f (X d ) is not a constant times the δ-th power of a polynomial. Lemma 2.5. With the notations and assumptions above we have

(2•11) (|U| = k) 6 = 2.
Proof. Assume that contrary to (2•11) we have:

(2•12) k = 2.
Then by (2•1) and (2•8) we have

(2•13) {0, u 2 } + V = G.
Let γ denote the quadratic character of F p so that

γ(n) = Ω ≥ n p

¥

for n 6 = 0, 0 for n = 0 (( n p ) denotes the Legendre symbol.) We will prove that there is a

(2•14) g 0 ∈ G with (2•15) γ(g 0 + u 2 ) = 1 and (2•16) γ(g 0 -u 2 ) = 1.
We remark that it follows trivially from ( 

F (x) = (γ(x + u 2 ) + 1)(γ(x -u 2 ) + 1). If g ∈ G then γ(g) = -1, thus clearly we have (2•18) F (g) = 4 for g ∈ R, (2•19) F (g) = 0 for g ∈ G r R, (g + u 2 )(g -u 2 ) 6 = 0, (2•20) |F (g)| 6 2 for g ∈ G r R, (g + u 2 )(g -u 2 ) = 0 and (2•21) |{g : g ∈ F p , (g + u 2 )(g -u 2 ) = 0}| 6 2. It follows from (2•18), (2•19), (2•20) and (2•21) that (2•22) Ø Ø Ø 1 4 X g∈G F (g) Ø Ø Ø = Ø Ø Ø 1 4 X g∈R F (g) + 1 4 X g∈GrR F (g) Ø Ø Ø = Ø Ø Ø|R| + 1 4 X g∈GrR F (g) Ø Ø Ø 6 |R| + 1 4 X g∈G (g+u 2 )(g-u 2 )=0 |F (g)| 6 |R| + 1 2 Ø Ø © g : g ∈ F p , (g + u 2 )(g -u 2 ) = 0 ™Ø Ø 6 |R| + 1.
On the other hand, by using the multiplicativity of γ we get

(2•23) 1 4 X g∈G F (g) = 1 4 X g∈G (γ(g + u 2 ) + 1)(γ(g -u 2 ) + 1) = |G| 4 + 1 4 X g∈G (γ((g + u 2 )(g -u 2 )) + γ(g + u 2 ) + γ(g -u 2 )) = ϕ(p -1) 4 + 1 4 3 X i=1 X g∈G γ(f i (g))
where

(2•24) f 1 (X) = (X + u 2 )(X -u 2 ), f 2 (X) = X + u 2 and f 3 (X) = X -u 2 .
It follows from (2•23) that

(2•25) Ø Ø Ø 1 4 X g∈G F (g) Ø Ø Ø > ϕ(p -1) 4 - 1 4 3 X i=1 Ø Ø Ø X g∈G γ(f i (g)) Ø Ø Ø.
We have u 2 6 = u 1 = 0, and if p > 2, then -u 2 6 = u 2 also holds. Thus each of the polynomials f i (X) in (2•24) satisfies the condition in Lemma 2.4 with 2 in place of D so that Lemma 2.3 can be applied with γ and f i in place of χ and f , respectively. Thus we obtain from (2•25) that

(2•26) Ø Ø Ø 1 4 X g∈G F (g) Ø Ø Ø > ϕ(p -1) 4 - 1 4 τ (p -1)(2 + 1 + 1) √ p = ϕ(p -1) 4 -τ (p -1) √ p.
It follows from (2•22) and (2•26) that

|R| + 1 > Ø Ø Ø 1 4 X g∈G F (g) Ø Ø Ø > ϕ(p -1) 4 -τ (p -1) √ p whence |R| > 1 4 ϕ(p -1) -τ (p -1) √ p -1 > 0
for p large enough by (2•4) and (2•5). Thus, indeed, there is a g 0 satisfying (2•14), (2•15) and (2•16). By (2•13) and (2•14) for this g 0 we have

g 0 ∈ G = {0, u 2 } + V.
It follows that there is a v ∈ V such that either (2•27)

g 0 = 0 + v or (2•28). g 0 = u 2 + v
If (2•27) holds then by (2•1) we also have

u 2 + g 0 = u 2 + v ∈ U + V = G
whence γ(u 2 + g 0 ) = -1 which contradicts (2•15), while if (2•28) holds, then we have

g 0 -u 2 = v = 0 + v ∈ U + V = G whence γ(g 0 -u 2 ) = -1 which contradicts (2•16
). Thus our indirect assumption (2•12) leads to a contradiction which completes the proof of Lemma 2.5.

Lemma 2.6.

If `∈ N, `< p, S = {s 1 , . . . , s `} ⊂ F p , (2•29) s 1 = 0, T ⊂ F p and
(2•30) S + T ⊂ G, then we have

(2•31) |T | < ϕ(p -1) 2 `-1 + `τ (p -1) √ p 2 .
Proof. By (2•29) and (2•30) we have

(2•32) T = {0} + T ⊂ S + T ⊂ G. Write H(x) = 2 -`Q ì=1 (1 -γ(x + s i )). Then clearly (2•33) H(x) > 0 ∀x ∈ F p .
Moreover by (2•30), for all t ∈ T and i = 1, 2, . . . , `we have

s i + t ∈ G, thus γ(s i + t) = -1. It follows that (2•34) H(t) = 1 ∀t ∈ T . By (2•32), (2•33) and (2•34) we have (2•35) X g∈G H(g) > X t∈T H(t) = |T |.
On the other hand, by the multiplicativity of γ we have

(2•36) 2 `X g∈G H(g) = |G| + X g∈G X j=1 (-1) j X 16i 1 <...<i j 6`γ ((g + s i 1 ) • • • (g + s i j )) = ϕ(p -1) + X j=1 (-1) j X 16i 1 <...<i j 6`X g∈G γ((g + s i 1 ) • • • (g + s i j )) 6 ϕ(p -1) + X j=1 (-1) j X 16i 1 <...<i j 6`Ø Ø Ø X g∈G γ((g + s i 1 ) • • • (g + s i j )) Ø Ø Ø.
Each of the innermost sums is of the type (2•10), thus we would like to estimate them by using Lemma 2.3 with γ in place of χ. In order to ensure the applicability of Lemma 2.3, the conditions of Lemma 2.4 must hold. Indeed, all but one of these sums satisfy these conditions so that, indeed, Lemma 2.3 can be applied. The only exception is the sum with j = 1 when the only s i is 0, so that this sum is | P g∈G γ(g)

Ø Ø
Ø. The contribution of this sum is |G| = ϕ(p -1), so that by using Lemma 2.3 we get from (2•36) that 2 `X g∈G

H(g) 6 2ϕ(p -1) + X j=1 X 16i 1 <...<i `6`τ (p -1)(j -1) √ p 6 2ϕ(p -1) + τ (p -1) √ p X j=1 µ j∂ (j -1) < 2ϕ(p -1) + τ (p -1) √ p X j=1 µ j∂ j = 2ϕ(p -1) + `2`-1 τ (p -1) √ p whence (2•37) X g∈G H(g) < ϕ(p -1) 2 `-1 + 2 τ (p -1) √ p.
Then ( Proof. Assume that contrary to the statement of the lemma (2•38) holds. Then using Lemma 2.6 with `= k, S = U, T = V (so that (2•30) holds by (2•1)) we get that

(2•39) |V| < ϕ(p -1) 2 k-1 + k 2 τ (p -1) √ p.
Moreover, it follows from (2•1) by a trivial counting argument that

|U||V| = |{(u, v) : u ∈ U, v ∈ V}| > |U + V| = |G| = ϕ(p -1), whence (2•40) |V| > ϕ(p -1) |U| = ϕ(p -1) k .
It follows from (2•39) and (2•40) that

ϕ(p -1) k 6 |V| < ϕ(p -1) 2 k-1 + k 2 τ (p -1) √ p so that (2•41) ϕ(p -1) ≥ 1 k - 1 2 k-1 ¥ < k 2 τ (p -1) √ p.
It can be shown by induction that 2 

k-1 > 4k 3 for k > 3. Thus it follows from (2•41) that ϕ(p -1) ≥ 1 k - 3 4k ¥ < k 2 τ (p -1) √ p whence ϕ(p -1) < 2k 2 τ (p - 
+ V ⊂ U + V = G.
Thus we may apply Lemma 2.6 with S = {u 1 , u 2 , . . . , u `} and T = V. We obtain for p large enough that 

|V| < ϕ(p -1) 2 `-1 + 2 τ (p-1) √ p < 2ϕ(p -1) 2 (log p)/(log 2) + 1 2 ≥ log p log 2 +1 ¥ τ (p-1) √ p < τ (p-

3-decomposition of G

Now we will prove that Theorem 3.1. If p is a prime large enough then G does not have a non-trivial 3decomposition

(3•1) A + B + C = G.
Proof. This can be derived from Theorem 2.1 in the same way as Theorem 1.6 was derived in [START_REF] Sárközy | On additive decompositions of the set of the quadratic residues modulo p[END_REF] from Theorem 1. Proof. This is Theorem 5.1 in [START_REF] Ruzsa | Cardinality questions about sumsets[END_REF] (see also [START_REF] Gyarmati | A superadditivity and submultiplicativity property for cardinalities of sumsets[END_REF]). A, B, C are subsets of the additive group of Z/pZ, thus by Lemma 3. 

5 .

 5 Assume that contrary to the statement of the theorem (3•1) holds. We may write (3•1) as(A + B) + C = (A + C) + B = (B + C) + A = G.Here we have three non trivial 2-decompositions of G. Thus for p large enough it follows from Theorem 2.1 that (3•2) max(|A + B|, |A + C|, |B + C|) < τ (p -1) √ p log p. Now we need the following result of Ruzsa Lemma 3.2. Let X , Y, Z be finite sets in a commutativ group. Then we have |X + Y + Z| 2 6 |X + Y||X + Z||Y + Z|.

3 .

 3 2 and (3•2) we have (3•3) |A + B + C| 2 6 |A + B||A + C||B + C| < (τ (p -1)) 3 p 3/2 (log p) On the other hand, it follows from (3•1) that |A + B + C| 2 = |G| 2 = (ϕ(p -1)) 2 . By (2•4) and (2•5), for p large enough this contradicts (3•3) which completes the proof of Theorem 3.1.

  2•31) follows from (2•35) and (2•37).

	Lemma 2.7. If p is large enough then we cannot have
	(2•38)	3 6 k = |U| 6	j log p log 2	k	+ 1.
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