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We propose an improved version of the symmetric
metal slot waveguides with a Kerr-type nonlinear di-
electric core adding linear dielectric buffer layers be-
tween the metal regions and the core. Using a finite
element method to compute the stationary nonlinear
modes, we provide the full phase diagrams of its main
TM modes as a function of total power, buffer layer
and core thicknesses, that are more complex than the
ones of the simple nonlinear metal slot. We show that
these modes can exhibit spatial transitions towards spe-
cific modes of the new structure as a function of power.
We also demonstrate that, for the main modes, the
losses are reduced compared to the previous structures,
and that they can now decrease with power. Finally, we
describe the stability properties of the main stationary
solutions using nonlinear FDTD simulations.

OCIS codes: 190.6135,240.6680,230.7400,190.3270
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Nonlinear plasmonic slot waveguides (NPSWs) have drawn at-
tention in the last decade due to the strong light confinement in
the nonlinear dielectric core ensured by the surrounding metal
regions, and to their peculiar nonlinear effects [1–6]. Several
applications have already been proposed for NPSWs [7, 8] .
Nevertheless, the experimental observation of plasmon-soliton
waves in these NPSWs is still lacking even if linear slot waveg-
uides have already been fabricated [9]. Similarly to the case of
the single nonlinear dielectric/metal interface structures [10, 11],
the modes already studied in the simple NPSWs suffer from
high losses that seriously limit the propagation length of the
waves. In the present study, we propose and study an improved
structure in which buffer linear dielectric layers are added be-
tween the nonlinear dielectric core and the two semi-infinite
metal regions. The article is organized as follows. First, we
describe the model and numerical method we use to study the
stationary nonlinear waves in the improved NPSW we propose.
Secondly, we describe the linear solutions of the new structures
in order to classify the nonlinear solutions . Thirdly, we give the
properties of the nonlinear stationary solutions and show that,
for some linear parameter configurations, new modal spatial
transitions as a function of power occur compared to the simple

NPSW case. We provide full phase diagrams for the improved
NPSW as a function of total power, buffer layer and core thick-
nesses. We also prove that the added buffer dielectric layers are
able to reduce losses and allow them to decrease with power in
most of the cases. Finally, using the FDTD method we study the
stability properties of the main nonlinear solutions.
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Fig. 1. Symmetric improved NPSW geometry with the supple-
mentary linear dielectric buffer layers between the nonlinear
dielectric core and the two semi-infinite metal regions.

The improved NPSW we study is depicted in Fig. 1. Com-
pared to already studied simple NPSW made of a nonlin-
ear dielectric core surrounded by two semi-infinite metal re-
gions [1, 2, 6], the improved structure contains additional linear
dielectric layers between the core and the metal regions. In this
study, we will consider only symmetric structures even if asym-
metric simple NPSWs have already been considered [12]. dcore
is the core thickness, and dbu f is the dielectric buffer thickness
of each of the supplementary layers with their permittivities
denoted by εbu f . We will only consider monochromatic trans-
verse magnetic (TM) waves propagating along the z direction
in a symmetric one-dimensional NPSW. All field components
evolve proportionally to exp[i(k0ne f f z − ωt)] with k0 = ω/c,
where c denotes the speed of light in vacuum, ω is the angular
frequency, and ne f f denotes the effective mode index. The non-
linear Kerr-type dielectric is isotropic with εcore = ε l,core + α|Ex|2
(ε l,core being the linear part of the core permittivity, Ex being the
x component of the electric field), and with α > 0 (focusing non-
linearity). This approximation of the Kerr nonlinearity, taking
into account only the transverse component of the electric field
has already been used in models of the NPSWs [6, 12]. This
approximation allows us to use the fixed power algorithm in the
finite element method (FEM) to compute the nonlinear station-
ary solutions and their nonlinear dispersion curves [13–16].

In the core, the approximated relation between the non-
linear parameter α and the coefficient n2, that appears in the
definition of an intensity dependent refractive index <e(n) =
<e(ε l,core)

1/2 + n2 I, is α = ε0c<e(ε l,core)n2 where the intensity
is defined as I = ε0c|εcore||Ex|2/(2ne f f ), and the vacuum per-
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mittivity is denoted by ε0. To compute the linear and nonlin-
ear modes we use our custom-built FEM developed to study
scalar and vector models for waveguides including nonlin-
ear ones with Kerr regions like microstructured optical fibers
and NPSWs [15–17]. In this study, ε l,core = 3.462 + i 10−4 and
n2 = 1. 10−17m2/W corresponding to amorphous hydrogenated
silicon [6], and εmet = −90 + i 10 corresponding to gold at 1.55
µm, wavelength for which all the simulations are done. Losses
will be estimated using the method based on the field profiles
and permittivity imaginary parts described in [3, 10, 12, 18]. We
stress that used parameter values can affect the given critical
values but would not affect its main conclusions.

We start by the study of the linear case as it is well known
that this is a crucial step in the investigation of nonlinear waveg-
uides [19]. Figure 2(a) provides the linear dispersion curves
for symmetric improved NPSWs as a function of the thickness
of supplementary buffer dielectric layers. The horizontal line
represents the linear part of core refractive index <e(ε l,core). It
splits the different dispersion curves in two parts with distinct
types of field profiles. Below this line, the mode is mostly core
localized and its Hy component follows the cosine profile in the
linear high-index core with plasmonic tails in the metal regions
as it can be seen in Fig. 2(b). Above this line, the mode is of
plasmonic type, as in the simple NPSW, as shown in Fig. 2(b).
It is important to notice that the first type of mode is not found
in the simple NPSW as a linear mode whatever the used opto-
geometric parameters [12, 20] ,but a corresponding mode can be
observed in structures with a semi-infinite nonlinear region and
a metal one separated by a dielectric buffer layer [5].
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Fig. 2. (a) Linear dispersion curves of the fundamental sym-
metric mode for the improved NPSW with dcore = 400 nm
as a function of dbu f for three buffer layer refractive indices
nbu f . Typical magnetic field symmetric components Hy(x) for
dbu f = 15nm: (b) with a cosine-type profile for εbu f = 1.4432

such that <e(ne f f ) < <e(ε l,core)
1/2 and with a plasmonic-type

profile εbu f = 2.52 such that <e(ne f f ) > <e(ε l,core)
1/2. (c) as-

sociated Ex(x) and Ez(x) components for εbu f = 1.4432. (d)
associated Ex(x) and Ez(x) components for εbu f = 2.52.

For the nonlinear study, we start with the case such that the
effective index of the symmetric linear mode is below the core
linear refractive index. The real parts of effective indices of the
first three main modes: symmetric, asymmetric and antisym-
metric denoted respectively by S0-solI, AS1-solI, and AN0-solI,
are shown in Fig. 3(a) while their imaginary parts and losses are
shown in Fig. 3(b). In the two previous figures, the results for a

simple NPSW made from the improved NPSW by removing the
buffer dielectric layers are also shown in grey for comparison
(symmetric S0-plas, asymmetric AS1-plas, antisymmetric AN0-
plas). The mode notation used in our study has been chosen
to extend coherently the one already introduced for the simple
NPSW [12, 20]. As it can be seen, in the improved NPSW, the
bifurcation of the asymmetric mode from the symmetric mode
and the relative positions of the three main modes are preserved.
The difference between the symmetric mode curve and the asym-
metric mode curve is smaller in this new structure. The reason
is that, in this structure, the symmetric mode profile looks like a
symmetric hyperbolic secant spatial soliton and its associated
asymmetric mode is simply shifted off the slot center. We also
note that losses are at least three times smaller than the ones of
the simple NPSW (see Fig. 3(b)).

3.0

3.5

4.0

4.5

5.0

10
6

10
7

10
8

10
9

10
10

10
11

R
e
(n
e
ff
)

Ptot[W/m]

c)

S0−plas
AS1−plas
AN0−plas

S0−solI
AS1−solI
AN0−solI

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

10
6

10
7

10
8

10
9

10
10

10
11
4.0×10

2

2.8×10
3

5.2×10
3

7.6×10
3

1.0×10
4

Ι
m
(n
e
ff
)

L
[d
B
/c
m
]

Ptot[W/m]

d)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10
6

10
7

10
8

10
9

10
10

10
11
6.2×10

2

4.4×10
3

8.2×10
3

1.2×10
4

1.6×10
4

2.0×10
4

Ιm
(n
e
ff
)

L
[d
B
/c
m
]

Ptot[W/m]

b)
3.0

3.5

4.0

4.5

5.0

10
6

10
7

10
8

10
9

10
10

10
11

R
e
(n
e
ff
)

Ptot[W/m]

a)

S0−solI
AS1−solI
AN0−solI

S0−plas
AS1−plas
AN0−plas

Fig. 3. Nonlinear dispersion curves for the simple NPSW (grey
curves) and for the improved one (color curves). The blue,
green, and red colors indicate the symmetric, asymmetric and
antisymmetric nonlinear modes respectively. dcore = 400 nm,
dbu f = 15 nm. For εbu f = 22: (a) for <e(ne f f ) and (b) for
=m(ne f f ) and the associated losses. For εbu f = 2.52: (c) for
<e(ne f f ) and (d) for =m(ne f f ) and the associated losses.

We now study the nonlinear dispersion curves of the im-
proved NPSW such that the effective index of the symmetric
linear mode is above the core linear refractive index. The cor-
responding curves are given in Figs. 3(c) and (d). The global
shape of these dispersion curves is similar to the ones studied
for the three main modes of the simple NPSW but the mode
field profiles now exhibit a spatial transition from a plasmonic
type profile to a solitonic type one: S0-plas to S0-solI for the
symmetric mode, AS1-plas to AS1-solI for the asymmetric one,
and AN0-plas to AN0-solI for the antisymmetric one (see field
profiles in Fig. 4). Similar transitions have already been observed
in structures with a semi-infinite nonlinear region [10, 21, 22],
but not in NPSWs [16]. Furthermore, at low powers in the im-
proved NPSWs, the losses are reduced, at least, by a factor two
compared to the associated simple NPSW, and they are now
decreasing with the power for the main symmetric and antisym-
metric modes leading to low loss solutions at high powers (see
Fig. 3(d)). For the asymmetric mode, loss first increases with
power and then decreases. This loss increase is linked to the fact
that, in this case, the field first tends to increase near one of the
metal interface, increasing the fraction of field in a highly lossy
region. Then, the mode moves gradually from a plasmonic type
to a solitonic type asymmetric profile, and when the soliton peak
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is far enough from the metal interface losses start to decrease.
Figure 4 shows the profiles of the first three main modes as

a function of power. The symmetric solitonic mode S0-solI (see
solid curves in Figs. 4(a) and 4(d)) looks like the higher order
purely nonlinear symmetric mode denoted SI we have found
in the simple NPSW but with different boundary conditions at
the core interface due to the opposite sign of the real part of
the permittivity in the outer regions [6, 20]. In Fig. 5, we show
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Fig. 4. Field profile Hy(x) for symmetric (blue curves), asym-
metric (green curves), and antisymmetric (red curves) modes
with εbu f = 22 (top), and with εbu f = 2.52 (bottom) before
(dashed line) and after (solid line) the spatial modal transition
induced by the power increase. The power is given in W/m.

the influence of the buffer thickness dbu f on the losses of the
symmetric mode at low power. As expected losses decrease
with dbu f , and interestingly, it exists a critical dbu f value which
separates the plasmonic type solutions (dashed curves) from the
solitonic type solutions (solid lines) as it can be inferred from
the linear dispersion curves given in Fig. 2(a). Using numeri-
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Fig. 5. (a) Losses of the symmetric mode for a total power
Ptot = 1.0 109 W/m as a function of the buffer thickness
dbu f for four different core thicknesses with εbu f = 2.52. The
dashed lines are for plasmon type solutions and solid ones are
for soliton type ones. (b) Flat magnetic field profile obtained
for the upper critical value dbu f = dup

bu f = 30.8 nm.

cal simulations providing both the dispersion curves and the
associated field profiles like the ones shown above, we obtain
the phase diagram of the improved NPSW for the main modes.
Such diagram is shown in Fig. 6 where the existence and the
type of the first symmetric and asymmetric modes are given.
The buffer thickness dbu f and the total power Ptot are used as
parameters. The upper critical value dup

bu f is 30.8 nm. Above this
critical value, one has <e(ne f f ) < <e(nl,core) and the nonlinear
symmetric mode emerges from the cosine linear solution (see
Fig. 2(b)). It is of S0-solI type (symmetric soliton-type with a sin-
gle peak, see solid profile in Fig. 4(a)). For the critical value dup

bu f ,
the black circle in Fig. 6 corresponds to the limit case where the
Hy field profile is still flat (see Fig. 5(b) for an example of such
profile), for higher powers a core peak emerges. For d < dup

bu f ,
one has <e(ne f f ) > <e(nl,core) and the first symmetric mode of

the NPSW is of plasmonic type (see dashed curve in Fig. 4(d)).
Below this critical value for dbu f , and under the brown transition
curve in Fig. 6, one has the S0-plas region, and above this curve
the first symmetric mode is now of S0-solI type (see solid pro-
file in Fig. 4(d)). Along the brown curve in the phase diagram,
the Hy field profile is flat. From ddown

bu f = 14.5 nm, the lower
critical dbu f value, a new type of symmetric nonlinear solution
emerges, at high powers, from the S0-plas mode; it is composed
of two solitons located in the core near each interfaces (see its
symmetric field profile in inset in Fig. 7). We denote it S0-solII.
The transition curve between the S0-plas region and the S0-solII
region is shown in cyan in the phase diagram. The limit curve
above which the S0-solI mode appears is the pink one in Fig. 6. It
is worth mentioning that in the region above the cyan transition
curve and below the pink limit curve, only the S0-solII mode
exists. In Fig. 6, we also provide the behaviour of the first asym-
metric mode (green curves). The dashed green curve is the limit
curve of the asymmetric plasmonic mode AS1-plas (see Fig. 4(e)):
below the curve, it does not exist. It emerges at low powers from
the symmetric one, S0-plas (see Fig. 4(d)). At higher powers
(see the solid green line), it moves to an asymmetric mode of
solitonic type AS1-solI (a peak is located in the core near one of
its interface, see solid profile in Fig. 4(e)). Above dbu f ' 24 nm,
only this AS1-solI mode exists and it emerges from the S0-solI
symmetric mode as expected (see Figs. 4(d) and (e)).
The permittivities being fixed, we numerically studied the in-
fluence of the core thickness dcore on the critical values ddown

bu f ,

and dup
bu f (see Fig. 5), we found that dup

bu f does not change

with dcore for dcore ≥ 10 nm, while ddown
bu f increases with dcore

(data not shown), such that they coincide when the core thick-
ness reaches the critical value dλ

core ' 1550nm (one wave-
length), above this core thickness, the critical value ddown

bu f will
no longer change with dcore. Actually, it is possible to get an
analytical approximation for dup

bu f considering a buffer layer
sandwiched between semi-infinite metal and high-index di-
electric regions, one gets, when |<e(εmet)| � |ε l,core|, dup

bu f =

(λεbu f )/(2π|<e(εmet)|1/2(<e(ε l,core) − <e(εbu f ))) ' 28.4 nm.
This simple approximated value agrees well with the simu-
lations results (30.8 nm) while the full formula (not shown) for
dup

bu f gives the better approximation 31.1 nm. Since at dup
bu f , the

mode is flat in the nonlinear core (see Fig. 5(b)) as in the approx-
imated model, it can be understood why both formula, that do
not depend on dcore, provide a good approximation of dup

bu f .
In Fig. 7, we provide the phase diagram of the improved NPSW

using dcore and Ptot as parameters. The meaning of the curves are
the same as in Fig. 6. We found that the threshold for the Hopf
bifurcation, from which the asymmetric mode emerges, strongly
decreases with the core thickness as it was already found in the
simple NPSW [6, 20]. One clearly sees that there is a critical
value, denoted by dcrit

core around 430 nm for dbu f = 15 nm such
that below it, only the S0-plas and the S0-solI modes exist (see
Fig. 4(d)). This low dcore region is split in two parts by the transi-
tion curve (brown one): below it, only the S0-plas exists while
above only the S0-solI exists as fundamental symmetric mode.
From dcrit

core value up to the value dλ
core ' 1550 nm, at some pow-

ers the S0-plas mode move to the S0-solII mode (cyan curve) and
at even higher powers the S0-solI mode emerges (pink curve).
For dcore above 1550 nm, the emergence of the S0-solI mode ap-
pears at powers lower than the transition between the S0-plas
mode and the S0-solII one.
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The green AS1-plas and the AS1-solI dispersion curves (see
mode profiles in Fig. 4(e)) shown in Fig. 7 merge when they
cross the brown curve associated with the transition from the
S0-plas mode to the S0-solI one for increasing power. A similar
phenomenom was already visible in Fig. 6. After this merging,
above the brown S0-plas/S0-solI transition curve, the AS1-plas
mode does not exist anymore. In a previous work, using two dif-
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ferent numerical methods including the FDTD, we have already
shown that the results about the stability of the main symmetric
and asymmetric modes derived in reference [23] from theoretical
arguments in the framework of the weak guidance approxima-
tion in nonlinear waveguides are still valid, at least numerically,
in simple NPSWs except just around the bifurcation point where
subtle behaviours occur [20]. Here, we have again used the non-
linear capabilities of the FDTD method implemented in the MEEP
software [24]. The metal permittivity is described by a Drude
model to obtain the fixed negative value used at the studied
wavelength in the stationnary study. As it can be seen in Fig. 8,
for the improved NPSW, the symmetric mode S0-solI is stable
at low power. The S0-plas mode (plasmonic type) is also stable
as expected from the results in [20] for the simple NPSW. The
asymmetric mode AS1-solI is also stable for the tested powers
above the bifurcation threshold (data not shown). Due to the
losses of the metal, and as pointed out in [20, 25], the temporal
nonlinear solutions are actually not self-coherent [19] as it can
be seen in Fig. 8 with the decrease of the field intensity along the
propagation.

We have proposed an improved nonlinear plasmonic slot
waveguide adding supplementary dielectric buffer layers be-
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Fig. 8. Evolution during the propagation of the Hy field profile
of the S0-solI symmetric solitonic type mode at a power such
that 〈∆n〉 = 0.043 for dcore = 300nm, dbu f = 40 nm, εbu f = 2.52,
other parameters as in the text. 〈∆n〉 is the spatial average
along the core of the nonlinear refractive index change [6, 20].

tween the nonlinear core and the metal regions. We have pro-
vided a complete description of its main nonlinear TM modes.
We have shown that this structure allows a decrease of the losses
compared to the simple nonlinear slot waveguide, and that its
main modes exhibit, for appropriate opto-geometric parameters,
spatial transitions that can be controlled by the power. The stabil-
ity of the main modes has also been demonstrated numerically.
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