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Abstract

We consider the inverse problem of optical tomography in the radiative transport regime. We

report numerical tests of a direct reconstruction method that is suitable for use with large data

sets. Reconstructions of experimental data obtained from a noncontact optical tomography system
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I. INTRODUCTION

The development of tools to probe the structure of highly-scattering media such as clouds,

colloids and biological tissue is of fundamental interest and considerable applied importance.

One such method, known as optical tomography (OT), is a biomedical imaging modality

with unique capabilities to assess physiological function, such as blood volume and tissue

oxygenation [1]. In a typical OT experiment, a material medium is illuminated by a narrow

collimated beam and the light that propagates through the medium is collected by an array

of detectors. In many instruments, the sources and detectors are coupled to the medium

by means of optical fibers and the number of measurements which can be obtained varies

from 102–105 source-detector pairs. More recently, noncontact imaging systems have been

introduced, wherein a scanned beam and a lens-coupled CCD camera is employed to replace

the aforementioned illumination and detection fiber-optics [2–4]. Using such a noncontact

method, extremely large data sets of order 107–109 measurements can readily be acquired.

The availability of such data sets has been shown to vastly improve the quality of images in

OT [4–6].

The inverse problem of OT is to reconstruct the optical properties of a highly-scattering

medium from boundary measurements. The standard computational approach to this prob-

lem is to minimize a penalized least-squares functional [1, 7–15]. Although such optimiza-

tion methods are extremely flexible, they have very high computational cost and are not

well suited to the large data sets of noncontact optical tomography. Direct reconstruction

methods offer an alternative approach to optimization-based algorithms [16–23]. By direct

reconstruction, we mean the use of inversion formulas and associated fast algorithms. Such

formulas have been derived for particular experimental geometries, including those with pla-

nar boundaries. To date, these methods have been developed within the framework of the

diffusion approximation (DA) to the radiative transport equation (RTE). We note that the

DA is accurate when the energy density of the optical field varies slowly on the scale of the

transport mean free path. The DA breaks down in optically thin layers, near boundaries

and in strongly absorbing media, conditions that are frequently encountered in biomedical

applications.

In this paper, we develop a fast image reconstruction algorithm for the inverse problem in

the transport regime. The primary tools that we exploit are an integral equation formulation
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of the forward problem [30] and the recently derived plane-wave decomposition for the

Green’s function of the RTE [27–29]. Using this approach, we show that the linearized

inverse problem can be formulated in terms of the inversion of a suitably defined Fourier-

Laplace transform. We illustrate this result with numerical simulations and reconstructions

of experimental data obtained from a noncontact OT system.

The remainder of this paper is organized as follows. In section II we introduce the

linearized forward problem within the accuracy of the Rytov approximation. This is followed

in section III by the derivation of the Fourier-Laplace inversion formula for the slab geometry.

Numerically simulated reconstructions are presented in section IV. Reconstructions from

experimental data are shown in section V. Our conclusions are presented in section VI. The

derivation of the Green’s function for the RTE with reflecting boundary conditions is given

in the Appendix.

II. FORWARD PROBLEM

A. Radiative transport

The propagation of multiply-scattered light in a volume Ω is taken to be governed by the

RTE

ŝ · ∇I + (µa(r) + µs(r)) I = µs(r)

∫
A(̂s, ŝ′)I(r, ŝ′)d2s′ + S(r, ŝ) . (1)

Here I(r, ŝ) denotes the specific intensity at the point r in the direction ŝ, S is the source,

and µa and µs are the absorption and scattering coefficients of the medium. The phase

function A is normalized so that
∫
A(̂s, ŝ′)d2s′ = 1 for all ŝ. The specific intensity is also

assumed to obey the half-range boundary condition

I(r, ŝ′) = R(|̂s · ŝ′|)I(r, ŝ) , n̂ · ŝ′ < 0 on ∂Ω . (2)

Here R is the reflection coefficient, n̂ is the outward unit normal to ∂Ω, and ŝ and ŝ′ are the

incident and reflected directions at the boundary, respectively. See the Appendix for further

details.

We assume that the scattering coefficient µs is constant everywhere in the medium but

the absorption coefficient µa varies with position. We thus decompose µa into a constant
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part µ̄a and a spatially varying part δµa:

µa(r) = µ̄a + δµa(r) . (3)

The RTE (1) thus becomes

ŝ · ∇I + µtI + δµa(r)I = µs

∫
A(̂s, ŝ′)I(r, ŝ′)d2s′ + S , (4)

where µt = µ̄a + µs. The solution to (4) is given by

I(r, ŝ) = I0(r, ŝ)−
∫
d3r′d2s′G(r, ŝ; r′, ŝ′)δµa(r

′)I(r′, ŝ′) . (5)

Here I0 is the incident specific intensity, defined as the solution to (1) with µa = µ̄a obeying

the boundary condition (2). The Green’s function G satisfies the equation

ŝ ·∇rG(r, ŝ; r′, ŝ′) +µtG(r, ŝ; r′, ŝ′) = µs

∫
A(̂s, ŝ′′)G(r, ŝ′′; r′, ŝ′)d2s′′+ δ(r− r′)δ(̂s− ŝ′) (6)

and obeys the boundary condition (2). Eq. (5) is the analog of the Lippmann-Schwinger

equation for the RTE. It can be linearized by the Rytov approximation [1]:

− ln

(
I(r, ŝ)

I0(r, ŝ)

)
=

1

I0(r, ŝ)

∫
d3r′d2s′G(r, ŝ; r′, ŝ′)δµa(r

′)I0(r
′, ŝ′) . (7)

It will prove convenient to introduce the data function φ, which is defined by

φ = −I0 ln(I/I0) . (8)

It follows from (7) that φ obeys the integral equation

φ(r) =

∫
d3r′d2s′G(r, ŝ; r′, ŝ′)δµa(r

′)I0(r
′, ŝ′) . (9)

B. Slab geometry

For the remainder of this paper we consider a three dimensional slab-shaped medium, as

shown in Figure 1. The incident field is taken to be generated by a point-source oriented in

the inward normal direction located on the z = 0 plane. Thus I0 = G(r, ŝ;ρs, 0, ẑ), where

ρs is the transverse coordinate of the source. Light exiting the slab in the outward normal

direction is collected by a point-detector that is located on the plane z = L. The integral

equation (9) thus becomes

φ(ρs,ρd) =

∫
d3rd2sG(ρd, L, ẑ; r, ŝ)G(r, ŝ; ρs, 0,−ẑ)δµa(r) , (10)
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FIG. 1. Illustrating the slab geometry.

where ρd is the transverse coordinate of the detector.

To make further progress, we make use of the method of rotated reference frames to

express the Green’s function as an expansion in two-dimensional plane waves and spherical

harmonics [27–29]. The details are presented in the Appendix, where it is shown that

G(r, ŝ; r′, ŝ′) =

∫
d2q

(2π)2
e−iq·(ρ−ρ

′)
∞∑
l=0

l∑
m=−l

klm(q, z)Ylm(̂s)Y ∗lm(̂s′) , (11)

where r = (ρ, z) and klm is defined in (49). Using this result, we find that (10) becomes

φ(ρs,ρd) =

∫
d3r

∫
d2q1
(2π)2

∫
d2q2
(2π)2

ei(q1−q2)·ρe−i(q1·ρs−q2·ρd)κ(q1,q2, z)δµa(r) , (12)

where

κ (q1,q2, z) =
∞∑
l=0

l∑
m=−l

(−1)mklm(q1, z)k
∗
lm(q2, L− z) . (13)

III. INVERSE PROBLEM

The inverse problem consists of recovering the absorption δµa from measurements of

the data function φ. To proceed, we assume that the sources and detectors are placed on

square lattices with lattice spacings hs and hd, respectively. The positions of the sources
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and detectors are given by

ρs = hs(nsxx̂ + nsyŷ) , ρd = hd(ndxx̂ + ndyŷ) , (14)

where nsx, nsy, ndx, and ndy are integers. We introduce the Fourier transform of the data

function:

φ̃(qs,qd) =
∑
ρs,ρd

ei(qs·ρs+qd·ρd)φ(ρs,ρd) . (15)

Here the vectors qs and qd lie in the first Brillouin zone (FBZ) of the source and detector

lattices:

− π

hs
≤ q(x)s , q(y)s ≤

π

hs
, − π

hd
≤ q

(x)
d , q

(y)
d ≤

π

hd
. (16)

To compute the Fourier transform, we make use of (12) and the identity

∑
ρ

eiq·ρ =

(
2π

h

)2∑
ν

δ(q + ν) , (17)

where ν denotes a reciprocal lattice vector and q ∈ [−π
h
, π
h
]× [−π

h
, π
h
] . We thus obtain

φ̃(qs,qd) =
1

h2sh
2
d

∑
νs,νd

∫
dz κ(qs + νs,−qd + νd, z)δ̃µa(qs + qd + νs − νd, z) , (18)

where

δ̃µa(q, z) =

∫
d2ρ eiq·ρδµa(ρ, z) . (19)

Next, we perform the change of variables

qs =
q

2
+ p , qd =

q

2
− p , (20)

where qs and qd are two-dimensional vectors. We also assume that δµa is transversely

band-limited to the FBZs of the source-detector lattices (corresponding to the band limit

min{2π/hs, 2π/hd}) and therefore put νs = 0 and νd = 0 in (18), which thus becomes

Φ(q,p) =

∫ L

0

K(q,p, z)δ̃µa(q, z)dz , (21)

where

Φ(q,p) = h2sh
2
dφ̃
(q

2
+ p,

q

2
− p

)
, (22)

K(q,p, z) = κ
(
p +

q

2
,p− q

2
, z
)
. (23)
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FIG. 2. Illustrating the set of five point absorbers.

For fixed q, Eq. (21) defines a system of one-dimensional integral equations for the Fourier

transform δ̃µa. Following the general approach of [23], we construct the pseudoinverse

solution of (21) and perform an inverse Fourier transform to obtain the inversion formula

δµa(ρ, z) =

∫
FBZ

d2q

(2π)2
e−iq·ρ

∑
ν

R(σν(q))

σ2
ν(q)

∑
p,p′

〈fν(q)|p〉K∗(q,p′, z) 〈p′|fν(q)〉Φ(q,p) .

(24)

Here fν and σν are the singular functions and singular values of the matrix M :∑
p′

〈p|M(q) |p′〉 〈p′|fν(q)〉 = σ2
ν(q) 〈p|fν(q)〉 , (25)

where M is defined by

〈p|M(q) |p′〉 =

∫ L

0

K(q,p, z)K∗(q,p′, z)dz . (26)

The regularizer R is introduced to limit the effect of small singular values. Common choices

of R include the Tikhonov regularizer R(σ) = σ2/ (σ2 + ε) or the step function R(σ) =

θ(σ − ε), where ε > 0. In our computations, both approaches give similar results.

IV. NUMERICAL SIMULATIONS

In this section we report the results of numerical reconstructions from simulated forward

data. The medium to be reconstructed consists of a set of five point absorbers, as shown in
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Figure 2. The absorbers are assumed to have the same scattering coefficients and phase func-

tions as the medium in which they are embedded, but have different absorption coefficients.

The absorption coefficient δµa is given by

δµa(r) = `∗2
5∑
i=1

δ(r− ri) , (27)

where the positions of the absorbers are (x1, y1, z1) = (−4`∗, 2`∗, z0 − `∗), (x2, y2, z2) =

(−2`∗, 4`∗, z0− `∗), (x3, y3, z3) = (0, 0, z0), (x4, y4, z4) = (2`∗,−4`∗, z0 + `∗), and (x5, y5, z5) =

(4`∗,−2`∗, z0 + `∗). The optical properties of the background medium are taken to be

µ̄a = 0.05 cm−1, µs = 100 cm−1, g = 0.9 . (28)

Note that `∗ = 1.00 mm in this case. The above values are typical for biological tissues in

the near-IR spectral range. The data function Φ is calculated according to Eq. (21) for a

sample with prescribed δµa. Gaussian noise with zero mean and a standard deviation of

1% of the average signal is added to the data function Φ for each numerical experiment.

Reconstructions of δµa are calculated from (24) using the step function regularizer. The

sum over l in the Green’s function (11) is truncated at l = lmax = 9.

The source and detector positions are given by (14) with −Ns ≤ nsx, nsy ≤ Ns and

−Nd ≤ ndx, ndy ≤ Nd. We also set Nd = 120 and Ns = 120hd/hs. The wave vectors q and

p are discretized as

q =
2π

hd(2NFBZ + 1)
(jxx̂ + jyŷ) , −Nq ≤ jx, jy ≤ Nq ,

p =
2π

hd(2NFBZ + 1)
(kxx̂ + kyŷ) , 0 ≤ kx, ky ≤ Np − 1 ,

(29)

where NFBZ is the number of points in the FBZ. We take Nq and Np to be much smaller than

NFBZ to control numerical stability at high frequencies. We have found that NFBZ = 120,

Nq = 28, and Np = 7 are suitable choices. Finally, we note that numerical integration over

z in (26) is carried out using Simpson’s rule, with discretionzation zj = j(L− 2`∗)/Nz + `∗

(j = 0, 1, . . . , Nz). For L = 10`∗ and 6`∗ we take Nz to be 160 and 80, respectively.

A. Results

Reconstructions of δµa are shown in Figure 3. Results are shown for two different slab

thicknesses L = 6`∗, 10`∗. The source and detector lattice spacings are hs = 0.2`∗ and
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FIG. 3. The reconstructed δµa(x, y = 0, z = z0)/max[δµa(x, 0, z0)] are shown as a function of x/`∗.

The following cases are considered: L = 10`∗ and z0 = 5`∗ (left) and L = 6`∗ and z0 = 3`∗ (right).

hd = 0.1`∗, respectively. In Figure 3 we take L = 10`∗ and z0 = 5`∗ in panel (a) and L = 6`∗

and z0 = 3`∗ in panel (b). The regularization parameter is set to be ε/
√
`∗ = 10−6 for (a)

and ε/
√
`∗ = 10−5 for (b). We see that the absorber is clearly reconstructed in both panels.

We will define the resolution as the full width at half maximum (FWHM) of the point spread

function of the central absorber. Thus the resolution is approximately 2.0`∗ in (a) and 1.5`∗

in (b).

B. Computational Complexity

The reconstructed images are obtained in 90 sec using a four-cpu parallel machine of

1.3 GHz Itanium-2 processors. The most computationally expensive part of the reconstruc-

tion is the calculation of the kernel K(q,p, z), which is obtained from klm. To compute

klm, the Wigner function dlmM and f
(±)
Mn must be calculated. For each q (0 < q ≤ qmax), the

construction of dlmM requires O((lmax + 1)(lmax + 2)(lmax + 3)) floating point operations and

the calculation of f
(±)
Mn requires O((lmax + 1)6) floating point operations. Therefore when q

is approximated by nq discrete points, the computation of klm requires O(Nznql
8
max) float-

ing point operations. Thus the computation of K requires O(N2
qN

2
pNzl

2
max) floating point

operations.
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FIG. 4. (Color online) Tomographic reconstruction of δµa for five point absorbers in a slab with

L = 6`∗ and for z0 = L/2. The function shown by the color scale is δµa(r)/maxr[δµa(r)]. The

field of view in each panel is 16`∗ × 16`∗.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We have tested the reconstruction algorithm with experimental data using a previously

described noncontact OT system [4]. The source is a continuous-wave stabilized diode laser

operating at a wavelength of 785 nm with an output power of 6 mW. The sample chamber

is a rectangular box, constructed of clear acrylic, of depth 1 cm with square faces of area

15 cm × 15 cm. The chamber is filled with a scattering medium in which the objects to

be imaged are placed. The medium consists of a 1% solution of Intralipid in water. The

beam is scanned by a pair of mirrors on one face of the sample and the transmitted beam

is imaged onto a CCD.

A tomographic data set is acquired by raster scanning the beam over a 29 × 29 square

lattice with a lattice spacing of 3.21 mm. This yields 841 source positions within a 9 cm
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FIG. 5. (Color online) Reconstructions of two rods with 3 mm spacing. The field of view is

6 cm× 6 cm. The number above each panel shows the distance from the source plane.

× 9 cm area centered on the optical axis. For each source, a 397 × 397 pixel region of

interest is read out from the CCD. This results in 157,609 detectors arranged in a square

lattice with an effective lattice spacing equivalent to 0.36 mm. Thus a data set of 1.3× 108

source-detector pairs is acquired.

B. Two Rods

In this section, we show the reconstruction of a pair of black metal rods. The rods have

a diameter of 3 mm and are suspended in the midplane of the sample chamber. The optical

properties of the background medium are

µ̄a = 0.02 cm−1, µs = 20 cm−1, g = 0.65, k = 0.02h−1d , ` = 20hd , (30)

where k =
√
cµa/D and hd = 0.36 mm is the lattice spacing on the detector plane. These

parameters yield a transport mean free path of `∗ = 1.4 mm.

Initially, we set the separation of the rods to be 3 mm and take lmax = 9. In Figure 5,

tomographic images are displayed with a slice separation of 1 mm. It can be seen that in the

central slice, which is equidistant from the source and the detector planes, that the rods are
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FIG. 6. Reconstructed δµa/µ̄a of the metal rods with (left) 3 mm spacing and (right) 2 mm spacing

along the x-axis in the central plane at y = 0 and z = 5 mm.

well resolved. The shallower and deeper slices show that the rods remain well resolved but

with a smaller diameter, as expected. Figure 6 shows a plot of the reconstruction along the

line passing through the centers of both rods in the central slice. The distance between the

peaks is 5.8mm, which slightly underestimates the center-to-center separation of the rods.

The FWHM of the peaks is 2.3mm, which underestimates the diameter of the rods.

In a second experiment, we set the separation between the rods to be 2mm. In this

case the reconstructed image is poorly resolved. The right panel in Figure 6 shows a two-

dimensional plot in the central slice. It is important to note that the reconstructed contrast

is not expected to be quantitative owing to the strong absorption in the interior of the metal

rods. However, as previously noted, the shape of the rods is recovered well.

C. Lemon and Lotus Root Slices

In a final set of experiments, a lemon or lotus root slice of thickness approximately 4 mm

is placed in the center of the sample chamber. The background medium consists of 0.7%

Intralipid plus 0.07 % India ink, with optical properties

µ̄a = 0.4 cm−1, µs = 20 cm−1, g = 0.65, k = 0.13h−1d , ` = 20hd . (31)

Reconstructions of the lemon and lotus root are shown in Figures 7 and 8, respectively. A

number of structural features of the lemon including the endocarp, mesocarp, central column

and septa are readily visualized. Likewise, root tubes of varying diameter are observable.
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FIG. 7. (Color online) RTE reconstructions of a lemon slice. The field of view is 9 cm× 9 cm. The

number above each panel shows the distance from the source plane.

VI. DISCUSSION

In summary, we have investigated the inverse problem of optical tomography in the radia-

tive transport regime. We have developed and tested a fast image reconstruction algorithm

that is applicable to the large data sets of noncontact optical tomography. Our results are

illustrated by numerical simulations and reconstructions from experimental data in model

systems.

We conclude with several remarks. First, the spatial resolution of the reconstructed

images in numerical simulations is clearly superior to that obtained in experiments. There

are a number of contributing factors that explain this finding. These include the finite

size of the source and detector grids, the presence of shot noise in the detected light and

noise in the CCD array. We have also not accounted for systematic errors associated with

non-idealities in the optical system, such as reflections from the lens surface. Finally, the

reconstructions we have performed are carried out within a linearization of the RTE. It may

be expected that a nonlinear reconstruction may overcome some of the above limitations,

particularly with respect to quantitative recovery of the absorption. One possible approach

to this problem is inversion of the Born series, which has been carried out for the case of the

DA [20–22]. Inversion of the linearized forward problem is the first step in this procedure,

which can be carried out by the method developed herein.
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FIG. 8. RTE reconstructions of a lotus-root slice. The field of view is 9 cm × 9 cm. The number

above each panel shows the distance from the source plane.

APPENDIX: GREEN’S FUNCTION FOR THE RTE

In this appendix, we outline the calculation of the Green’s function for the RTE using the

method of rotated reference frames (MRRF). The MRRF was described in [27–29]. Here we

summarize the necessary results for the case of the slab geometry with reflecting boundaries.

We note that the MRRF has also been extended to the case of reflecting boundaries in the

half-space geometry [31].

We begin by noting that the Green’s function for the RTE in the slab geometry satisfies

the equation

(̂s · ∇+ µt)G(r, ŝ; ρ0, 0, ẑ) = µs

∫
A(̂s, ŝ′)G(r, ŝ′; ρ0, 0, ẑ)d2s′

+ δ (ρ− ρ0) δ(z)δ (̂s− ẑ) , (32)

together with the boundary conditions

G(r, ŝr;ρ0, 0, ẑ) = R(|̂si · ẑ|)G(r, ŝi; ρ0, 0, ẑ) , n̂ · ŝ < 0 , z = 0, L . (33)

The reflection coefficient R is given by [26, 32–36]

R(x) =


1
2

[(
x−nx0
x+nx0

)2
+
(
x0−nx
x0+nx

)2]
x ≥ xc ,

1 x < xc ,

(34)

where x0 =
√

1− n2(1− x2), xc =
√
n2 − 1/n and n is the index of refraction in the slab

walls. See Figure 9. We assume that the phase function A is given by

A(̂s, ŝ′) =
lmax∑
l=0

l∑
m=−l

AlYlm(̂s)Y ∗lm(̂s′) , (35)
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FIG. 9. Illustrating the reflecting boundary condition.

where A0 = 1, A1 = g ∈ [0, 1), and Al ∈ [0, 1) (l = 2, 3, . . . ). We adopt the Henyey-

Greenstein model [25], and set

Al = gl , l = 0, 1, 2, . . . . (36)

In the MRRF [27–30], the specific intensity is given as a superposition of eigenmodes I
(+)
µ

and I
(−)
µ , where

I(+)
µ (r, ŝ;q) = eiq·ρ−Qµ(q)z

lmax∑
l=0

l∑
m=−l

(−1)m
√
σl

e−imϕq̂ 〈l|φµ〉 dlmM [iτ(qλµ)]Ylm(̂s) , (37)

I(−)µ (r, ŝ;q) = eiq·ρ+Qµ(q)z
lmax∑
l=0

l∑
m=−l

(−1)l
√
σl
e−imϕq̂ 〈l|φµ〉 dlm,−M [iτ(qλµ)]Ylm(̂s) , (38)

where

Qµ(q) =
√
q2 + 1/λ2µ . (39)

Here λn(M) and |φn(M)〉 be eigenvalues and eigenvectors of matrix B(M) defined by

B(M)ll′ =

√
l2 −M2

(4l2 − 1)σl−1σl
δl′,l−1 +

√
(l + 1)2 −M2

[4(l + 1)2 − 1]σlσl+1

δl′,l+1 , (40)

where σl = µ̄a + µs(1− gl), l, l′ = |M |, |M |+ 1, . . . , lmax, and M = 0,±1,±2, . . . . Note that

we make use of a multi-index µ = (M,n) which runs over the set {(M,n)|λn(M) > 0}. The

dlmM are analytically continued Wigner’s d-functions, which can be recursively computed

[27]. The Green’s function can be expressed as

G(r, ŝ; ρ0, 0, ẑ) =
∑
µ

∫
d2q

(2π)2
e−iq·ρ0

×
[
f (+)
µ (q;n)I(+)

µ (r, ŝ;q) + f (−)
µ (q;n)e−Qµ(q)LI(−)µ (r, ŝ;q)

]
. (41)
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The coefficients f
(+)
µ (q;n) and f

(−)
µ (q;n) are determined by the boundary conditions and are

solutions to the linear systemM(++)(q) M(+−)(q)

M(−+)(q) M(−−)(q)

 f (+)(q;n)

f (−)(q;n)

 =

 v(+)

v(−)

 , (42)

where M ≥ 0, m ≥ 0, l = m+ 1,m+ 3, . . . ,

v
(+)
lm = δm0

∑
l′

B0
ll′(∞)

√
2l′ + 1

4π
, v

(−)
lm = 0 , (43)

and

M(++)
lm,Mn =

∑
l′

cl
′

lm,Mn , M(−−)
lm,Mn = (−1)M+mM(++)

lm,Mn , (44)

M(+−)
lm,Mn = (−1)M+mM(−+)

lm,Mn , M(−+)
lm,Mn = e−Qµ(q)L

∑
l′

(−1)l
′
cl

′

lm,Mn , (45)

cl
′

lm,Mn =
[
Bmll′(∞)− (−1)l

′+mBmll′(n)
] 1
√
σl′
〈l′|φµ〉

×
{
dl

′

mM [iτ(qλµ)] + (1− δM0)(−1)Mdl
′

m−M [iτ(qλµ)]
}
. (46)

Here, Bmll′(n) is given by

Bmll′(n) =
1

2

√
(2l + 1)(2l′ + 1)(l −m)!(l′ −m)!

(l +m)!(l′ +m)!

∫ 1

0

dxPm
l (x)Pm

l′ (x)Rn(x) . (47)

We note that B−mll′ (n) = Bmll′(n) and Bmll′(∞) is defined by Bmll′(n) with Rn(x) ≡ 1. We also

note that f
(±)
−Mn(q;n) = (−1)Mf

(±)
Mn(q;n). Finally the Green’s function in the slab geometry

is obtained as [27]

G(r, ŝ; ρ0, 0, ẑ) '
∫

d2q

(2π)2
e−iq·(ρ−ρ0)

lmax∑
l=0

l∑
m=−l

Ylm(̂s)imklm(q, z) , (48)

where the functions klm(q, z) are given by

klm(q, z) = (−i)me−imϕq
∑
M≥0,n

〈l|φn(M)〉
√
σl

×
[
e−QMn(q)zf

(+)
Mn(q;n) + (−1)l+m+Me−QMn(q)(L−z)f

(−)
Mn(q;n)

]
×
[
dlmM [iτ(qλn(M))] + (1− δM0)(−1)Mdlm,−M [iτ(qλn(M))]

]
, (49)

with ϕq the angle of q.
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