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Analyzing the transition to epsilon-delta 
Calculus: A case study

Paolo Boero

Genoa University, School of Social Sciences and Department of Mathematics, Genoa, Italy, boero@dima.unige.it 

The purpose of this paper is to analyze and discuss a 
think-aloud production of a first year university student 
trying to prove an elementary theorem, concerning con-
tinuous functions, within the frame of the epsilon-delta 
Calculus. I will shortly consider current studies on the 
relationships between a visual justification, based on the 
graphical representation of a continuous function, and 
such epsilon-delta proving. Then I will try to show how 
a comprehensive theoretical framework (integrating 
different tools) based on Habermas’ construct of ration-
ality may account for the complexity of the whole process, 
for the difficulties met by the student in the transition 
from the visual-graphical to the epsilon-delta proving, 
and for the relevance of the visual-graphical reasoning 
to overcome them.

Keywords: Calculus proof, visual-graphical rationality, 

epsilon-delta rationality. 

INTRODUCTION

The transition, in the first half of the nineteenth 
century, from Calculus based on the ideas of conti-
nuity and derivability of a function as continuity 
and smoothness of its graphical representation, to 
epsilon-delta Calculus (i.e. Calculus based on the 
epsilon-delta definitions of limit, and subsequently 
of continuity and derivative, usually also called the 
Cauchy-Weierstrass Calculus) has been dealt with 
by several authors in different disciplines (History 
of Mathematics, Epistemology of Mathematics, 
Psychology, Mathematics Education). In particular, 
the historical-epistemological analyses (see Grabiner, 
1981; Jahnke, 2003) have shown the need of consid-
ering different reasons for that transition, like: the 
emergence of monsters and contradictions within the 
intuitive-visual treatment of continuous functions, 
when new types of functions not represented by or-
dinary formulas were considered; the nineteenth cen-

tury movement towards formal set-theoretic rigour, 
particularly when proving was concerned (see also 
Tall and Katz, 2014); the need of dealing in a rigorous 
way with Calculus in many variables (where reference 
to visual – graphical evidence may be lost, as concerns 
the validation of statements); and also the increas-
ing needs arising from the applications of Calculus 
(particularly stressed in Jahnke, 2003). As concerns 
the cognitive side, the general agreement about the 
fact that transition to epsilon-delta Calculus results 
in many difficulties for students does not correspond 
to an unique interpretation of those difficulties. For 
most past Authors difficulties mainly originate in the 
passage from an intuitive, visual conceptualization 
to a formal treatment of the same notions. More re-
cently, researchers belonging to the embodied cogni-
tion stream of research (cf. Nunez, Edwards, & Matos, 
1999) put into evidence the fact that the natural notion 
of continuity of a function and the epsilon-delta no-
tion of continuity refer to very different grounding 
metaphors: a dynamic metaphor, for natural conti-
nuity; and three static metaphors (among which the 
Preservation of closeness), in the second case, which 
result in a hard to overcome conflict with the notions 
developed according to the dynamic metaphor under-
lying natural continuity. Nowadays, by integrating 
historical- epistemological studies on the origins and 
development of Calculus and cognitive analyses, Tall 
and Katz (2014) provide us with reasons for

a re-evaluation of the relationship between the 
natural geometry and algebra of elementary 
calculus that continues to be used in applied 
mathematics, and the formal set theory of math-
ematical analysis that develops in pure mathe-
matics and evolves into the logical development 
of non-standard analysis using infinitesimal 
concepts (p. 97). 
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During the nineties I had the opportunity, as teacher 
of an experimental course of calculus for first year 
university students in Mathematics, of collecting 
some interesting data (written texts, transcripts of 
oral think-aloud solving processes and notes taken 
by the observers concerning related gestures and at-
titudes). Students had been presented the intuitive, 
graphical notions of continuity and derivative for a 
real function defined on real numbers (or on an inter-
val of real numbers), then the epsilon-delta definition 
of continuity at a point had been introduced. The de-
rivative at a point had been introduced through the 
prolongation by continuity of the incremental ratio. 
Main theorems of calculus in one variable (in particu-
lar, the intermediate value theorem, IVT [1] in the fol-
lowing) had been presented with their epsilon-delta 
proofs; and some tasks demanding the epsilon-delta 
proof of easy properties by using those theorems had 
been proposed. Finally, the usual epsilon- delta no-
tions of limit had been introduced (both in the case 
of finite and in the case of infinite limits) and applied 
to solve some exercises and to put into evidence how 
both continuity and derivative at a point were par-
ticular cases of the notion of limit. 

Such an experimental approach somehow differed 
from the usual teaching of the epsilon-delta Calculus 
in Italy and in many other countries, based on the 
epsilon-delta definition of limit, because in our ex-
periment the approach to the epsilon-delta reasoning 
referred to the intuitive notion of regular functions 
(smooth, continuous functions), according to the his-
torical treatment of functions before the epsilon-delta 
revolution, and then moved to a formal description of 
regularity with the epsilon-delta language, and only 
at the end considered the epsilon-delta definition of 
limits.

Students were aware of the experimental character 
of that teaching of Calculus; they knew very well 
(thanks to elder students’ experience) the difficulty 
of the subject matter, thus they were willing to engage 
in an alternative experience of teaching and learning, 
which possibly might have diminished the difficulties 
met in the ordinary learning of epsilon-delta calculus. 
Students volunteered in furnishing documents like 
private writings, informal drawings, oral reasoning 
in think-aloud situations. 

I will not present the (modest) results of that teach-
ing experiment, and I will not discuss the limitations 

and the heavy consequences on students of the usu-
al teaching of Calculus focusing on the epsilon-del-
ta systematization (cf. Nunez et al, 1999; Tall & Katz, 
2014) – in the reality, the teaching experiment did not 
represent a radical alternative to it, and probably it is 
not possible to do more at the university level. I only 
wanted to introduce the document analyzed in this pa-
per by describing its context of production, in order to 
open the reflection on it. It is a written and oral docu-
ment produced by a brilliant student (we will call him 
Ivan), during a think-aloud problem solving session; 
it concerns the epsilon-delta validation of a rather 
elementary statement of calculus. The interest of the 
document depends on the very detailed presentation 
offered in it of the mental path followed by Ivan to get 
the proof and on the fact that the difficulties met (and 
overcome) by him are very frequent (and frequently 
not overcome!) among students when they want to 
validate a statement according to the epsilon-delta 
criteria. 

The aim of the research reported in this paper is to 
build a suitable theoretical framework to account 
for what happened during Ivan’s problem solving, 
and to put into evidence the role played there by the 
visual – graphical treatment of the problem and its 
importance in the students’ approach to epsilon-delta 
proving.

THE DOCUMENT

Myself as the teacher of the course and a Master 
Degree student of mine took notes about what we 
observed, and then compared and completed those 
field notes, finally integrating them in the transcript 
of the student’s speech. The document is faithfully 
reported here. (...) for pauses of at least 5”; italic for 
sentences written by Ivan.

The problem:

Prove that there is at least one point c such that  
f(c)=0

Ivan reads the text and after a few seconds draws the 
x and y axes, and two arrows, upwards on the right, 
downwards on the left; then he makes a gesture join-
ing with a finger the two arrows and slowly and re-

f: R→R is a continuous function; 
lim f(x) = +∞;  lim f(x)= –∞. 

x→-∞x→+∞
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peatedly crossing the x-axis; finally Ivan joins the two 
arrows by drawing an “oscillating” line.

1 Well, it seems to me that (...) yes, it is a 
case of the IVT.

2 IVT says that I may find c such that f(c)=0    
(...) 

3 yes, but how to find a and b? First, I have 
to find a and b  (...)

4 and to exploit continuity

Ivan comes back to look at the drawing; two index fin-
gers are placed on the upwards and downward arrows.

5 Yes, the limit perhaps says something. 

Ivan makes an horizontal movement with his right 
index finger and crosses the right upwards arrow.

6 If I take a value of y, the function must 
be over that value when x is enough big. 
But how to choose a value of x? (...)

7 Before I need to choose a value of y. But 
the value of y is whichever    (...)

8 Whichever M, I take M and I may find T 
such that for every x>T     (...)

Ivan makes again a horizontal movement with his 
right index finger and crosses the right upwards ar-
row.

9 This might be the value of M, the value of 
y, then I find the value of x, the value of 
x which is b, such that if x>b then f(x)>M

10 But I have f(x)>M, not f(x)=M
11 Is it f(b)=M?     (...)
12 Not sure!   (...)
13 I might take one point x’ such that f(x’)>M; 

that point is the extremity of the inter-
val on the right!

14 But why f(x’) >0? 
15 Yes, I need to take M>0! M is a number, 

whichever number!
16 On the left it is the same: I find x” such 

that f(x”)<0. 
17 The interval for the IVT is  (x”, x’). Let us 

write the proof:

Ivan speaks and writes at the same time, by dictating 
to himself what he says

18 Thanks to continuity of f and IVT, f(x”)
f(x’)<0 implies that c exists in (x”,x’) such 
that f(c)=0.

19 Not, it does not work! First, I need to 
find x’ and x”.

20 Thanks to hypotheses on limits, given x’>0 
I find f(x’)>0.

21 Not, still it does not work! I need to come 
back to how I could find x’>o such that!

 No, not how, why I could find it! Because 
of limits!  How to write it well?

22 Thanks to the hypothesis on limits, given 
M>0 I may find x’>0 such that       (...)

23 Not: I may find xM such that for every 
x>xM  I have f(x)>M.

Ivan puts a strikethrough over all what he had already 
written, and starts again to dictate to himself and to 
write down:

24 Thanks to the hypothesis on limits, giv-
en M>0 I may find xM such that for every 
x>xM I have f(x)>M. I take one point x’> xM.     
f(x’)>M>0.

25 Well, now it works.  
26 In the same way I find x” such that f(x”)<0.        

(...)
27 There is a point c,  x”<c<x’, such that f(c)=0     

(...)
28 Not, this is the conclusion, before it I 

must write the hypothesis and then the 
conclusion.

Ivan puts a strikethrough over the last line, named 
27 above, and dictates to himself and writes down:

29 Now I may apply the IVT to the function 
f in the interval (x”, x’): f(x”)f(x’)<0, thus 
c exists in the interval (x”, x’), such that 
f(c)=0

When the document was analyzed, the complexity 
of the student’s behaviour and the analytical tools 
available in that moment (1995) did not allow to per-
form an exhaustive, in-depth description and inter-
pretation of the difficulties met by the student and of 
how he was able to overcome them. At that time we 
were only able to find some elements that could qual-
ify as mature Ivan’s mastery of the visual-graphical 
notion of continuity and infinite limits at the infinity, 
his identification of IVT as the theorem which might 
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have allowed him to perform a rigorous validation of 
the statement, the immediate reference to the prob-
lem of finding the extremities of the interval where to 
apply IVT, and the identification of the epsilon-delta 
definition of infinite limits at infinity as the crucial 
tool to solve the problem. Then Ivan enters the epsi-
lon-delta reasoning and the situation seems to become 
more and more confuse: the search for the extremi-
ties of the interval where to apply IVT results in an 
apparently messy sequence of steps of reasoning to 
get the abscissa of a point where the function is posi-
tive. When the interval to apply IVT is constructed, a 
further problem concerns the organization of the text 
in order to satisfy the textual and logical constraints 
of a proof text. This description is a pure narration 
of Ivan problem solving process. It does not allow to 
account for:

- the functional relationships between Ivan inner ques-
tioning (see steps 3, 6, 11, 14, 21) and the different kinds 
of answers (sometimes a decision concerning how 
to go on, sometimes the control of a proposition or a 
chain of propositions);

- the nature of the difficulty met in the central part of 
the process (from 6 to 17), and what allowed to over-
come them;

- the nature of the difficulties met in the last part of the 
process (from 18 to 29).

THE NEED FOR A COMPREHENSIVE 
FRAMEWORK: THE HABERMAS 
CONSTRUCT OF RATIONALITY

The document does not speak by itself; we need theo-
retical tools to make Ivan’s voice understandable by 
us, and possibly identify an intentionality that might 
drive Ivan’s towards the final result, in spite of the su-
perficial impression of “a random walk luckily result-
ing in a good conclusion” (according to the evaluation 
of the document by a colleague of mine who teaches 
Calculus for first year university students). We need 
also to understand why apparently so obvious steps 
(like finding a point x where f(x)>0, given the hypothe-
sis of +∞ limit at +∞) become so difficult when the path 
moves through the epsilon-delta forest. 

The first need suggested us to try and adapt Habermas’ 
construct of rational behavior to Ivan’s problem solv-
ing (as a process driven by intentionality to get a cor-

rect result by enchaining correct steps of reasoning, 
and to communicate it in an understandable way in a 
given community). The second need was satisfied by 
integrating, within the use of Habermas’ construct, 
an analysis of some phases of Ivan problem solving 
process in terms of mental dynamics related to the 
treatment of propositions and the mastery of logi-
cal constraints, according to the Guala and Boero’s 
elaboration on mental dynamics in problem solving 
(see Guala & Boero, 1999). They consider “mind times” 
that may be generated during the problem solving 
process: e.g. when imagining to move back from an 
hypothetically attained goal to a previous situation; 
or when going back and retrieving some information 
from memory, and projecting it in an imagined, future 
situation; etc. 

Habermas’ construct of rational behavior deals with 
the complexity of discursive practices according to 
three interrelated elements: knowledge at play (epis-
temic rationality); action and its goals (teleological 
rationality); communication and related choices (com-
municative rationality). Thus, it seems suitable for 
being applied to mathematical activities like proving 
and modeling that move along between epistemic va-
lidity, strategic choices and communicative require-
ments. The following aspects of Habermas’ elabora-
tion (1998, pp. 310–316) are relevant for us.

Concerning epistemic rationality
We know facts and have knowledge of them only 
when simultaneously know why the correspond-
ing judgments are true. (...) Someone is irration-
al if she puts forward her beliefs dogmatically, 
clinging to them although she sees that she cannot 
justify them. In order to qualify a belief as ration-
al, it is sufficient that it can be held to be true on 
the basis of good reasons in the relevant context 
of justification (...) The rationality of a judgment 
does not imply its truth but merely its justified 
acceptability in a given context. (p. 312)

The intentional character of rational behavior on the 
epistemic side emerges from these remarks in a per-
spective of progressive development of knowledge 
(the qualifying element being the tension towards 
knowing “why the corresponding judgments are true”). 
In Habermas’ elaboration, the exercise of epistemic 
rationality is strictly intertwined with speech and 
with action (i.e. teleological rationality)— the latter 
resulting in the evolutionary character of knowledge:
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Of course, the reflexive character of true judg-
ments would not be possible if we could not rep-
resent our knowledge, that is, if we could not ex-
press it in sentences, and if we could not correct 
it and expand it; and this means: if we were not 
able also to learn from our practical dealings with 
a reality that resists us. To this extent, epistemic 
rationality is entwined with action and the use 
of language. (p. 312)

We will see how this way of conceiving the interplay 
between knowledge, speech, and action will account 
for some relevant aspects of Ivan’s proving.

 Concerning teleological rationality
Once again, the rationality of an action is pro-
portionate not to whether the state actually 
occurring in the world as a result of the action 
coincides with the intended state and satisfies 
the corresponding conditions of success, but 
rather to whether the actor has achieved this re-
sult on the basis of the deliberately selected and 
implemented means (or, in accurately perceived 
circumstances, could normally have done so). (p. 
313)

Let us consider problem solving in its widest meaning 
(including conjecturing, proving, modeling, finding 
counter-examples, generalizing, and so on): the above 
sentence highlights the quality of a process, which 
may be qualified as rational (on the teleological side) 
even if the original aim is not attained. The intention-
ality of action (including the choice and use of the 
means to achieve the goal) and the reflective attitude 
towards it are two relevant features of teleological 
rationality.

A successful actor has acted rationally only if he 
(i) knows why he was successful (or why he could 
have realized the set goal in normal circumstanc-
es) and if (ii) this knowledge motivates the actor 
(at least in part) in such a way that he carries out 
his action for reasons that can at the same time 
explain its possible success. (pp. 313–314)

Concerning communicative rationality
(...) communicative rationality is expressed in the 
unifying force of speech oriented toward reach-
ing understanding, which secures for the par-
ticipating speakers an intersubjectively shared 
lifeworld (...). (p. 314)

The above sentence illustrates an ideal practice of 
communicative rationality, and the related values. 
Then Habermas presents a condition that qualifies 
an actual individual behavior as rational on the com-
municative side:  

(...) The rationality of the use of language orient-
ed toward reaching understanding then depends 
on whether the speech acts are sufficiently com-
prehensible and acceptable for the speaker to 
achieve illocutionary success with them (or for 
him to be able to do so in normal circumstances). 
(p. 314)

Even in the above sentence the intentional, reflective 
character is pointed out (for the specific case of com-
municative rationality).

Habermas’ construct offers a model to deal (after 
adaptation) with important aspects of mathematical 
activity, without capturing all the aspects (see Boero 
& Planas, 2014, pp. 207–208 for a brief presentation of 
some of its intrinsic limitations). It has been initially 
used as a tool to analyse students’ rational behavior in 
proving activities according to the researchers’ (and 
teachers’) expectations (see Boero, 2006; Morselli & 
Boero, 2011). Its application to analyses that also use 
other constructs gradually resulted in a rich toolkit 
with various applications (see Boero & Planas, 2014).

ANALYSIS OF THE DOCUMENT [2]

In the perspective of the Habermas’ construct of ra-
tionality, integrated with Guala and Boero’s elabora-
tion on mental dynamics, the document provides us 
with the opportunity to analyze and interpret Ivan’s 
proving as a rational enterprise. It also offers an occa-
sion (based on that analysis) to reflect on some crucial 
aspects of a successful approach to what we may call 
the epsilon-delta rationality. Indeed in the reported 
document we may identify:

- the continuously renewing, conscious interplay, 
driven by an inner questioning (steps 3, 6, 11, 14, 21), 
between the need of performing strategic choices (tel-
eological rationality) aimed at getting the elements to 
move forth, and the epistemic control on how they fit 
(or do not fit) the requirements of epistemic rationality;

- some mental dynamics (cf. Guala & Boero, 2009) re-
lated to Ivan’s strategic choices (teleological rational-
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ity) performed to meet epistemic requirements. We 
may observe how in the first part of Ivan’s work he 
follows (as the movements of his hands show – see 
description before step 1) the time ordering of the text 
of the task, moving from the hypothesis on limits to 
the visual-physical search of the points of intersec-
tion with the x axis. Then an abductive shift is made 
to the IVT, which should guarantee the same result 
within the theory: this means a shift to a different 
epistemic rationality. At that point, a reverse mental 
movement is made, from focusing on the existence 
of the intersection point (step 2), to the search for the 
interval to which the IVT should be applied (step 3). 
This movement means moving back from the time 
of the solved problem to the time of the hypotheses 
that guarantee the solution. A similar movement will 
be replicated later (step 7), and expressed through 
a temporal adverb (“before”, “prima” in Italian). In 
both cases an inner question related to how to vali-
date (epistemic rationality) a partial result got dur-
ing the development of the problem solving process 
suggests to go back to the condition that ensures its 
validity.  Let us consider now what we might call the 
quantifiers game, played from step 7 to step 15 and 
then at least partially echoed in the writing phase 
(steps 18 to 24, where the epistemic rationality and 
the communicative rationality constraints are inter-
twined). From the satisfied condition of infinite limit 
at the infinity: for every M there is xM such that if x> xM  
then f(x)>M  it is necessary to move to: in particular, I 
choose M≥0 and then I get x’ such that f(x’)>M≥0, with a 
change of logical status: from general quantification 
and consequent existential quantification and subse-
quent universal quantification, to particularization 
of the generality of M in order to get a point where 
the function is positive. Focus must move from the 
general condition of limit to a specific implication of 
it. The condition to be satisfied becomes f(x’)>0, thus 
M must be chosen as M≥0. The Mind times toolkit, ap-
plied to a micro-analysis of this phase of the process, 
allows to interpret the mental weight inherent in this 
phase and its difficulty: a projection in the future time 
of the application of the IVT results in the choice of a 
particular value of M, at the beginning of the logical 
and mentally temporal chain of quantifiers, suitable 
to get the appropriate value of x’; 

- the full mastery of the logical and temporal structure 
of a theorem, interfaced with the above change of fo-
cus; this is evident in the steps 18 to 24;

- the need to satisfy the requirements of communica-
tive rationality, consciously related to the epistemic 
requirements. Communicative rationality must ac-
count for satisfied epistemic requirements in the outer 
speech/writing, while epistemic requirements drive 
the inner dialogue towards consequent actions: this 
emerges in the steps 23–29, with communicative con-
straints particularly evident in the steps 27–29.

REFLECTIONS ON THE ANALYSIS 
OF THE DOCUMENT

The adaptation of the Habermas’ construct to 
Mathematics Education offers the opportunity to 
qualify the visual-graphical Calculus as fully rational. 
Indeed that pre-Cauchy Calculus, when dealing with 

“ordinary” functions, has its own criteria of epistemic 
validity, its own strategies to solve problems, its own 
means of intentional communication. This is reflected 
in the first part of Ivan’s elaboration: requirements of 
epistemic validity are of visual nature, and the chosen 
strategy to solve the problem consists in the transla-
tion of the verbal hypotheses of the statement into 
visual-graphical hypotheses, which will be connected 
to the thesis through the gesture of the finger that 
crosses the x axis in order to connect downwards and 
upwards arrows. Also inner and outer communica-
tion is mainly visual (through the signs on the sheet 
of paper and the gestures). This is not new (cf. some 
remarks by Nunez et al., 1999, and by Tall & Katz, 2014), 
but the use of Habermas’ construct of rationality sug-
gests us to reflect on how that system of thinking (with 
its specific epistemic, teleological and communicative 
characters), relevant in the history of mathematics, 
may work today not only as an intuitive first step 
when moving towards the epsilon-delta proving, but 
also as a resource during the epsilon-delta proving to 
support some of the most delicate student’s actions (in 
the case of Ivan, this is particularly evident, thanks 
to his gestures, in the descriptions after the steps 4, 
5 and 8).

In Ivan’s elaboration, the statement of the IVT “repre-
sents” what is already clear in his first approach, and 
guaranteed by a gesture (see above); it also opens the 
way to its formal treatment by orienting the search 
for the interval in which it can be applied, based on 
the formal definition of infinite limit at infinity. We 
may interpret IVT as a pivot in Ivan’s transition from 
the visual-graphical rationality to the epsilon-delta 
rationality in the treatment of the problem.
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In terms of mental dynamics, we may better un-
derstand the complex relationships between the 
visual-graphical rationality and the epsilon-delta 
rationality, and the difficulties to manage the latter. 
On one side, the management of mind times in the ep-
silon-delta Calculus implies the necessity of changing 
the temporal and logical order of quantifiers, moving 
from f(x) > M (whichever M) to the choice of a value of 
M such that we can get x’ and f(x’) > M. This suggests 
a perspective (alternative to Nunez, Edwards and 
Matos elaboration) to interpret why it is so difficult 
to move from visual-graphical to epsilon-delta calcu-
lus. On the other side, on the teleological dimension, 
the visual-graphical rationality provides Ivan with 
the visual and gestural support to bear the weight of 
the complex logical and temporal operations needed 
to construct the (x”, x’) interval where to apply the 
IVT. Indeed the movement of his right index finger 
not only suggests the existence of a point where the 
function is positive, but also provides Ivan with the 
opportunity of “seeing” how to move from a general 
quantification on M, to the choice of a particular M in 
order to get a value x’ such that f(x’) > 0, thus orienting 
Ivan’s mental dynamics.

CONCLUSIONS

The case of Ivan’s think-aloud proving of a simple 
theorem of epsilon-delta Calculus was an occasion 
to search for a comprehensive framework to deal 
with the problem of analyzing the transition from 
visual-graphical proving, to epsilon-delta proving 
in Calculus. The Habermas’ construct of rationality, 
integrated with an analysis of the proving process in 
terms of mental dynamics, suggests a solution, which 
in the case of Ivan accounts for his intentional work 
and his difficulties. It also suggests to reconsider the 
visual-graphical treatment of proving not only as a 
heuristic starting point, but also as a consistent ration-
ality and, as such, a permanent, sure reference when 
students move within the forest of the epsilon-del-
ta proving during the approach to the epsilon-delta 
Calculus as taught in most universities.
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ENDNOTES 

1. Precisely, by IVT we mean the theorem whose state-
ment in Ivan’s textbook is: “If f is a continuous func-
tion in an interval (a,b) and f(a) . f(b) < 0, then at least 
one point c exists in the interval (a,b) such that f(c) = 0.”

2. In the Turin international symposium (November, 
21, 2014) on “Mathematics Education as a transver-
sal discipline”, Ferdinando Arzarello presented an 
alternative analysis of the same protocol, based on an 
integration of the Habermas construct with analytical 
tools derived from Hintikka’s Logic of inquiry, with 
some points of contact with the analysis presented 
in this paper as concerns the teleological dimension 
of rationality.


