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Abstract—Two models are called “coupled” when a non empty
set of the underlying parameters are related through a differen-
tiable implicit function. The goal is to estimate the parameters of
both models by merging all datasets, that is, by processing them
jointly. In this context, we show that the parameter estimation
accuracy under a general class of dataset distributions always
improves when compared to an equivalent uncoupled model. We
eventually illustrate our results with the fusion of multiple tensor
data.

I. INTRODUCTION

Multimodal data analysis is a subject of increasing interest

in various domains [1]–[3]. It generally consists in extracting

useful information from a collection of datasets acquired by

multiple measurement devices [4]. We can distinguish between

two types of datasets: homogeneous and heterogeneous. Ho-

mogeneous datasets have the same parametric models, while

heterogeneous datasets follow different models where some

parameters are shared, as described in Section II. Moreover

the shared variables do not need to be equal, but can be

linked through a (possibly nonlinear) deterministic or statisti-

cal relation. In Section III, we derive the Constrained Cramér

Rao bound (CCRB) based on the works of [5]–[7]. These

approaches can address non-linear coupling links between

shared parameters for possibly complex data.

As an illustration, we apply these results in Sec. IV to a

problem of coupled complex Canonical Polyadic (CP) decom-

positions. Complex CP decompositions are relevant in various

domains such as antenna array processing, radar and commu-

nications [8]–[10]. Algorithms for coupled CP decompositions

have been proposed in [11], [12] and performance bounds for

their uncoupled models have been proposed in [8], [13], [14].

For coupled real tensors with linear couplings, performance

bounds have been proposed in [15], in a Bayesian setting.

The present contribution is more general than [15] in some

way, since it is not restricted to (real) tensor models and to

linear couplings.

II. COUPLED DATASETS MODEL

Let us consider a general coupled model for two datasets

x1 and x2:{
x1 ∼ fx1;θ1,φ1

and x2 ∼ fx2;θ2,φ2
,

g (θ1, θ2) = 0,
(1)

where x1 ∈ Ω1 ⊆ Cn1 and x2 ∈ Ω2 ⊆ Cn2 are ran-

dom datasets distributed according to the probability den-

sity functions (PDF) fx1;θ1,φ1
and fx2;θ2,φ2

, respectively
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parameterized by the unknown deterministic real parameter

vectors (θ1,φ1) ∈ Θ1 × Φ1 ⊆ Rm1 × Rp1 and (θ2,φ2) ∈
Θ2 × Φ2 ⊆ R

m2 × R
p2 (ni, mi and pi denote respectively

the size of vectors xi, θi and φi). The model is referred

to as partially coupled because only parameters θ1 and

θ2 may be linked through the relationship g (θ1, θ2) = 0

whereas parameters φ1 and φ2 are unrelated. We assume

(i) that g (θ1, θ2) is a known non redundant1 deterministic

vector function, differentiable for all (θ1, θ2) ∈ Θ1 × Θ2,

(ii) that distribution fx1:2;θ1:2,φ1:2
is differentiable w.r.t. θ1:2

and φ1:2 and its support does not depend on these parameters2,

(iii) that variables x1 and x2 are statistically independent,

i.e. fx1:2;θ1:2,φ1:2
= fx1;θ1,φ1

fx2;θ2,φ2
. Moreover, the dis-

tributions of x1 and x2 can be totally different even if the

parameter vectors are the same i.e. fx1;θ,φ 6= fx2;θ,φ. This

scenario corresponds to a data fusion system which collects

data from multiple measurement devices.

Under some conditions [5, Lemma 2], the maximum likeli-

hood estimator (MLE) is asymptotically optimal in the mean

squared error (MSE) sense, and achieves the CCRB. Here,

the term asymptotically means either that the signal to noise

ratio (SNR) is high and/or that the ratio between the sizes of

the parameter vector and the dataset goes to zero. The CCRB

is an insightful substitute to the MSE, especially when the

latter is difficult to compute analytically. For these reasons,

we subsequently analyze the CCRB for the estimation of

(θ1:2,φ1:2) in order to obtain insights on the optimal data

fusion performance.

III. PERFORMANCES ANALYSIS

When the coupled model (1) and the associated uncoupled

model (i.e. the same model without the constraint g(θ1, θ2) =
0), are both identifiable, by using the results from [5], the

CCRB is given by

CCRB = F−1 − F−1GT

(
GFGT

)
−1

GF−1, (2)

where G(θ1, θ2) =
[
∂g(θ1,θ2)

∂θT

1
0

∂g(θ1,θ2)

∂θT

2
0
]

is the deriva-

tive of g w.r.t. (θ1,φ1, θ2,φ2) and matrix F is the Fisher

information matrix (FIM) for the uncoupled model. For the

sake of simplicity and without loss of generality, we omit in

(2) and in what follows the dependency on the true value of pa-

rameters F , F (θ1:2,φ1:2), G , G (θ1, θ2) and CCRB ,

1By non redundant, it is meant that no equation gi = 0 can be deduced
from the others, namely {gk = 0, k 6= i}.

2x1:2 (resp. θ1:2, φ1:2) denotes the concatenation of vectors x1 and x2

(resp. θ1 and θ2, φ1 and φ2).



CCRB (θ1:2,φ1:2). Note that an alternative expression of the

general CCRB is given in [6] when F is singular but the

coupled datasets model is still identifiable. Since we want to

compare the gain between coupled and uncoupled models, we

only focus on the case where they are both identifiable. So, in

our case, F−1 = CRB. The difference between estimation

accuracies for coupled and uncoupled models is given by

CRB−CCRB = F−1GT

(
GF−1GT

)
−1

GF−1 � 0,

(3)

where A � B means that A − B is a positive semidefinite

(PSD) matrix. The inequality (3) means that the CCRB is

always lower than the CRB. Coupled models bear additional

information, which generally reduce the size of the parameter

space and improve estimation performance. In our case, not all

parameters are related but only (possibly) θ1:2. So our goal is

to study the effect of these partial constraints on the coupled

parameters θ1:2 and uncoupled φ1:2 estimation accuracies. In

Section III-C, a formula of the CCRB is provided for complex

Gaussian models, which can be seen as a modification of the

Slepian-Bangs formula [16] for coupled models.

A. Influence on the parameter estimation accuracy

In most performance analyses, we are only interested in the

diagonal terms of the CRB, which are directly related to the

optimal MSE. Since fx1:2;θ1:2,φ1:2
= fx1;θ1,φ1

fx2;θ2,φ2
and

the pair of variables (θ1,φ1) and (θ2,φ2) are independent

for the uncoupled model, the classical FIM is a block diagonal

matrix F = Diag{F 1,F 2}, with

F i =

[
∂θiθi

Li ∂θiφi
Li

∂φiθi
Li ∂φiφi

Li

]
, for i = 1, 2, (4)

where Li = ln fxi;θi,φi
(xi) is the log-likelihood function for

xi, and ∂θiθj
, ∂2

∂θi∂θ
T

j

is the second derivative operator w.r.t

θi and θT

j . Due to this special structure, an inversion by blocks

of F leads to the following expression:

F−1 = Diag{CRBθ1φ1
,CRBθ2φ2

}. (5)

From the above expression, the estimation performances of

each pair of variables (θ1,φ1) and (θ2,φ2) are independent.

Denote CRBθi
and CRBφi

the diagonal blocks of matrix

CRBθiφi
which are respectively the lower bound on the MSE

for the estimation of θi and φi in the uncoupled case. Then

CRBθi
=

(
Dθiθi

−Dθiφi
D−1

φiφi
DT

θiφi

)
−1

, (6)

CRBφi
=

(
Dφiφi

−DT

θiφi
D−1

θiθi
Dθiφi

)
−1

, (7)

with Dθiθi
= −E [∂θiθi

Li], Dθiφi
= −E

[
∂θiφi

Li

]
and

Dφiφi
= −E

[
∂φiφi

Li

]
.

In order to take into account the coupling, we need to

evaluate the CCRB. Due to the partial coupling g (θ1, θ2) =
0, the term CRBφi

vanishes in both products GF−1 and

F−1GT. The diagonal terms of (3) are usually the most

interesting, since they give the gains on MSE for the estimation

of θ1:2 and φ1:2. Let us denote Kθ1
, Kθ2

, Kφ1
and Kφ2

the diagonal blocks of (3) corresponding respectively to the

difference between CRB and CCRB for θ1, θ2, φ1 and φ2.

Then by substituting (5) in (3), one has for i = 1, 2

Kθi
= CRBθi

∂gT

∂θi

CRB
−1
g

∂g

∂θT

i

CRBθi
(8)

Kφi
= D−1

φiφi
DT

θiφi
Kθi

Dθiφi
D−1

φiφi
, (9)

where CRBg =
2∑

i=1

∂g

∂θT

i

CRBθi

∂gT

∂θi
. From these expressions,

one can easily check that Kθi
and Kφi

are both PSD matri-

ces. As we can see by (9), the presence of a coupling effect

between θ1 and θ2 also improves the estimation accuracy of

φ1 and φ2, despite the absence of a direct dependence.

B. Extremes cases

Note that if there is no link between parameters θi i.e.
∂g

∂θT

i

= 0, then Kθi
= 0 and Kφi

= 0. Consequently, the

CCRB is equal to the CRB for the parameters θi and φi.

On the other hand, if the function g depends only on θi

and the derivative ∂g

∂θT

i

is a square invertible matrix which

means the number of non redundant constraints is equal to

the size of the vector θi then Kθi
= CRBθi

and Kφi
=

D−1
φiφi

DT

θiφi
CRBθi

Dθiφi
D−1

φiφi
. In this case, if we denote

CCRBθi
and CCRBφi

the diagonal blocks of CCRB in

(2) for θi and φi respectively, then one has CCRBθi
= 0

and CCRBφi
= D−1

φiφi
. This means that θi can be trivially

obtained from g (θi) = 0 and the vector φi can be estimated

independently with the dataset xi only.

C. Coupled Gaussian observation parameterized by the mean

Let us consider two random complex Gaussian dis-

tributed datasets x1 ∼ CN (m1(θ1,φ1),Σ1) and x2 ∼
CN (m2(θ2,φ2),Σ2) where the covariance matrices Σ1 and

Σ2 are known and the parameters θ1, θ2, φ1 and φ2 are

unknown real and assumed to be deterministic. The functions

m1(θ1,φ1) and m2(θ2,φ2) are differentiable w.r.t. θ1,φ1

and θ2,φ2 respectively. In this case, one can show that

Dθiθi
= 2ℜ

{∂mH

i

∂θi
Σ

−1
i

∂mi

∂θT

i

}
, Dθiφi

= 2ℜ
{∂mH

i

∂θi
Σ

−1
i

∂mi

∂φT

i

}

and Dφiφi
= 2ℜ

{∂mH

i

∂φi
Σ

−1
i

∂mi

∂φT

i

}
, where ℜ denotes the real

part operator. Then a closed form expression is obtained for

Kθi
and Kφi

by substituting these three expressions in (8)

and (9). These gains correspond to the required modifications

of the well-known Slepian-Bangs formula [16] by taking

account the coupling link g(θ1, θ2) = 0.

IV. COUPLED TENSOR DECOMPOSITIONS

In this section, we consider the example of two coupled

tensors of order three, X (1) ∈ CI1×J1×K1 and X (2) ∈
CI2×J2×K2 . Assume these tensors can be modelled by

X (1) = T (1) +N (1) and X (2) = T (2) +N (2),
(10)

where T (1) and T (2) are two low rank tensors, of rank R1

and R2 respectively, and N (1) and N (2) are noise tensors.

The entries of N (1) and N (2) are assumed to be independent



and identically distributed (i.i.d.) complex circular Gaussian

variables with zero mean and variance σ2
1 and σ2

2 respectively,

they are also independent from one dataset to another. Let

the CP decomposition of tensors T (i), as defined in [17], be

written as follows for i = 1, 2

T
(i)

=

Ri
∑

r=1

a
(i)
r ⊗b

(i)
r ⊗c

(i)
r subject to g

(

C
(1)

,C
(2)

)

= 0, (11)

where operator ⊗ denotes the tensor product, and the matrices

C(i)
,

[
c
(i)
1 c

(i)
2 · · · c

(i)
Ri

]
∈ CKi×Ri . Also define factor

matrices A(i)
,

[
a
(i)
1 · · · a

(i)
R

]
∈ CIi×Ri and B(i)

,[
b
(i)
1 · · · b

(i)
R

]
∈ CJi×Ri . Since N (1) and N (2) are i.i.d.,

each tensor dataset X (i) is distributed according to

f
X (i);θi,φi

= (πσi)
−IiJiKi exp

(
−

1

σ2
i

∥∥∥X (i) − T (i)
∥∥∥
2
)
,

(12)

where ‖ · ‖ is the Frobenius norm: ‖X‖2 ,
∑
i,j,k

|xijk |2.

A. Closed form expression of the CCRB

A tricky vectorization of X (i) allows to obtain a compact

form of the CCRB using the approach presented in Section

III-C. To do that, we resort to unfolding matrices. Denote by

T (i)
p (resp. X(i)

p ) the mode-p unfolding3 matrix of T (i) (resp.

X (i)), p ∈ {1, 2, 3}. Then the following relations hold:

T
(i)
1 = A(i)(C(i) ⊙B(i))T,

T
(i)
2 = B(i)(C(i) ⊙A(i))T, (13)

T
(i)
3 = C(i)(B(i) ⊙A(i))T,

where operator ⊙ denotes the Khatri-Rao product [19]. Con-

sequently, the vectorization of T
(i)
3 leads to [19]:

vecT
(i)
3 = SC vecC(i) = SA vecA(i) = SB vecB(i) (14)

where SC = B(i) ⊙A(i)
⊠ IKi

, SA = J
(i)
13 (C

(i) ⊙B(i)
⊠

IIi), SB = J
(i)
23 (C

(i) ⊙A(i)
⊠ IJi

), J
(i)
23 (resp. J

(i)
13 ) is the

permutation matrix mapping the entries of vecX
(i)
2 to those

of vecX
(i)
3 (resp. vecX

(i)
1 to those of vecX

(i)
3 ), operator ⊠

denotes the Kronecker product, and Iα stands for the identity

matrix of size α.

The scenario described in (10) corresponds to a cou-

pled model defined in (1) with xi = vecX
(i)
3 ∈

CIiJiKi , θi = [(ℜ ℑ){vecT C(i)}]T ∈ R2IiRi , and φ̃i =
[(ℜ ℑ){vecT A(i)} (ℜ ℑ){vecT B(i)}]T ∈ R2(Ji+Ki)Ri .

Clearly with the above notations, the dataset distribution is

xi ∼ CN (mi(θi, φ̃i), σ
2
i I), (15)

where mi(θi, φ̃i) = vecT
(i)
3 . However model (15) is not

identifiable since the CP decomposition (11) is unique only up

to a scaling factor [17]. To fix this indeterminacy, a solution

is to fix the elements of the first row of the matrices A(i) and

B(i) to known values. This in turn specifies some elements

3See e.g. [17], [18] for a definition of mode-p unfoldings and properties.

in φ̃i, and therefore, we must consider φi ∈ R2(Ji+Ki−2)Ri

containing only the unknown parameters of φ̃i. The relation

between φi and φ̃i is given by φi = Mφ̃i where M ∈
R2(Ji+Ki−2)Ri×2(Ji+Ki)Ri is a mask matrix which is obtained

from an identity matrix I2(Ji+Ki)Ri
by removing the 4Ri rows

corresponding to the known parameters of φ̃i.

As seen in Sec. III-C, a closed form expression of Dθiθi
,

Dθiφi
and Dφiφi

is desirable in order to compute the CCRB.

Using (14), the partial derivatives below can be obtained

∂mi (θi,φi)

∂θT

i

= SC [IKiRi
jIKiRi

] (16)

∂mi (θi,φi)

∂φT

i

= [SA SB]PMT (17)

with P =

[
IIiRi

jIIiRi
0 0

0 0 IJiRi
jIJiRi

]
, j the pure

imaginary unit and Iαβ the identity matrix of size αβ. Using

these expressions in Dθiθi
, Dθiφi

and Dφiφi
, one gets

Dθiθi
=

2

σ2
i

ℜ
{
[IKiRi

jIKiRi
]
H
SH

CSC [IKiRi
jIKiRi

]
}

(18)

Dθiφi
=

2

σ2
i

ℜ
{
[IKiRi

jIKiRi
]
H
SH

C [SA SB]PMT

}
(19)

Dφiφi
=

2

σ2
i

ℜ

{
MPH

[
SH

ASA SH

BSA

SH

ASB SH

BSB

]
PMT

}
(20)

with SH

CSC =
(
B(i)HB(i)

� A(i)HA(i)
)
⊠ IKi

, where the

operator � denotes the Hadamard (entry-wise) product. Conse-

quently, the CCRB in (2) is obtained by plugging expressions

(18), (19), (20) in (5), (8) and (9).

B. Simulations

In this section we simulate the estimation performance of

the complex CP model under additive complex circular Gaus-

sian noise and we compare it with the Cramér-Rao bounds

given in Subsec. IV-A. We assume an equality constraint on

the coupled factors, that is, g
(
C(1),C(2)

)
= C(1) − C(2).

The CP parameters are retrieved using MLE. Since the ML

objective for CP decompositions exhibits many local minima,

most existing approaches execute repeated descent algorithms

initialized at different random points; the execution that led to

the largest objective value is eventually selected as estimate

[20, pp. 62-63, 122].

Uncoupled ALS: A standard method to obtain stationary

points of the negative log-likelihood in the uncoupled case is

block coordinate descent, that is, minimization of the objective

function w.r.t. one block while the others are fixed to their last

update value. From (14), by choosing blocks corresponding to

factors A(i), B(i) and C(i), block-wise minimization merely

corresponds to a linear least-squares problem, and is known

as the Alternating Least Squares (ALS) algorithm [20, p. 63].

For instance, the LS solution for factor C(i) at the k-th iterate

can be shown to be

Ĉ
(i)

k = X
(i)
3

(
B̂

(i)

k ⊙ Â
(i)

k

)⋆ (
M

(i)
k

)
−1

,
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Fig. 1. Total mean squared error and performance bounds for the estimation of complex coupled CP tensor models. Uncoupled parameters φ1:2 are vectorized

real and imaginary parts of A(1:2) and B(1:2) , while coupled parameters (equality constraint) θ1:2 are vectorized real and imaginary parts of C(1:2) . SNR

of X (2) is fixed to 20dB whereas SNR
(

X
(1)

)

∈ [0, 40] dB. Results for i.i.d. distributed A(1) are shown in (a) and (b), and for A(1) with two collinear

columns are shown in (c) and (d).

where (⋆) denotes complex conjugation and M
(i)
k =

(
B̂

(i)T

k B̂
(i)⋆

k

)
�

(
Â

(i)T

k Â
(i)⋆

k

)
. Similar expressions can be

obtained for the update of the other factors.

Coupled ALS: in the coupled problem, the ALS update

of the uncoupled parameters are not modified while the update

of the constrained factors can be done by jointly estimating

only one factor C:

Ĉk =

[
2∑

i=1

1

σ2
i

X
(i)
3

(
B̂

(i)

k ⊙ Â
(i)

k

)⋆
][

2∑

i=1

1

σ2
i

M
(i)
k

]−1

.

To speed up convergence of the coupled ALS, the factors

obtained with uncoupled ALS initialized randomly can be

used. In this way, the initialization is expected to be closer to

the solution than random initialization. Note that to properly

initialize coupled algorithms, scaling and permutation ambi-

guities inherent to CP models need to be corrected. Scaling

ambiguity can be corrected by normalizing A(i) and B(i) such

that â
(i)
1r = 1 and b̂

(i)
1r = 1, whereas permutation ambiguity can

be corrected by searching for the best column permutation in

Ĉ
(2)

for fixed Ĉ
(1)

.

Simulation settings: the tensors we consider have all

dimensions equal to 15 and R(1) = R(2) = 3. In one set of

simulations all CP factors are generated randomly according

to i.i.d. standard circular complex Gaussian variables, while

in the other all factors are i.i.d. except factor A(1), which is

generated with two nearly collinear columns (correlation coef-

ficient ρ = 0.99). First rows of the uncoupled factors are set to

1. We evaluate the total MSE on the real and imaginary parts

of θ̂i (coupled factor C(i)) and φ̂i (uncoupled factors A(i)

and B(i)) by averaging the squared errors through 500 noise

realizations. For each realization 5 different initializations are

used. The SNR4 of X (2) is fixed to 20dB while that of X (1)

varies from 0 to 40dB. The results for the parameters θ1 and

φ1 are shown in Fig. 1a, 1b for i.i.d. A(1) and in Fig. 1c, 1d

for A(1) with two nearly collinear columns. In these figures,

we have also plotted the performance bounds for uncoupled

and coupled models.

We can see in Fig. 1a and 1c that the CRB gains on

θ1 obtained with data fusion can be large in both settings.

However, the predicted gains on φ1 are small for i.i.d. A(1).

For the simulated model, we can also observe that total MSE
curves follow closely the performance bounds for θ1. For φ1,

the small predicted estimation gain when A(1) is i.i.d. cannot

be observed, whereas for A(1) with nearly collinear columns,

total MSE follows the CRB with a small gap. It seems that

for CP decompositions, both in theory and in practice, data

fusion helps most when the problem is badly conditioned.

V. CONCLUSIONS

We have proposed a parametric estimation perspective on

data fusion of multimodal datasets. When the inherent depen-

dencies between two datasets are correctly modelled as con-

straints linking some of their underlying parameters, perfor-

mance of joint parameter estimation can be lower bounded by

constrained Cramér-Rao bounds. With such an approach, we

demonstrate quantitatively a fact that was intuitively expected:

(asymptotically) optimal data fusion enhances parameter esti-

mation performance, even for parameters that are not directly

linked. An illustration related to coupled CP decompositions

of complex tensors has been eventually provided.

4SNR for complex random tensors is SNR(X (i)) =

10 log10

{

E[||T (i)||2]

E[||X(i)−T (i)||2]

}

= 10 log10
(

Ri

σ2
i

)

, where σi is the variance

of the complex Gaussian noise. .
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