
HAL Id: hal-01280479
https://hal.science/hal-01280479v1

Submitted on 28 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stream ciphers: A Practical Solution for Efficient
Homomorphic-Ciphertext Compression

Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, Renaud Sirdey

To cite this version:
Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María Naya-Plasencia, et al..
Stream ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext Compression. FSE 2016 :
23rd International Conference on Fast Software Encryption, Mar 2016, Bochum, Germany. pp.313-333,
�10.1007/978-3-662-52993-5_16�. �hal-01280479�

https://hal.science/hal-01280479v1
https://hal.archives-ouvertes.fr

Stream ciphers: A Practical Solution for Efficient
Homomorphic-Ciphertext Compression?

Anne Canteaut1, Sergiu Carpov2, Caroline Fontaine3, Tancrède Lepoint4,
Maŕıa Naya-Plasencia1, Pascal Paillier4, and Renaud Sirdey2

1 Inria, France, {anne.canteaut,maria.naya plasencia}@inria.fr
2 CEA LIST, France, {sergiu.carpov,renaud.sirdey}@cea.fr
3 CNRS/Lab-STICC and Telecom Bretagne and UEB, France,

caroline.fontaine@telecom-bretagne.eu
4 CryptoExperts, France,

{tancrede.lepoint,pascal.paillier}@cryptoexperts.com

Abstract In typical applications of homomorphic encryption, the first
step consists for Alice to encrypt some plaintext m under Bob’s public
key pk and to send the ciphertext c = HEpk(m) to some third-party
evaluator Charlie. This paper specifically considers that first step, i.e.
the problem of transmitting c as efficiently as possible from Alice to
Charlie. As previously noted, a form of compression is achieved using
hybrid encryption. Given a symmetric encryption scheme E, Alice picks a
random key k and sends a much smaller ciphertext c′ = (HEpk(k),Ek(m))
that Charlie decompresses homomorphically into the original c using a
decryption circuit CE−1 .
In this paper, we revisit that paradigm in light of its concrete implemen-
tation constraints; in particular E is chosen to be an additive IV-based
stream cipher. We investigate the performances offered in this context
by Trivium, which belongs to the eSTREAM portfolio, and we also pro-
pose a variant with 128-bit security: Kreyvium. We show that Trivium,
whose security has been firmly established for over a decade, and the
new variant Kreyvium have an excellent performance.

Keywords. Stream Ciphers, Homomorphic cryptography, Trivium

1 Introduction

Since the breakthrough result of Gentry [30] achieving fully homomorphic en-
cryption (FHE), many works have been published on simpler and more efficient
schemes based on homomorphic encryption. Because they allow arbitrary com-
putations on encrypted data, FHE schemes suddenly opened the way to ex-
citing new applications, in particular cloud-based services in several areas (see
e.g. [46,33,42]).

? This work has received a French governmental support granted to the COMIN Labs
excellence laboratory and managed by the National Research Agency in the “Invest-
ing for the Future” program under reference ANR-10-LABX-07-01, has been sup-
ported in part by the European Union’s H2020 Programme under grant agreement
number ICT-644209 and by the French’s FUI project CRYPTOCOMP.

Compressed encryption. In these cloud applications, it is often assumed that
some data is sent encrypted under a homomorphic encryption (HE) scheme to
the cloud to be processed in a way or another. It is thus typical to consider,
in the first step of these applications, that a user (Alice) encrypts some data
m under some other user’s public key pk (Bob) and sends some homomorphic
ciphertext c = HEpk(m) to a third-party evaluator in the Cloud (Charlie). The
roles of Alice and Bob are clearly distinct, even though they might be played by
the same entity in some applications.

However, all HE schemes proposed so far suffer from a very large ciphertext
expansion; the transmission of c between Alice and Charlie is therefore a very
significant bottleneck in practice. The problem of reducing the size of c as effi-
ciently as possible has first been considered in [46] wherein m is encrypted with
a symmetric encryption scheme E under some key k randomly chosen by Alice,
who then sends a much smaller ciphertext c′ = (HEpk(k),Ek(m)) to Charlie.
Given c′, Charlie then exploits the homomorphic property of HE and recovers

c = HEpk(m) = CE−1 (HEpk(k),Ek(m))

by homomorphically evaluating the decryption circuit CE−1 . This can be assimi-
lated to a compression method for homomorphic ciphertexts, c′ being the result
of applying a compressed encryption scheme to the plaintext m and c being
recovered from c′ using a ciphertext decompression procedure. In that approach
obviously, the new encryption rate |c′|/|m| becomes asymptotically close to 1 for
long messages, which leaves no significant margin for improvement. However, the
paradigm of ciphertext compression leaves totally open the question of how to
choose E in a way that minimizes the decompression overhead, while preserving
the same security level as originally intended.

Prior art. The cost of a homomorphic evaluation of several symmetric primi-
tives has been investigated, including optimized implementations of AES [31,18,23],
and of the lightweight block ciphers Simon [43] and Prince [24]. Usually lightweight
block ciphers seem natural candidates for efficient evaluations in the encrypted
domain. However, they may also lead to much worse performances than a homo-
morphic evaluation of, say, AES. Indeed, contemporary HE schemes use noisy
ciphertexts, where a fresh ciphertext includes a noise component which grows
along with homomorphic operations. Usually a homomorphic multiplication in-
creases the noise by much larger proportions than a homomorphic addition. The
maximum allowable level of noise (determined by the system parameters) then
depends mostly on the multiplicative depth of the circuit. Many lightweight block
ciphers balance out their simplicity by a large number of rounds, e.g. KATAN
and KTANTAN [12], with the effect of considerably increasing their multiplica-
tive depth. This type of design is therefore prohibitive in a HE context. Still
Prince appears to be a much more suitable block cipher for homomorphic eval-
uation than AES (and than Simon), because it specifically targets applications
that require a low latency; it is designed to minimize the cost of an unrolled
implementation [10] rather than to optimize e.g. silicon area.

At Eurocrypt 2015, Albrecht, Rechberger, Schneider, Tiessen and Zohner ob-
served that the usual criteria that rule the design of lightweight block ciphers are
not appropriate when designing a symmetric encryption scheme with a low-cost
homomorphic evaluation [3]. Indeed, both the number of rounds and the number
of binary multiplications required to evaluate an Sbox have to be taken into ac-
count. Minimizing the number of rounds is a crucial issue for low-latency ciphers
like Prince, while minimizing the number of multiplications is a requirement
for efficient masked implementations.

These two criteria have been considered together for the first time by Al-
brecht et al. in the recent design of a family of block ciphers called LowMC [3]
with very small multiplicative size and depth1. However, the proposed instances
of LowMC, namely LowMC-80 and LowMC-128, have recently had some se-
curity issues [21]. They actually present some weaknesses inherent in their low
multiplicative complexity. Indeed, the algebraic normal forms (i.e., the multivari-
ate polynomials) describing the encryption and decryption functions are sparse
and have a low degree. This type of features is usually exploited in algebraic
attacks, cube attacks and their variants, e.g. [20,22,5]. While these attacks are
rather general, the improved variant used for breaking LowMC [21], named in-
terpolation attack [38], specifically applies to block ciphers. Indeed it exploits
the sparse algebraic normal form of some intermediate bit within the cipher
using that this bit can be evaluated both from the plaintext in the forward di-
rection and from the ciphertext in the backward direction. This technique leads
to several attacks including a key-recovery attack against LowMC-128 with
time complexity 2118 and data complexity 273, implying that the cipher does
not provide the expected 128-bit security level.

Our contributions. We emphasize that beyond the task of designing a HE-
friendly block cipher, revisiting the whole compressed encryption scheme (in
particular its internal mode of operation) is what is really needed in order to
take these concrete HE-related implementation constraints into account.

First, we identify that homomorphic decompression is subject to an offline
phase and an online phase. The offline phase is plaintext-independent and there-
fore can be performed in advance, whereas the online phase completes decom-
pression upon reception of the plaintext-dependent part of the compressed ci-
phertext. Making the online phase as quick as technically doable leads us to
choose an additive IV-based stream cipher to implement E. However, we note
that the use of a lightweight block cipher as the building-block of that stream
cipher usually provides a security level limited to 2n/2 where n is the block
size [48], thus limiting the number of encrypted blocks to (typically) less than
232 (i.e. 32GB for 64-bit blocks).

As a result, we propose our own candidate for E: the keystream genera-
tor Trivium [14], which belongs to the eSTREAM portfolio of recommended

1 It is worth noting that in a HE context, reducing the multiplicative size of a sym-
metric primitive might not be the first concern (while it is critical in a multiparty
computation context, which also motivated the work of Albrecht et al. [3]), whereas
minimizing the multiplicative depth is of prime importance.

stream ciphers, and a new proposal called Kreyvium, which shares the same in-
ternal structure but allows for bigger keys of 128 bits2. The main advantage of
Kreyvium over Trivium is that it provides 128-bit security (instead of 80-bit)
with the same multiplicative depth, and inherits the same security arguments.
It is worth noticing that the design of a variant of Trivium which guarantees a
128-bit security level has been raised as an open problem for the last ten years [1,
p. 30]. Beside a higher security level, it also accommodates longer IVs, so that it
can encrypt up to 46 ·2128 plaintext bits under the same key, with multiplicative
depth only 12. Moreover, both Trivium and Kreyvium are resistant against the
interpolation attacks used for breaking LowMC since these ciphers do not rely
on a permutation which would enable the attacker to compute backwards.

We implemented our construction and instantiated it with Trivium, Kreyvium
and LowMC in CTR-mode. Our results show that the promising performances
attained by the HE-dedicated block cipher LowMC can be achieved with well-
known primitives whose security has been firmly established for over a decade.

Organization of the paper. We introduce a general model and a generic con-
struction to compress homomorphic ciphertexts in Section 2. Our construction
using Trivium and Kreyvium is described in Section 3. Subsequent experimental
results are presented in Section 4.3

2 A Generic Design for Efficient Decompression

In this section, we describe our model and generic construction to transmit
compressed homomorphic ciphertexts between Alice and Charlie. We use the
same notation as in the introduction: Alice wants to send some plaintext m,
encrypted under Bob’s public key pk (of an homomorphic encryption scheme
HE) to a third party evaluator Charlie.

2.1 Offline/Online Phases in Ciphertext Decompression

Most practical scenarios would likely find it important to distinguish between
three distinct phases within the homomorphic evaluation of CE−1 :

1. an offline key-setup phase which only depends on Bob’s public key and can
be performed once and for all before Charlie starts receiving compressed
ciphertexts encrypted under Bob’s key;

2 Independently from our results, another variant of Trivium named Trivi-A has been
proposed [17]. It handles larger keys but uses longer registers. It then needs more
rounds for mixing the internal state, which means that it is much less adapted to
our setting than Kreyvium.

3 In [15], we also present a second candidate for E that relies on a completely different
technique based on the observation that multiplication in binary fields is F2-bilinear,
making it possible to homomorphically exponentiate field elements with a log-log-
depth circuit. We also report a random oracle based proof that compressed cipher-
texts are semantically secure under an appropriate complexity assumption. We show,
however, that this second approach remains disappointingly impractical.

2. an offline decompression phase which can be performed only based on some
plaintext-independent material found in the compressed ciphertext;

3. an online decompression phase which aggregates the result of the offline
phase with the plaintext-dependent part of the compressed ciphertext and
(possibly very quickly) recovers the decompressed ciphertext c.

As such, our general-purpose formulation c′ = (HEpk(k),Ek(m)) does not allow
to make a clear distinction between these three phases. In our context, it is much
more relevant to reformulate the encryption scheme as an IV-based encryption
scheme where the encryption and decryption process are both deterministic but
depend on an IV:

Ek(m)
def
=
(
IV,E′k,IV (m)

)
.

Since the IV has a limited length, it can be either transmitted during an offline
preprocessing phase, or may alternately correspond to a state which is main-
tained by the server. Now, to minimize the latency of homomorphic decompres-
sion for Charlie, the online phase should be reduced to a minimum. The most
appropriate choice in this respect consists in using an additive IV-based stream
cipher Z so that

E′k,IV (m) = Z(k, IV)⊕m .

In this reformulation, the decompression process is clearly divided into a offline
precomputation stage which only depends on pk, k and IV , and an online phase
which is plaintext-dependent. The online phase is thus reduced to a mere XOR
between the plaintext-dependent part of the ciphertext E′k,IV (m) and the HE-
encrypted keystream HE(Z(k, IV)), which comes essentially for free in terms
of noise growth in HE ciphertexts. All expensive operations (i.e. homomorphic
multiplications) are performed during the offline decompression phase where
HE(Z(k, IV)) is computed from HE(k) and IV .

2.2 Our Generic Construction

We devise the generic construction depicted on Fig. 1. It is based on a homomor-
phic encryption scheme HE with plaintext space {0, 1}, an expansion function G
mapping `IV -bit strings to strings of arbitrary size, and a fixed-size parametrized
function F with input size `x, parameter size `k and output size N .

Compressed encryption. Given an `m-bit plaintext m, Bob’s public key pk
and IV ∈ {0, 1}`IV , the compressed ciphertext c′ is computed as follows:

1. Set t = d`m/Ne,
2. Set (x1, . . . , xt) = G(IV ; t`x),
3. Randomly pick k ← {0, 1}`k ,
4. For 1 ≤ i ≤ t, compute zi = Fk(xi),
5. Set keystream to the `m leftmost bits of z1 || . . . || zt,
6. Output c′ = (HEpk(k),m⊕ keystream).

Ciphertext decompression. Given c′ as above, Bob’s public key pk and IV ∈
{0, 1}`IV , the ciphertext decompression is performed as follows:

k

IV

HEpk(·)

Z

G

x1 xt

F F F · · · F

z1 z2 z3 · · · ztkeystream =

offline

online

Alice Charlie

m ⊕ m⊕ keystream

HEpk(k)

IV

G

x1 xt

CF CF CF · · · CF

HEpk(keystream)

C⊕ HEpk(m)

Figure1. Our generic construction. The multiplicative depth of the circuit is
equal to the depth of CF . This will be the bottleneck in our protocol and we
want the multiplicative depth of F to be as small as possible. With current HE
schemes, the circuit C⊕ is usually very fast (addition of ciphertexts) and has a
negligible impact on the noise in the ciphertext.

1. Set t = d`m/Ne,
2. Set (x1, . . . , xt) = G(IV ; t`x),
3. For 1 ≤ i ≤ t, compute HEpk(zi) = CF (HEpk(k), xi) with some circuit CF ,
4. Deduce HEpk(keystream) from HEpk(z1), . . . ,HEpk(zt),
5. Compute c = HEpk(m) = C⊕ (HEpk(keystream),m⊕ keystream).

The circuit C⊕ computes HE(a ⊕ b) given HE(a) and b where a and b are
bit-strings of the same size. In our construction, the cost of decompression per
plaintext block is fixed and roughly equals one single evaluation of the circuit
CF ; most importantly, the multiplicative depth of the decompression circuit is
also fixed, and set to the depth of CF .

How secure are compressed ciphertexts? From a high-level perspective,
compressed homomorphic encryption is just hybrid encryption and relates to the
generic KEM-DEM construct. However it just cannot inherit from the general
security results attached to the KEM-DEM framework [2,35] since taking some
HE scheme to implement the KEM part does not even fulfill the basic require-
ments that the KEM be IND-CCA or even IND-CCCA. Thus, the right level
of security requirement on the compressed encryption scheme itself seems to be

just IND-CPA for concrete use. However, it is not known what minimal security
assumptions to require from a homomorphic KEM and a general-purpose DEM
to yield a KEM-DEM scheme that is provably IND-CPA. As a result of that,
evidence that CPA security is reached may only be provided on a case-by-case
basis given a specific embodiment (see [15] for details).

Instantiating the paradigm. The rest of the paper focuses on how to choose
the expansion function G and function F so that the homomorphic evaluation of
CF is as fast (and its multiplicative depth as low) as possible. In our approach,
the value of IV is assumed to be shared between Alice and Charlie and needs
not be transmitted along with the compressed ciphertext. For instance, IV is
chosen to be an absolute constant such as IV = 0` where ` = `IV = `x. Another
example is to take for IV ∈ {0, 1}` a synchronized state that is updated between
transmissions. Also, the expansion function G is chosen to implement a counter
in the sense of the NIST description of the CTR mode [47], for instance

G(IV ; t`) = (IV, IV � 1, . . . , IV � (t− 1)) where a� b = (a+ b) mod 2` .

Finally, F is chosen to ensure both an appropriate security level and a low multi-
plicative depth. We focus in Section 3 on the keystream generator corresponding
to Trivium, and on a new variant, called Kreyvium.

Interestingly, the output of an iterated PRF used in CTR mode is computa-
tionally indistinguishable from random [7, Th. 13]. Hence, under the assumption
that Trivium or Kreyvium is a PRF4, the keystream z1 || . . . || zt produced by
our construction is also indistinguishable. However, this is insufficient to prove
that the compressed encryption scheme is IND-CPA, because the adversary also
sees HEpk(k) during the IND-CPA game, which cannot be proven not to make
the keystream distinguishable. Although the security of this approach is empiric,
Section 3 provides a strong rationale for the Kreyvium design and makes it the
solution with the smallest homomorphic evaluation latency known so far.

Why not use a block cipher for F? Although not specifically in these terms,
the use of lightweight block ciphers like Prince and Simon has been proposed
in the context of compressed homomorphic ciphertexts e.g. [43,24]. However a
complete encryption scheme based on the ciphers has not been defined. This
is a major issue since the security provided by all classical modes of operation
(including all variants of CBC, CTR, CFB, OFB, OCB. . .) is inherently limited
to 2n/2 where n is the block size [48] (see also e.g. [39, p. 95]). Only a very few
modes providing beyond-birthday security have been proposed (e.g. [37,50] but
they induce a higher implementation cost and their security is usually upper-
bounded by 22n/3.

In other words, the use of a block cipher operating on 64-bit blocks like
Prince or Simon-32/64 implies that the number of blocks encrypted under
the same key should be significantly less that 232 (i.e. 32GB for 64-bit blocks).

4 Note that this equivalent to say that Kreyvium instantiated with a random key and
mapping the IV’s to the keystream is secure [8, Sec. 3.2].

Therefore, only block ciphers with a large enough block size, like the LowMC
instantiation with a 256-bit block proposed in [3], are suitable in applications
which may require the encryption of more than 232 bits under the same key.

3 Trivium and Kreyvium, Two Low-Depth Stream
Ciphers

Since an additive stream cipher is the optimal choice,
we now focus on keystream generation, and on its ho-
momorphic evaluation. An IV-based keystream gen-
erator is decomposed into:

– a resynchronization function, Sync, which takes
as input the IV and the key (possibly expanded
by some precomputation phase), and outputs
some n-bit initial state;

– a transition function Φ which computes the next
state of the generator;

– a filtering function f which computes a
keystream segment from the internal state.

internal state

�
�

�
�

�
�

�
�

�� ��?

?

?

�

-

? ?

k IV

keystream

Φ

f

Sync

Since generating N keystream bits may require a circuit of depth up to

(depth(Sync) +N depth(Φ) + depth(f)) ,

the best design strategy for minimizing this value consists in choosing a transition
function with a small depth. The extreme option is to choose for Φ a linear
function as in the CTR mode where the counter is implemented by an LFSR.
An alternative strategy consists in choosing a nonlinear transition whose depth
does not increase too fast when it is iterated. The influence of Sync on the
multiplicative depth of the circuit is further investigated in [15].

Size of the internal state. A major specificity of our context is that a large in-
ternal state can be easily handled. Indeed, in most classical stream ciphers, the
internal-state size usually appears as a bottleneck because the overall size of the
quantities to be stored highly influences the number of gates in the implementa-
tion. This is not the case in our context. It might seem, a priori, that increasing
the size of the internal state automatically increases the number of nonlinear op-
erations (because the number of inputs of Φ increases). But, this is not the case if
a part of this larger internal state is used, for instance, for storing the secret key.
This strategy can be used for increasing the security at no implementation cost.
Indeed, the complexity of all generic attacks aiming at recovering the internal
state of the generator is O(2n/2) where n is the size of the secret part of the
internal state even if some part is not updated during the keystream generation.
For instance, the time-memory-data-tradeoff attacks in [6,32,9] aim at inverting
the function which maps the internal state of the generator to the first keystream

bits. But precomputing some values of this function must be feasible by the at-
tacker, which is not the case if the filtering or transition function depends on
some secret material. On the other hand, the size n′ of the non-constant secret
part of the internal state determines the data complexity for finding a collision
on the internal state: the length of the keystream produced from the same key is
limited to 2n

′/2. But, if the transition function or the filtering function depends
on the IV, this limitation corresponds to the maximal keystream length pro-
duced from the same key/IV pair. It is worth noticing that many attacks require
a very long keystream generated from the same key/IV pair and do not apply in
our context since the keystream length is strictly limited by the multiplicative
depth of the circuit.

3.1 Trivium in the HE setting

Trivium [14] is one of the 7 stream ciphers recommended by the eSTREAM
project [25]. Due to the small number of nonlinear operations in its transition
function, it appears as a natural candidate in our context.

Description. Trivium is a synchronous stream cipher with a key and an IV of
80 bits each. Its internal state is composed of 3 registers of sizes 93, 84 and 111
bits, corresponding to a size of 288 bits in total. We use the notation introduced
by the designers: the leftmost bit of the 93-bit register is s1, and its rightmost
one is s93; the leftmost bit of the register of size 84 is s94 and the rightmost
s177; the leftmost bit of register of size 111 is s178 and the rightmost s288. The
initialization and the generation of an N -bit keystream are described below.

(s1, s2, . . . , s93)← (K0, . . . ,K79, 0, . . . , 0)
(s94, s95, . . . , s177)← (IV0, . . . , IV79, 0, . . . , 0)
(s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1)
for i = 1 to 1152 +N do

t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288

if i > 1152 do
output zi−1152 ← t1 + t2 + t3

end if
t1 ← t1 + s91 · s92 + s171
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69
(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

end for

No attack better than an exhaustive key search is known so far on the full
Trivium. It can then be considered as secure. The family of attacks that seems

to provide the best result on round-reduced versions is the cube attack and its
variants [22,5,28]. They recover some key bits (resp. provide a distinguisher on
the keystream) if the number of initialization rounds is reduced to 799 (resp. 885)
rounds out of 1152. The highest number of initialization rounds that can be
attacked is 961: in this case, a distinguisher exists for a class of weak keys [41].

Multiplicative depth. It is easy to see that the multiplicative depth grows
quite slowly with the number of iterations. An important observation is that, in
the internal state, only the first 80 bits in Register 1 (the keybits) are initially
encrypted under the HE and that, as a consequence, performing hybrid clear and
encrypted data calculations is possible (this is done by means of the following
simple rules: 0 · [x] = 0, 1 · [x] = [x], 0+[x] = [x] and 1+[x] = [1]+[x], where the
square brackets denote encrypted bits and where in all but the latter case, a ho-
momorphic operation is avoided which is specially desirable for multiplications).
This optimization allows for instance to increase the number of bits which can
be generated (after the 1152 blank rounds) at depth 12 from 42 to 57 (i.e., a
35% increase). Then, the relevant quantity in our context is the multiplicative
depth of the circuit which computes N keystream bits from the 80-bit key. The
proof of the following proposition is given in [15].

Proposition 1. In Trivium, the keystream length N(d) which can be produced
from the 80-bit key with a circuit of multiplicative depth d, d ≥ 4, is given by

N(d) = 282×
⌊d

3

⌋
+

81 if d ≡ 0 mod 3

160 if d ≡ 1 mod 3

269 if d ≡ 2 mod 3

.

3.2 Kreyvium

Our first aim is to offer a variant of Trivium with 128-bit key and IV, without
increasing the multiplicative depth of the corresponding circuit. Besides a higher
security level, another advantage of this variant is that the number of possible
IVs, and then the maximal length of data which can be encrypted under the
same key, increases from 280Ntrivium(d) to 2128Nkreyvium(d). Increasing the key and
IV-size in Trivium is a challenging task, mentioned as an open problem in [1,
p. 30] for instance. In particular, Maximov and Biryukov [45] pointed out that
increasing the key-size in Trivium without any additional modification cannot
be secure due to some attack with complexity less than 2128. A first attempt
in this direction has been made in [45] but the resulting cipher accommodates
80-bit IV only, and its multiplicative complexity is higher than in Trivium since
the number of AND gates is multiplied by 2.

Description. Our proposal, Kreyvium, accommodates a key and an IV of 128
bits each. The only difference with the original Trivium is that we have added
to the 288-bit internal state a 256-bit part corresponding to the secret key and
the IV. This part of the state aims at making both the filtering and transition
functions key- and IV-dependent. More precisely, these two functions f and Φ

depend on the key bits and IV bits, through the successive outputs of two shift-
registers K∗ and IV ∗ initialized by the key and by the IV respectively. The
internal state is then composed of five registers of sizes 93, 84, 111, 128 and 128
bits, having an internal state size of 544 bits in total, among which 416 become
unknown to the attacker after initialization.

We will use the same notation as the description of Trivium, and for the
additional registers we use the usual shift-register notation: the leftmost bit is
denoted by K∗127 (or IV ∗127), and the rightmost bit (i.e., the output) is denoted
by K∗0 (or IV ∗0). Each one of these two registers are rotated independently from
the rest of the cipher. The generator is described below, and depicted on Fig. 2.

(s1, s2, . . . , s93)← (K0, . . . ,K92)
(s94, s95, . . . , s177)← (IV0, . . . , IV83)
(s178, s179, . . . , s288)← (IV84, . . . , IV127, 1, . . . , 1, 0)
(K∗127,K

∗
126, . . . ,K

∗
0)← (K0, . . . ,K127)

(IV ∗127, IV
∗
126, . . . , IV

∗
0)← (IV0, . . . , IV127)

for i = 1 to 1152 +N do
t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288 + K∗0

if i > 1152 do
output zi−1152 ← t1 + t2 + t3

end if
t1 ← t1 + s91 · s92 + s171 + IV∗0
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69
t4 ← K∗0
t5 ← IV ∗0
(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)
(K∗127,K

∗
126, . . . ,K

∗
0)← (t4,K

∗
127, . . . ,K

∗
1)

(IV ∗127, IV
∗
126, . . . , IV

∗
0)← (t5, IV

∗
127, . . . , IV

∗
1)

end for

Related ciphers. KATAN [12] is a lightweight block cipher with a lot in com-
mon with Trivium. It is composed of two registers, whose feedback functions are
very sparse, and have a single nonlinear term. The key, instead of being used
for initializing the state, is introduced by XORing two key information-bits per
round to each feedback bit. The recently proposed stream cipher Sprout [4], in-
spired by Grain but with much smaller registers, also inserts the key in a similar
way: instead of using the key for initializing the state, one key information-bit
is XORed at each clock to the feedback function. We can see the parallelism
between these two ciphers and our newly proposed variant. In particular, the

0

243 288
286 287

69 91 92
9366

171
162 177

175 176

264

0

Figure2. Kreyvium. The three registers in the middle correspond to Trivium.
The modifications defining Kreyvium correspond to the two registers in blue.

previous security analysis on KATAN shows that this type of design does not in-
troduce any clear weakness. Indeed, the best attacks on round-reduced versions
of KATAN so far [29] are meet-in-the-middle attacks, that exploit the knowledge
of the values of the first and the last internal states (due to the block-cipher set-
ting). As this is not the case here, such attacks, as well as the recent interpolation
attacks against LowMC [21], do not apply. The best attacks against KATAN,
when excluding MitM techniques, are conditional differential attacks [40,41].

Design rationale. We have decided to XOR the keybit K∗0 to the feedback
function of the register that interacts with the content of (s1, . . . , s63) the later,
since (s1, . . . , s63) is initialized with some key bits. The same goes for the IV ∗

register. Moreover, as the keybits that start entering the state are the ones that
were not in the initial state, all the keybits affect the state at the earliest.

We also decided to initialize the state with some keybits and with all the IV
bits, and not with a constant value, as this way the mixing will be performed
quicker. Then we can expect that the internal-state bits after initialization are
expressed as more complex and less sparse functions in the key and IV bits.

Our change of constant is motivated by the conditional differential attacks
from [41]: the conditions needed for a successful attack are that 106 bits from
the IV or the key are equal to ’0’ and a single one needs to be ’1’. This suggests
that values set to zero “encourage” non-random behaviors, leading to our new
constant. In other words, in Trivium, an all-zero internal state is always updated
in an all-zero state, while an all-one state will change through time. The 0 at
the end of the constant is added for preventing slide attacks.

Multiplicative depth. Exactly as for Trivium, we can compute the number of
keystream bits which can be generated from the key at a given depth (see [15]).

Proposition 2. In Kreyvium, the keystream length N(d) which can be produced
from the 128-bit key with a circuit of multiplicative depth d, d ≥ 4, is given by

N(d) = 282×
⌊d

3

⌋
+

70 if d ≡ 0 mod 3

149 if d ≡ 1 mod 3

258 if d ≡ 2 mod 3

.

Security analysis. We investigate how all the known attacks on Trivium can
apply to Kreyvium. A more detailled analysis is provided in [15].

TMDTO. TMDTO attacks aiming at recovering the initial state of the cipher
do not apply since the size of the secret part of the internal state (416 bits) is
much larger than twice the key-size: the size of the whole secret internal state
has to be taken into account, even if the additional 128-bit part corresponding
to K∗ is independent from the rest of the state. On the other hand, TMDTO
aiming at recovering the key have complexity larger than exhaustive key search
since the key and the IV have the same size [36,13].

Internal-state collision. A distinguisher may be built if the attacker is able to find
two colliding internal states, since the two keystreams produced from colliding
states are identical. Finding such a collision requires around 2144 keystream bits
generated from the same key/IV pair, which is much longer than the maximal
keystream length allowed by the multiplicative depth of the circuit. We also
show in [15] that, for a given key, finding two internal states colliding on all bits
except on IV ∗ does not provide any valid distinguisher. The birthday-bound of
2144 bits then provides a limit on the number of bits produced from the same
key/IV pair, not on the bits produced from the same key.

Cube attacks [22,28] and cube testers [5]. They provide the best attacks for
round-reduced Trivium. In our case, as we keep the same main function, but
we have two additional XORs per round, thus a better mixing of the variables,
we can expect the relations to get more involved and hamper the application of
previously defined round-reduced distinguishers. One might wonder if the fact
that more variables are involved could ease the attacker’s task, but we point out
here that the limitation in the previous attacks was not the IV size, but the size
of the cubes themselves. Therefore, having more variables available is of no help
with respect to this point. We can conclude that the resistance of Kreyvium to
these types of attacks is at least the resistance of Trivium, and even better.

Conditional differential cryptanalysis. Because of its applicability to Trivium
and KATAN, the attack from [41] is definitely of interest in our case. In partic-
ular, the highest number of blank rounds is reached if some conditions on two
registers are satisfied at the same time (and not only conditions on the regis-
ter controlled by the IV bits in the original Trivium). In our case, as we have

IV bits in two registers, it is important to elucidate whether an attacker can
take advantage of introducing differences in two registers simultaneously. First,
let us recall that we have changed the constant to one containing mostly 1. We
previously saw that the conditions that favor the attacks are values set to zero
in the initial state. In Trivium, we have (108 + 4 + 13) = 125 bits already fixed
to zero in the initial state, 3 are fixed to one and the others can be controlled
by the attacker in the weak-key setting (and the attacker will force them to be
zero most of the time). Now, instead, we have 64 bits forced to be 1, 1 equal
to zero, and (128 + 93) = 221 bits of the initial state controlled by the attacker
in the weak-key setting, plus potentially 21 additional bits from the key still
not used, that will be inserted during the first rounds. We can conclude that,
while in Trivium it is possible in the weak-key setting, to introduce zeros in the
whole initial state but in 3 bits, in Kreyvium, we will never be able to set to zero
64 bits, implying that applying the techniques from [41] becomes much harder.

Algebraic attacks. Several algebraic attacks have been proposed against Trivium,
aiming at recovering the 288-bit internal state at the beginning of the keystream
generation (i.e., at time t = 1153) from the knowledge of the keystream bits.
The most efficient attack of this type is due to Maximov and Biryukov [45].
It exploits the fact that the 22 keystream bits at time 3t′, 0 ≤ t′ < 22, are
determined by all bits of the initial state at indexes divisible by 3 (starting from
the leftmost bit in each register). Moreover, once all bits at positions 3i are
known, then guessing that the outputs of the three AND gates at time 3t′ are
zero provides 3 linear relations between the bits of the internal state and the
keystream bits. The attack then consists of an exhaustive search for some bits
at indexes divisible by 3. The other bits in such positions are then deduced by
solving the linear system derived from the keystream bits at positions 3t′. Once
all these bits have been determined, the other 192 bits of the initial state are
deduced from the other keystream equations. This process must be iterated until
the guess for the outputs of the AND gates is correct. In the case of Trivium,
the outputs of at least 125 AND gates must be guessed in order to get 192 linear
relations involving the 192 bits at indexes 3i + 1 and 3i + 2. This implies that
the attack has to be repeated (4/3)125 = 252 times. From these guesses, we
get many linear relations involving the bits at positions 3i only, implying that
only an exhaustive search with complexity 232 for the other bits at positions 3i is
needed. Therefore, the overall complexity of the attack is around 232×252 = 284.
A similar algorithm can be applied to Kreyvium, but the main difference is that
every linear equation corresponding to a keystream bit also involves one key
bit. Moreover, the key bits involved in the generation of any 128 consecutive
output bits are independent. It follows that each of the first 128 linear equations
introduces a new unknown in the system to solve. For this reason, it is not
possible to determine all bits at positions 3i by an exhaustive search on less than
96 bits like for Trivium. Moreover, the outputs of more than 135 AND gates must
be guessed for obtaining enough equations on the remaining bits of the initial
state. Therefore the overall complexity of the attack exceeds 296×252 = 2148 and
is much higher that the cost of the exhaustive key search. It is worth noticing

that the attack would have been more efficient if only the feedback bits, and not
the keystream bits, would have been dependent on the key. In this case, 22 linear
relations independent from the key would have been available to the attacker.

4 Experimental Results

We now discuss and compare the practicality of our generic construction when
instantiated with Trivium, Kreyvium and LowMC. The expansion function G
implements a mere counter, and the aforementioned algorithms are used to in-
stantiate the function F that produces N bits of keystream per iteration as
defined by Prop. 1 and 2.5

HE framework. In our experiments, we considered two HE schemes: the BGV
scheme [11] and the FV scheme [26] (a scale-invariant version of BGV). The BGV
scheme is implemented in the library HElib [34] and has become de facto a stan-
dard benchmarking library for HE applications. Similarly, the FV scheme was
previously used in several HE benchmarkings [27,43,16], is conceptually simpler
than the BGV scheme, and is one of the most efficient HE schemes.6 Addition-
ally, batching was used [49], i.e. the HE schemes were set up to encrypt vectors
in an SIMD fashion (componentwise operations, and rotations via the Frobe-
nius endomorphism). The number of elements that can be encrypted depends
on the number of terms in the factorization modulo 2 of the cyclotomic polyno-
mial used in the implementation. This batching allowed us to perform several
Trivium/Kreyvium/LowMC in parallel in order to increase the throughput.

Parameter selection for subsequent homomorphic processing. In all
the previous works on the homomorphic evaluation of symmetric encryption
schemes, the parameters of the underlying HE scheme were selected for the exact
multiplicative depth required and not beyond [31,19,43,24,3]. This means that
once the ciphertext is decompressed, no further homomorphic computation can
actually be performed by Charlie – this makes the claimed timings considerably
less meaningful in a real-world context.

We benchmarked both parameters for the exact multiplicative depth and pa-
rameters able to handle circuits of the minimal multiplicative depth plus 7 to
allow further homomorphic processing by Charlie (which is obviously what is
expected in applications of homomorphic encryption). We chose 7 because, in
practice, numerous applications use algorithms of multiplicative depth smaller
than 7 (see e.g. [33,42]). In what follows we compare the results we obtain us-
ing Trivium, Kreyvium and also the LowMC cipher. For LowMC, we bench-
marked not only our own implementation but also the LowMC implementation

5 Note that these propositions only hold when hybrid clear and encrypted data calcula-
tions are possible between IV and HE ciphertexts. This explains the slight differences
in the number of keystream bits per iteration (column “N”) between Tab. 1 and 2.

6 We used the Armadillo compiler implementation of FV [16]. This source-to-source
compiler turns a C++ algorithm into a Boolean circuit, optimizes it, and generates
an OpenMP parallel code which can then be combined with a HE scheme.

Table1. Latency and throughput using HElib on a single core of a mid-end
48-core server (4 x AMD Opteron 6172 processors with 64GB of RAM).

Algorithm
security

N
used

#slots
latency throughput

level κ × depth sec. bits/min

Trivium-12 80 45
12 600 1417.4 1143.0

19 720 4420.3 439.8

Trivium-13 80 136
13 600 3650.3 1341.3

20 720 11379.7 516.3

Kreyvium-12 128 42
12 504 1715.0 740.5

19 756 4956.0 384.4

Kreyvium-13 128 124
13 682 3987.2 1272.6

20 480 12450.8 286.8

LowMC-128 ? ≤ 118 256
13 682 3608.4 2903.1

20 480 10619.6 694.3

LowMC-128 [3] ? ≤ 118 256
13 682 3368.8 3109.6

20 480 9977.1 739.0

of [3] available at https://bitbucket.org/malb/lowmc-helib. Minor changes
to this implementation were made in order to obtain an equivalent parametriza-
tion of HElib. The main difference is that the implementation from [3] uses
an optimized method for multiplying a Boolean vector and a Boolean matrix,
namely the “Method of Four Russians”. This explains why our implementation
is approximately 6% slower, as it performs 2–3 times more ciphertext additions.

Experimental results using HElib. For sake of comparison with [3], we ran
our implementations and their implementation of LowMC on a single core using
HElib. The results are provided in Tab. 1. We recall that the latency refers to
the time required to perform the entire homomorphic evaluation whereas the
throughput is the number of blocks processed per time unit.

Experimental results using FV. On Tab. 2, we present the benchmarks when
using the FV scheme. The experiments were performed using either a single
core (in order to compare with BGV) or on all the cores of the machine the
tests were performed on. The execution time acceleration factor between 48-core
parallel and sequential executions is given in the column “Speed gain”. While
good accelerations (at least 25 times) were obtained for Trivium and Kreyvium
algorithms, the acceleration when using LowMC is significantly smaller (∼ 10
times). This is due to the huge number of operations in LowMC that created
memory contention and huge slowdown in memory allocation.

https://bitbucket.org/malb/lowmc-helib

Table2. Latency of our construction when using the FV scheme on a mid-end
48-core server (4 x AMD Opteron 6172 processors with 64GB of RAM).

Algorithm
security

N
used latency (sec.)

Speed gain
level κ × depth 1 core 48 cores

Trivium-12 80 57
12 681.5 26.8 × 25.4

19 2097.1 67.6 × 31.0

Trivium-13 80 136
13 888.2 33.9 × 26.2

20 2395.0 77.2 × 31.0

Kreyvium-12 128 46
12 904.4 35.3 × 25.6

19 2806.3 82.4 × 34.1

Kreyvium-13 128 125
13 1318.6 49.7 × 26.5

20 3331.4 97.9 × 34.0

LowMC-128 ? ≤ 118 256
14 1531.1 171.0 × 9.0

21 3347.8 329.0 × 10.2

Interpretation. First, we would like to recall that LowMC-128 must be con-
sidered in a different category because of the existence of a key-recovery attack
with time complexity 2118 and data complexity 273 [21]. However, it has been
included in the table in order to show that the performances achieved by Trivium
and Kreyvium are of the same order of magnitude. An increase in the number of
rounds of LowMC-128 (typically by 4 rounds) is needed to achieve 128-bit secu-
rity, but this would have a non-negligible impact on its homomorphic evaluation
performance, as it would require to increase the depth of the cryptosystem sup-
porting the execution. For instance, a back-of-the-envelope estimation for four
additional rounds leads to a degradation of its homomorphic execution perfor-
mances by a factor of about 2 to 3 (more computations with larger parameters).
It is also worth noticing that the minimal multiplicative depth for which valid
LowMC output ciphertexts were obtained was 14 for the FV scheme and 13 for
the BGV scheme. The theoretical multiplicative depth is 12 but the high number
of additions explains this difference7.

Our results show that Trivium and Kreyvium have a smaller latency than
LowMC, but have a slightly smaller throughput. As already emphasized in [43],
real-world applications of homomorphic encryption (which are often cloud-based
applications) should be implemented in a transparent and user-friendly way. In
the context of our approach, the latency of the offline phase is still an important
parameter aiming at an acceptable experience for the end-user even when a

7 The multiplicative depth is only an approximation of the homomorphic depth re-
quired to absorb the noise generated by the execution of an algorithm [44]. It neglects
the noise induced by additions and thus does not hold for too addition-intensive al-
gorithms such as those in the LowMC family.

sufficient amount of homomorphic keystream could not be precomputed early
enough because of overall system dimensioning issues.

Also Trivium and Kreyvium are more parallelizable than LowMC is. There-
fore, our work shows that the promising performances obtained by the recently
proposed HE-dedicated cipher LowMC can also be achieved with Trivium, a
well-analyzed stream cipher, and a variant aiming at achieving 128 bits of secu-
rity. Last but not least, we recall that our construction was aiming at compressing
the size of transmissions between Alice and Charlie. We support an encryption
rate |c′|/|m| that becomes asymptotically close to 1 for long messages, e.g. for
`m = 1GB message length, our construction instantiated with Trivium (resp.
Kreyvium), yields an expansion rate of 1.08 (resp. 1.16).

5 Conclusion

Our work shows that the promising performances obtained by the recent HE-
dedicated cipher LowMC can also be achieved with Trivium, a well-known
primitive whose security has been thoroughly analyzed, e.g. [45,22,5,28,41]. The
10-year analysis effort from the community, initiated by the eSTREAM com-
petition, enables us to gain confidence in its security. cipher is essentially the
same.

From a more fundamental perspective, one may wonder how many multi-
plicative levels are strictly necessary to achieve a secure compressed encryption
scheme, irrespective of any performance metric such as the number of homo-
morphic bit multiplications to perform in the decompression circuit. We already
know that a multiplicative depth of dlog κe + 1 is achievable for κ-bit security
(cf. [15]). Can one do better or prove that this is a lower bound?

The provable security of a KEM-DEM construct where the KEM is homo-
morphic also remains an open question. In particular, assuming the KEM part
is just IND-CPA, what would be the minimum security requirements expected
from the DEM part to yield an IND-CPA construction?

References

1. Algorithms, key size and parameters report 2014. Tech. rep., ENISA (2014)
2. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A New Frame-

work for Hybrid Encryption and A New Analysis of Kurosawa-Desmedt KEM. In:
EUROCRYPT. LNCS, vol. 3494, pp. 128–146. Springer (2005)

3. Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for
MPC and FHE. In: EUROCRYPT. LNCS, vol. 9056, pp. 430–454. Springer (2015)

4. Armknecht, F., Mikhalev, V.: On Lightweight Stream Ciphers with Shorter Internal
States. In: FSE. LNCS, vol. 9054, pp. 451–470. Springer (2015)

5. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube Testers and Key Recovery
Attacks on Reduced-Round MD6 and Trivium. In: FSE. LNCS, vol. 5665, pp. 1–22.
Springer (2009)

6. Babbage, S.: A space/time trade-off in exhaustive search attacks on stream ciphers.
In: European Convention on Security and Detection. No. 408, IEEE (1995)

7. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of
Symmetric Encryption. In: FOCS. pp. 394–403. IEEE Computer Society (1997)

8. Berbain, C., Gilbert, H.: On the Security of IV Dependent Stream Ciphers. In:
FSE. LNCS, vol. 4593, pp. 254–273. Springer (2007)

9. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: ASIACRYPT. LNCS, vol. 1976, pp. 1–13. Springer (2000)

10. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications. In: ASIACRYPT. LNCS, vol. 7658, pp. 208–225. Springer (2012)

11. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic En-
cryption without Bootstrapping. TOCT 6(3), 13 (2014)

12. Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A Family
of Small and Efficient Hardware-Oriented Block Ciphers. In: CHES. LNCS, vol.
5747, pp. 272–288. Springer (2009)

13. Cannière, C.D., Lano, J., Preneel, B.: Comments on the rediscovery of time memory
data tradeoffs. Tech. rep., eSTREAM - ECRYPT Stream Cipher Project (2005)

14. Cannière, C.D., Preneel, B.: Trivium. In: New Stream Cipher Designs - The eS-
TREAM Finalists, LNCS, vol. 4986, pp. 244–266. Springer (2008)

15. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier,
P., Sirdey, R.: How to Compress Homomorphic Ciphertexts. IACR Cryptology
ePrint Archive 2015, 113 (2015), https://eprint.iacr.org/2015/113

16. Carpov, S., Dubrulle, P., Sirdey, R.: Armadillo: a compilation chain for privacy
preserving applications. In: ACM CCSW (2015)

17. Chakraborti, A., Chattopadhyay, A., Hassan, M., Nandi, M.: TriviA: A fast and
secure authenticated encryption scheme. In: CHES. Lecture Notes in Computer
Science, vol. 9293, pp. 330–353. Springer (2015)

18. Cheon, J.H., Coron, J., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch Fully Homomorphic Encryption over the Integers. In: EUROCRYPT. LNCS,
vol. 7881, pp. 315–335. Springer (2013)

19. Coron, J., Lepoint, T., Tibouchi, M.: Scale-Invariant Fully Homomorphic Encryp-
tion over the Integers. In: PKC. LNCS, vol. 8383, pp. 311–328. Springer (2014)

20. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback.
In: EUROCRYPT. LNCS, vol. 2656, pp. 345–359. Springer (2003)

21. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized Interpolation Attacks on
LowMC. IACR Cryptology ePrint Archive 2015, 418 (2015)

22. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In:
EUROCRYPT. LNCS, vol. 5479, pp. 278–299. Springer (2009)

23. Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES Evaluation using NTRU. IACR
Cryptology ePrint Archive 2014, 39 (2014)

24. Doröz, Y., Shahverdi, A., Eisenbarth, T., Sunar, B.: Toward Practical Homomor-
phic Evaluation of Block Ciphers Using Prince. In: WAHC. LNCS, vol. 8438, pp.
208–220. Springer (2014)

25. ECRYPT - European Network of Excellence in Cryptology: The eSTREAM Stream
Cipher Project. http://www.ecrypt.eu.org/stream/ (2005)

26. Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption.
IACR Cryptology ePrint Archive 2012, 144 (2012)

27. Fau, S., Sirdey, R., Fontaine, C., Aguilar, C., Gogniat, G.: Towards practical pro-
gram execution over fully homomorphic encryption schemes. In: IEEE Interna-
tional Conference on P2P, Parallel, Grid, Cloud and Internet Computing. pp. 284–
290 (2013)

https://eprint.iacr.org/2015/113
http://www.ecrypt.eu.org/stream/

28. Fouque, P., Vannet, T.: Improving Key Recovery to 784 and 799 Rounds of Trivium
Using Optimized Cube Attacks. In: FSE. LNCS, vol. 8424, pp. 502–517. Springer
(2013)

29. Fuhr, T., Minaud, B.: Match Box Meet-in-the-Middle Attack against KATAN. In:
FSE. LNCS, vol. 8540, pp. 61–81. Springer (2014)

30. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC. pp. 169–
178. ACM (2009)

31. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic Evaluation of the AES Circuit.
In: CRYPTO. LNCS, vol. 7417, pp. 850–867. Springer (2012)

32. Golic, J.D.: Cryptanalysis of alleged A5 stream cipher. In: EUROCRYPT’97.
LNCS, vol. 1233, pp. 239–255. Springer-Verlag (1997)

33. Graepel, T., Lauter, K.E., Naehrig, M.: ML Confidential: Machine Learning on
Encrypted Data. In: ICISC. LNCS, vol. 7839, pp. 1–21. Springer (2012)

34. Halevi, S., Shoup, V.: Algorithms in HElib. In: CRYPTO, Part I. Lecture Notes
in Computer Science, vol. 8616, pp. 554–571 (2014)

35. Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsu-
lation. In: CRYPTO. LNCS, vol. 4622, pp. 553–571. Springer (2007)

36. Hong, J., Sarkar, P.: New Applications of Time Memory Data Tradeoffs. In: ASI-
ACRYPT. LNCS, vol. 3788, pp. 353–372. Springer (2005)

37. Iwata, T.: New Blockcipher Modes of Operation with Beyond the Birthday Bound
Security. In: FSE. LNCS, vol. 4047, pp. 310–327. Springer (2006)

38. Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In: FSE.
LNCS, vol. 1267, pp. 28–40. Springer (1997)

39. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. Chap-
man and Hall/CRC Press (2014)

40. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanaly-
sis of NLFSR-Based Cryptosystems. In: ASIACRYPT. LNCS, vol. 6477, pp. 130–
145. Springer (2010)

41. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanal-
ysis of Trivium and KATAN. In: SAC. LNCS, vol. 7118, pp. 200–212. Springer
(2011)

42. Lauter, K., López-Alt, A., Naehrig, M.: Private Computation on Encrypted Ge-
nomic Data. In: LATINCRYPT. LNCS (2014)

43. Lepoint, T., Naehrig, M.: A Comparison of the Homomorphic Encryption Schemes
FV and YASHE. In: AFRICACRYPT. LNCS, vol. 8469, pp. 318–335. Springer
(2014)

44. Lepoint, T., Paillier, P.: On the Minimal Number of Bootstrappings in Homomor-
phic Circuits. In: WAHC. LNCS, vol. 7862, pp. 189–200. Springer (2013)

45. Maximov, A., Biryukov, A.: Two Trivial Attacks on Trivium. In: SAC. vol. 4876,
pp. 36–55. Springer (2007)

46. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: ACM CCSW. pp. 113–124. ACM (2011)

47. National Institute of Standards and Technology: Recommendation for Block Cipher
Modes of Operation. NIST Special Publication 800-38A (2001)

48. Rogaway, P.: Evaluation of some blockcipher modes of operation. Cryptrec (2011)
49. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes

Cryptography 71(1), 57–81 (2014)
50. Yasuda, K.: A New Variant of PMAC: Beyond the Birthday Bound. In: CRYPTO.

LNCS, vol. 6841, pp. 596–609. Springer (2011)

	Stream ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext Compression

