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Throughout the design of automotive vehicle systems, modeling and simulation technologies have been widely used for supporting their conceptualization and evaluation. Due to the increasing complexity of such systems, the overall quality management and design process optimization are becoming more important. This in particular brings the necessity of integrating various domain-specific physical models that are traditionally based on different formalisms and isolated tools. In this paper, we present the initial concepts towards a model-driven toolintegration framework with automated managed simulation services in the system development. We exploit EAST-ADL and some other existing state-of-the-art modeling technologies as the reference frameworks for a formal system description, with the content including requirements, design solutions, extrafunctional constraints, and verification and validation cases. Given such a formal specification, dedicated co-simulation services will be developed to provide the support for automated configuration and execution of simulation tools.

INTRODUCTION

Automotive vehicle systems have evolved continuously over the past decades with increasing functional and technical complexity. The development involves complex interactions of designers and stakeholders, [START_REF] Törgren | Model-Based Development of Automotive Embedded Systems[END_REF]. Typically, an automotive vehicle can be divided into different parts with associated engineering tasks allocated to different work groups or companies. These groups often use specific domain-specific simulator tools to assist the specification, analysis and synthesis tasks.

For a whole vehicle, the overall system behaviors and other properties depend on the characteristics of its subsystems and components being composed. It is therefore important for system developers to conduct early system integration and thereby to understand the system behaviors and analyze system performance in the initial design phases.

In current industrial practices, different CAD and CAE tools have been used for the development of vehicle subsystems and components, such as for requirement analysis, high level design, detailed level design, implementation, testing, etc. Since the subsystem designers often use their own tools to build models, it is a challenge for the system developers to integrate those detailed models and to predict the whole system performance. This calls for a complete integration framework for different models and tools while taking the process management perspective into consideration.

This paper describes an initial version of, and work towards establishing, a model-driven tool-integration design framework for whole vehicle systems in regard to the methodology and technical roadmap. In such a framework, a formal system description is provided to share information among various stakeholders, including project managers, system engineers, modeler, system designers and simulation testers. The content of system information being described and integrated includes requirements, function analysis, system design, parameter settings, interface contract of physical system models, and tool specific information for co-simulation. The framework integrates subsystem models in order to predict the whole vehicle performance. Also, parameters related to optimized simulation behaviors can be added.

The paper has five main sections. Section 2 provides a brief introduction of simulation technologies and system modeling methods. Section 3 presents a problem analysis of an autobreaking system. Section 4 illustrates a model-driven and toolintegration framework we provided. Section 5 demonstrates a co-simulation test case of a vehicle auto-breaking system. Section 6 and 7 discusses how Open Services for Lifecycle Collaboration (OSLC) can be integrated into our framework and future work.

II. STATE OF THE ART

Nowadays, computation design and simulation technology can help to improve design efficiency and decrease the time consumption and R&D cost [START_REF] Jinzhi | Co-simulation for heterogeneous simulation system and application for aerospace[END_REF]. In the vehicle conception design phase, model-based design is very important to predict the system performance in advance. Designers have used many types of modeling technologies and tools to finish their design jobs. For example, CAE and CAD tools, such as Solidworks, Catia, AMESim, Simplorer, Matlab\Simulink, are very widely used in the vehicle industries.

However, there are still various challenges in the whole life cycle of vehicle design. Firstly, different CAD and CAE tools can help designers to build models for designing these subsystems or components to satisfy design requirements, however the whole system performance is very different (and more difficult) to predict, because the subsystem designers are often from other groups or companies and use different tools to build models.
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Sometimes because of the intellectual property, they even cannot provide the original models. That's why it's hard for integrated system department to integrate the detailed models to predict the whole system performance.

Secondly, even though various PDM and PLM systems can help companies to manage information during vehicle design, such tool-based information management has a restricted scope. For example, if some subsystems are designed by different companies, it is no possible to push all the subsystem suppliers to use the same tool.

Thirdly, nowadays documents still play a very important role in communication and information description, but it's difficult to manage the changes in documents and releases of a huge document may delay the other parts of development. Consequently, a framework with formalized and graphical conception models for model-driven and tool-integration of cosimulation is needed. Several technologies that may be used for such a framework are now briefly surveyed.

A. Multi-domain Simulation Technologies

In addition to commercial simulation platforms, several languages and standards are provided for multi-domain system simulation and analysis.

1) Modelica

Modelica language is a non-proprietary, object-oriented, equation based language to conveniently model complex physical systems [START_REF]Modelica® -A Unified Object-Oriented Language for Systems Modeling[END_REF]. Modelica models are object-oriented and schematics. Nowadays, Modelica language is widely used in automobile industries.

2) Co-simulation

Co-simulation is a technology which can solve the multiphysics model integration. It represents a particular case of simulation scenarios in which there are at least two simulators to solve coupled algebraic equations and exchange the data with each other during simulation [START_REF] Jinzhi | Co-simulation for heterogeneous simulation system and application for aerospace[END_REF].The High-Level Architecture (HLA) is a technology for developing distributed simulation developed by the Simulation Interoperability Standards Organization (SISO) [START_REF]HLA Tutorial[END_REF]. The Functional Mock-up Interface (FMI) standard was initiated through the Modelisar project. FMI is designed for commercial simulators to transform their models to a normative form [START_REF]FMI specification[END_REF]. The HLA is powerful in mastering the whole co-simulation process and control the data flow. FMI is better for interface design for simulator tools.

B. System Modeling Approach

From the perspective of system engineering, physical system models are not the unique concern. Though a lot of complex and completed model libraries and model management platforms already exist, it's also different for system designers in each layer to understand the whole physical system model and share the model information with each other except for documents or reports. This leads to a need for an information model for information exchange and function descriptions. In this part, several system modeling languages, (e.g., SysML, EAST-ADL, etc.) are investigated.

1) SysML

SysML is a general-purpose modeling language for systems engineering with a subset of UML2 and additional extensions to satisfy the demands of the language description. SysML provides constructs for modeling systems engineering problems including requirements, structure, behavior, allocations, and constraints [START_REF]OMG Systems Modeling Language (OMG SysML™[END_REF].

2) EAST-ADL

EAST-ADL is a language to describe automotive electrical and electronic systems; it relates closely to SysML and can be seen as a domain specific tailoring for automotive systems. It enables to capture detailed information for documentation, design, analysis and synthesis from the top level characteristics to tasks and interface &communication framework [START_REF]EAST-ADL-Specification_V2.1.12[END_REF].

3) ARCADIA Arcadia / Capella is a field-proven domain specific modeling solution for system engineering. It has an open source framework to define operation, system, logic and physical system [8].

III. PROBLEM ANALYSIS

We provide a test case to show how co-simulation can be used in autobreaking system design. The verification purpose is to test if the new autobreaking controller can satisfy the '3second rule', which is a measurement on the time interval for the vehicles to pass the same fixed point on road. If a vehicle reaches such a point within 3 seconds after its foregoing vehicle, then the following distance is too short. For icy or snow-covered road, the corresponding interval can be 7~8 sec.

As Figure 2 shows, we define the Green zones, Red zones and Black zones for the autobreaking controller. X1 and X2 is the position in X direction of vehicle1's and vehicle2's geometric center. If the distance between V1 and V2 is not less than v1/1.2, vehicle2 need accelerate. When it's in red zones, vehicle 2 need decelerate. When the distance between V1 and V2 is less than 1.2m, these two vehicles crashed. In this case, Carmaker, MWorks and Simulink were used for subsystem modeling and the whole system model is integrated in Simulink which represents the co-simulation process. As shown in Figure 3, the controller model was built by Modelica language in MWorks and was exported to a FMU. Then S-function for co-simulation with FMU and interface library for Carmaker have been used to connect with these two subsystem models with Simulink. 

IV. MODEL-DRIVEN AND TOOL-INTEGRATION FRAMEWORK

To solve the former challenge, we design a framework as shown in Figure 1. This framework is inspired by SPIT (Social layer, Process layer, Information layer and Technical layer) [START_REF] Zhang | Research of Modelbased Aeroengine Control System Design Structure and Workflow[END_REF]. This framework is designed for tool-integration, dataintegration, MBSE technical integration and web deployment for the whole life cycle in product design.

A. Social layer

In the social layer, the social models of people's behaviors, organizations, management views, social views and culture for MBSE (Model-based System Engineering) technology are created and describe relative engineering activity in the whole life cycle. From our research, we take an example of MBSE transitioning model as a social model in this layer to describe MBSE maturity level.

This MBSE maturity level model describes enterprises or research teams from the traditional document-based system engineering approach to MBSE approach. In the technical aspect, we separately define transitioning of software and multi-domain system design. As Table 1, we define transitioning level of software and multi-domain system. And we will have an investigation of different effect factors including cultural aspect, stakeholder aspect and transitioning aspect. 

D. Physical model and data model layer (Technology layer)

In this paper, each sub-system component model can be uploaded into the library as a FMU or a component of cosimulation model. A master engine should be designed to master the co-simulation procedure between different physical system models. Now the solver of Matlab\Simulink is used to control the co-simulation and S-function is designed as an interface. Each physical system model has its own connections to the component diagrams in the third layer [START_REF] Sillitto | Design Principles for Ultra-Large Scale (ULS) Systems[END_REF].

E. Comparion with other modelling frameworks or projects 1) C2WT Framework C2WT (Command and Control Wind Tunnel

) is a modelbased multi-model integration platform which is from a project of American Air Force Research Laboratory. Actually, it's a framework based on Run-Time Infrastructure (RTI) of HLA [START_REF] Lu | Research of Tool-Coupling Based Electro-Hydraulic System Development Method[END_REF]. In [START_REF] Roth | Command & control wind tunnel integration and overview[END_REF], this framework can support RTI to control FMU to run the co-simulation. They have their domain specified language (DSL) to configure and control the simulation. However, the DSL can only describe the model structures and configuration which cannot satisfy the demand for information integration and MBSE approach.

2) DESTECS Project DESTECS (Design Support and Tooling for Embedded Control Software) is an EU project developed for fault-tolerant embedded systems design. They have a co-simulation engine to control co-simulation process between 20-sim for continuous system model and Overture tools based on Vienna Development Method for discrete-event models. An integrated development environment has been developed to integrate such physical system models [START_REF] Neema | Model-based integration platform for FMI co-simulation and heterogeneous simulations of cyber-physical systems[END_REF]. However, this project has limitation for embedded system and is short for information integration during the whole life cycle.

3) WSAF Project WSAF (Whole-of-System Analytical Framework) is a project running by Australia and New Zealand. In [START_REF] Broenink | Design support and tooling for dependable embedded control software[END_REF], the author introduces a model-based way to share contractual contents between acquirers and suppliers and provides several requirements for such technology. In this paper, only architectural model including requirements and functions has been used for information exchange. The physical system model has not been used for information exchange which means integrated system performance cannot be analyzed in the initial phase of the whole life cycle.

4) ModelicaML

ModelicaML is a UML profile and a language extension for Modelica. It's a good way to connect requirements with physical system simulation by Modelica language to verify if the system can satisfy the requirements which are built by UML [START_REF] Do | An Investigation of MBSE Practices across the Contractual Boundary[END_REF]. In general, based on several industrial investigations, many industrial firms like to choose the cosimulation way for their model-integration rather than Modelica language. This is because time and financial consumption for training programs and model-rebuild. So this method has practice restrictions which will influence on its future application.

5) CERTI

CERTI is an HLA RTI developed since 1996 by ONERA, the French Aerospace Lab. It's an open source project for HLA usage. There is no DSL support, but an open source RTI is provided in this project.

6) CRYSTAL

The ARTEMIS Joint Undertaking project CRYSTAL (CRitical sYSTem engineering AcceLeration) takes up the challenge to establish and push forward an Interoperability Specification (IOS) and a Reference Technology Platform (RTP) as a European standard for safety-critical systems [18]. This project has some investigation to show toolintegration's consistency, the methodology of co-simulation was also covered to be tested and applied within the frame.

From such projects, we can find such framework which can cover models and tool-integration is really needed for current industries. As we see, SPIT framework has a more clearly structures for MBSE technologies, data-integration, toolintegration and service-oriented web deployments. 

V. USER CASE FOR PHYSICAL SYSTEM MODEL DESCRIPTION

A. Testcase for SDL in MetaEdit

We have four models in MetaEdit as Figure 9 shows. In Figure 10, the model describes the co-simulation execution strategy as operation model. The information of FMUs, subsystem models and tools which will be used in this cosimulation will be described and now we can fill such information by hand. In Figure 10, the interface model is used to describe to Sfunction for FMUs which will be used for the autobreaking test case. It includes the methods for the S-functions and all the function codes in each method. We need to fill some information for the interface by hand to produce the s-function code automatically. 

B. Automatic Execution for co-simulation

We design the Code-generator in the MetaEdit. Based on the models we built in the Meta-Edit and the information we fill by hand, the M-script in Figure 9 will be produced.

C. Physical system model in Simulink

In Figure 11, a Simulink model has been automatically produced by M-script and block library which we built.

Then we run the M-script produced by VVcase and cosimulation task is running automatically. During co-simulation process, Carmaker model is running as Figure 12. A front-end window has been designed for verifying the simulation result online and simulation result data has been stored in .mat files as Figure 13. 

D. Result

As Table 2 shows, we have three different tasks for 3 tests. Each test has different parameters for each models based on various situations. After co-simulation executions, results are shown as Figure 17. 

VI. DISCUSION

In the whole lifecycle collaboration of the SPIT framework for MBSE, several sections, such as design space exploration, system validation, searching for models, will need model management, information exchange and data management. We take an example of scenarios which OSLC can be used for the whole SPIT framework. As Figure 18 as an example, if we use the web deployments to execute the design process for SOS by co-simulation, the information exchange, co-simulation trigger, and simulation result verification can be achieved by OSLC technology. 

VII. CONCLUSION AND FUTURE WORK

From the test case, we can see Simulation Description Modeling Language can be used to describe the basis information for co-simulation. The structure model captures the components in top system model which connected with all the subsystem models. Integrated behavior model describes the procedure of co-simulation. VVcase shows a scenario for the autobreaking test case with parameter setting and simulation setting. Interface Design Model demonstrates the approach of interface design. That means graphical model can be used to describe the co-simulation process and control the simulation running automatically. In the future, we will improve our project from four aspects. Firstly, OSLC will be adapted in this framework in order to strength the capabilities for information exchange between different models and layers. Secondly, a special master (RTI) will be designed to control different FMUs and commercial software for co-simulation [START_REF] Lu | Research of Tool-Coupling Based Electro-Hydraulic System Development Method[END_REF]. Thirdly, a domain specified modeling language will be designed to capture all the information for co-simulation. The last, requirements from business process model should be dependent to ones in simulation description model.
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 3 FIGURE 3 TOOL-CHAIN DURING CO-SIMULATION When the co-simulation is running, Simulink Model, Sfunction for FMU interface, co-simulation environment setting should be set by hand. And when the version of FMU or Carmaker model is changed, the simulation result should be dependence to the changing. That's really difficult to manage the models and hard to configure the tool setting each time by hand. And simulation technology is used in whole life cycle. In [8], for example, simulation was used in different phases of 'V' model. So simulation information integration with different
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 7 FIGURE 7 SIMULATION DESCRIPTION MODEL AND CO-SIMULATION EXECUTION We want to use a test case to understand the clear requirements for SPIT framework. So we use MetaEdit to build the SDL and use the code-generator in MetaEdit to produce the M-script in Matlab to run the co-simulation execution automatically. So we use the test case mentioned in Chapter 3 to build a Simulation Description Model to capture the information for co-simulation process as shown in Figure 9. Function design architecture diagram demostrated the structure of co-simulation model. Interface design diagram showed the interface for the assigned FMU. Co-simulation Strategy diagram was created to configure co-simulation environment and VVcase diagram presented the parameter setting and solver setting for each task in this scenarios. Then Meta-edit uses such diagram model to automatically produce the M-script to control the Cosimulation. Function design architecture diagram produced the M-script to create Simulink models and insert the FMU block in Simulink. Interface design diagram produced the S-function for the assigned FMU and set the FMU block in Simulink. The M-Script which produced by Co-simulation strategy diagram
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 8 FIGURE 8 MODELS IN META-EDIT As Figure 10 shows, the top structure model in Simulink for this autobreaking user case is built in MetaEdit. Each block describes a subsystem block in Simulink which has been put in the Simulink library. The VVcase model in Figure 10 describes different solver settings and parameters for the same co-simulation model. In each task, different solver and parameter configurations can be finished by the parameter blocks.
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