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Numerical study on the effect of the paint layer used for infrared

thermography on heat source estimation.

V. Delobellea and H. Loucheb ∗ and D. Faviera

Université de Grenoble/CNRS , TIMC-IMAG UMR 5525, Grenoble, France; 

bLaboratoire de Mécanique et Génie Civil (LMGC),Université de Montpellier 2, CNRS, 

CC048, place E. Bataillon, 34095 Montpellier Cedex,France

This paper investigates the effect of the paint layer used for infrared thermography on the

heat source estimation for thin plates. The thermal behaviour of two plates is studied using

finite element modelling. The first one is composed of the studied homogeneous material. The

second one is a sandwich plate composed of a central material covered on each side with a

high emissivity paint layer. For the two plates, two thermal loading cases are simulated. Case

1 corresponds to natural cooling from a initial uniform temperature to room temperature.

Case 2 corresponds to a situation where the initial uniform temperature is equal to room

temperature. In both cases, the central material is loaded with internal heat sources leading

to temperature field variation. From the computed external surface temperature, heat sources

and energy are then estimated using homogeneous plate and sandwich plate models derived

from the heat diffusion equation. Then, the estimated heat sources are compared to the one

input in the finite element model. It is shown that the paint layer significantly isolates the

central material from the external environment. In case 1, it is shown that the error is reduced

from 10% with the homogeneous plate model to 5%, with the sandwich plate model. In case
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2, heat sources are estimated with an error of less than 8% with the homogeneous plate

model while it is below 2% with the sandwich plate model. The sandwich plate model is thus

significantly more accurate for heat source and energy estimations than the homogeneous

plate model.

Keywords: heat sources estimation; numerical benchmark; paint layer; infrared

thermography
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1. Introduction

Temperature field measurements are interesting tools to study thermomechanical cou-

plings often associated with the deformation of materials. However, their interpretation is

difficult. An approach, based on the determination of heat sources, causes of temperature

variations, can be used. However, internal heat sources are not directly measured and

their estimation is still an open issue. Many techniques have been proposed to get such

heat source values [1–4]. Due to the ill-posed nature of this problem, some regularization

operations have to be applied to the temperature data. The direct method proposed in [1]

is based on approximations of temporal and spatial derivative operators involved in the

heat diffusion equation. Raw and noisy thermal fields, measured by an infrared camera,

are temporally and spatially filtered before applying the different derivative operators

involved in the heat diffusion equation. Such a method has been applied to study Lüders

bands and necking in steels [1, 5], PLC bands in AlMg alloys [6], fatigue of materials [7–

10], plasticity in Al olygocrystals [11], plasticity in steels [12] and stress induced phase

transformation in shape memory alloys (SMA) [13, 14].

The accuracy of these heat source estimations is also an open question. Errors in heat

source estimations can be due to: (i) errors in thermal field measurements, (ii) errors in

the thermal model, (iii) errors in the thermophysical parameters involved in the thermal

model and (iv) errors in the signal processing operations. Validation procedures for heat

source field estimation methods are then necessary.

Two kinds of validation procedure may be applied. The first one, qualified as ”numeri-

cal”, was used in 2D Cartesian [1] and 2D cylindrical [13] coordinate systems. It is based

on associated temperature and heat source fields computed analytically or numerically.

The second one, qualified as ”experimental” refers to real problems where temperature

and heat sources are quantitatively known. [15, 20] proposed a first experimental vali-
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dation based on the observation of the austenite to R phase transformation occurring in

NiTi SMA.

The temperature uniformity in the thickness of the studied specimen is the main hy-

pothesis used to formulate models proposed in [1]. The studied samples are often thin

plates with a thickness of 0.3 to 3 mm [6, 8, 13, 15]. Their surfaces are coated with paint

layers to enhance emissivity which is supposed to be uniform. The layer thickness is

≈ 25± 5 µm. Thus, for thinner plates, it represents approximately 20% of the total sam-

ple thickness. Moreover, these paint layers have poor thermal conductivity in comparison

to metals, i.e. about 0.2 Wm−1K−1 [16–18]. Although [16] investigated the effect of the

paint on the temperature distribution in sandwich sample and [1, 13, 15] validated the

heat source estimation , no studies have focused on the impact of the paint layer used

to get quantitative thermal field measurements on heat source estimations. Generally, in

experimental studies, this paint layer is not taken into account in heat source estimation.

This paper investigates the effect of neglecting or taking into account the paint layer on

heat source estimation. A ”numerical” validation of heat source estimation from thermal

fields computed with the FEM method is proposed. The errors due to the paint layer on

the temperature measured and on the heat source estimation in regard of the thermal

model used are studied. This paper does not investigates signal processing because it

was already done in [13] and because the paint layer has no effect on that numerical

source of error. Error due to uncertainty of the thermophysical properties will be studied

in an other study. In the case 1, the natural cooling proposed in [15] is simulated and

investigates the influence of the paint layer on heat source estimations. In the case 2,

temperature variation only due to internal heat sources is simulated, as observed during

mechanical loading of NiTi SMA, for example [19], and investigates the influence of the

paint layer on heat source estimations. Firstly, the theoretical framework is explained in

Section 2. The numerical benchmark and results are proposed in Section 3. The results



are finally discussed in Section 4.

2. Theoretical framework - Heat source estimation models

2.1 Heat diffusion models

In this part, the simplified thermal equations used to estimate heat sources are presented.

The mathematical formulations are fully explained in [1, 13]. The starting general 3D

heat diffusion equation linking temperature T (x, y, z, t) and heat sources s(x, y, z, t) at

a spatial point located in (x, y, z) in a spatial coordinate system (−→x , −→y , −→z ) defined in

Fig. 1, at current time t is expressed in the following form:

ρC
∂T

∂t
− k lap(T ) = s = sinternal + sexternal, (1)

where ρ is the volumic mass, C the heat capacity, k the thermal conductivity of the ma-

terial and lap the laplacian operator. On the right hand side of this equation, sinternal and

sexternal are respectively the internal and external volumic heat sources (W m−3). This

equation is valid assuming an homogeneous and isotropic thermal material behaviour.

The convective part of the time derivative of T is also neglected. Other hypotheses are

considered here after: (i) a sample geometry corresponding to L > l ≫ e where L, l and e

are length, width and thickness of the rectangular plate, respectively, in the direction −→x ,

−→y , −→z , (ii) the temperature is almost uniform in the thickness direction. In this paper,

the average value of function ξ in the thickness direction −→z is noted:

ξ̃ = ξ̃(x, y, t) =
1

e

∫ e/2

−e/2
ξ(x, y, z, t)dz. (2)

Then the average value of function ξ in the thickness and width directions (−→z and −→y )



is noted:

˜̃
ξ =

˜̃
ξ(x, t) =

1

l

∫ l/2

−l/2
ξ̃(x, y, t)dy, (3)

Finally, the average value of function ξ in the thickness, width and length directions

(−→z , −→y and −→x ) is noted:

˜̃̃
ξ =

˜̃̃
ξ(t) =

1

L

∫ L/2

−L/2

˜̃
ξ(x, t)dx, (4)

Then, from general heat diffusion equation (1), simplified models for an homogeneous

plate and for a sandwich plate in the thickness are established.

2.2 Simplified models for homogeneous plates in the thickness direction

Equation (1) is integrated in the −→z direction in order to obtain its 2D expression. From

the previous hypotheses and using the appropriate mathematical formulation [1, 13], the

2D heat equation can be written as:

ρC
∂T̃

∂t
+

2h

e
(T̃ − T0) +

2ǫσ

e
(T̃ 4 − T 4

0 )− k lap2D(T̃ ) = s̃ = ρ˜̇q, (5)

where T0 is the environment temperature, σ the Stephan-Boltzmann constant and ǫ

the emissivity. h is the convection coefficient applied to the back and front sides of the

sample. lap2D is the 2D Laplacian operator in a Cartesian coordinate system : lap2D(T̃ ) =

∂2T̃
∂x2 + ∂2T̃

∂y2 . On the right hand side of equation (5), ˜̇q are the mean massic heat sources

(W kg−1) in the thickness direction. Then, equation (5) is integrated in the transverse

direction −→y to establish the 1D homogeneous plate model:



ρC
∂
˜̃
T

∂t
+

2h

e
(
˜̃
T − T0) + 2ǫσ(

1

e
+

1

l
)(
˜̃
T 4 − T 4

0 )− k lap1D(
˜̃
T ) = ˜̃s = ρ

˜̇̃
q, (6)

where lap1D is the 1D Laplacian operator in a Cartesian coordinate system: lap1D(
˜̃
T ) =

∂2 ˜̃T
∂x2 .

Finally, integration of equation (6) in the axial direction leads to the 0D homogeneous

plate model:

ρC
d
˜̃̃
T

dt
+

2h

e
(
˜̃̃
T − T0) + 2ǫσ(

1

e
+

1

l
+

1

L
)(
˜̃̃
T 4 − T 4

0 ) =
˜̃̃
s = ρ

˜̃̃
q̇, (7)

In equations (6) and (7), due to the sample geometry, the following approximations

are proposed: 1
e +

1
l ≈

1
e and 1

e +
1
l +

1
L ≈ 1

e .

2.3 Simplified models for sandwich plates in the thickness direction

A paint with a high emissivity coefficient is used to coat samples for the purpose of

quantitative temperature measurement with an infrared camera. Thus, the real material

studied is a sandwich plate of width l and length L, composed of a homogeneous central

material (2) and two identical layers (1 and 3) on both sides of the sample (Fig. 1).

The thickness, volumic mass, thermal conductivity, specific heat, volumic heat sources,

specific heat sources and temperature are denoted ei, ρi, ki, Ci, si, qi and Ti for i = 1, 2, 3,

respectively. The two paint layers have identical properties (e1 = e3, ρ1 = ρ3,...) and it

is assumed that there are no heat sources in the layers (s1 = s3 = 0).

Thus, with the hypotheses and the development described in the Appendix, it is pos-

sible to develop the complete 2D thermal model for this sandwich plate:



2e1ρ1C1 + e2ρ2C2

e2

∂T̃

∂t
−

2e1k1 + e2k2
e2

lap2D(T̃ )+
2ǫσ

e2
(T̃ 4−T 4

0 )+
2h

e2
(T̃ −T0) = s̃2 = ρ2 ˜̇q2.

(8)

Then, this equation is integrated in the transverse direction of the sample to formulate

the 1D sandwich plate model:

2e1ρ1C1 + e2ρ2C2

e2

∂
˜̃
T

∂t
−
2e1k1 + e2k2

e2
lap1D(

˜̃
T )+

2ǫσ

e2
(
˜̃
T 4−T 4

0 )+2h(
1

e2
+
1

l
)(
˜̃
T−T0)) = ˜̃s2 = ρ2

˜̇̃
q2,

(9)

and integration in the axial direction leads to the 0D sandwich plate model:

2e1ρ1C1 + e2ρ2C2

e2

∂
˜̃̃
T

∂t
+

2ǫσ

e2
(
˜̃̃
T 4 − T 4

0 ) + 2h(
1

e2
+

1

l
+

1

L
)(
˜̃̃
T − T0)) =

˜̃̃
s2 = ρ2

˜̃̃
q̇2, (10)

in which the terms 1
e2

+ 1
l ≈

1
e2

and 1
e2

+ 1
l +

1
L ≈ 1

e2
.

3. Numerical benchmark

The following numerical benchmark will focus on the validation and comparison of the

proposed 0D models. The model presented in equation (7) is called a homogeneous plate

model. The model presented in equation (10) is called a sandwich plate model.

3.1 Finite element model description

3.1.1 Geometries and mesh

In this study, two different line geometries were meshed with 1D thermal elements in

the thickness direction of the sample presented in Fig. 1. Due to the symmetry of the

sample in this direction, half symmetry condition is considered in the center of the sample

in the following FEM models. The first one presented in Fig. 2.a was only composed of



the central material (c), of thickness (ec/2) equal to 0.25 mm. The second geometry,

shown in Fig. 2.b, was composed of the central material (c), of thickness (ec/2) equal to

0.25 mm in which a paint layers (P ) with a thickness eP=0.03 mm was added on the

sample side. In the considered FEM models, (c) was meshed with 5 linear elements in the

thickness direction and (P ) was meshed with 10 linear elements in the thickness direction.

Such a mesh allows to describe accurately the temperature variation and gradient in

the thickness of the core material and of the paint, as shown in [23]. With these two

geometries, it is possible to evaluate the influence of the paint on a 0D thermal response,

and then on the heat source estimation.

3.1.2 Boundary conditions

Thermophysical properties of material (c) and (P ) are given in Table 1. The central

material has titanium properties. In the second FEM model (Fig. 2.b), a quasi infinite

conductance of the interfaces between materials is used to model the contact between

the central material (c) and the paint (P ). The room temperature is T0 = 20◦C. Heat

exchanges are convection, with a coefficient h = 50 Wm−2K−1 (lightly forced) and

radiation, with an emissivity of ǫ = 0.95 on the external point noted z+ in Fig. 2. Heat

exchanges are considered null in the x direction.

Table 1. Thermophysical properties of Titanium [21] and paint [16–18].

Material Volumic mass Specific heat Thermal Conductivity

ρ (kg m−3) C (J kg−1 K−1) k (W m−1 K−1)

Titanium (c) 4510 540 21

Paint (P ) 1500 1500 0.2



3.1.3 Initial states and loading

In the initial state, the whole sample ((c) and (P )) is at a uniform and constant

temperature Tini. Uniform heat sources sFEM inside the central plate are applied to the

two geometries shown in Figs. 2.a and b. For the two geometries, two cases were studied

in regard to the experimental behaviour observed in NiTi SMAs.

• Case 1: the values T 1
ini = 100◦C and s1FEM plotted in Fig. 3.a were chosen. This

case is similar to the exothermic heat source that occurs during a thermal induced

phase transformation, as in the experimental benchmarks proposed in [15, 20]. In

[15, 20], the NiTi SMA cools from a high temperature where the material is in

Austenite phase (A), to a low temperature where the material is in Martensite

phase (M). In NiTi SMA, a latent heat of transformation is associated with the

A-M phase change. Thus, during cooling, the A-M phase change occurs and acts

as internal heat source.

• Case 2: T 2
ini = T0 = 20◦C and s2FEM plotted in Fig. 3.b were chosen. This case

is similar to the exothermic heat source that occurs during stress induced phase

transformation when loading (e.g. in tension) SMA sample [13, 22]. In [13, 22], the

sample is initially at room temperature. If the material is initially in the A phase,

during loading the A-M phase change occurs, thus conferring to the material its

famous superelastic properties. As in the first case, a latent heat of transformation

is associated with the phase change and acts as an internal heat source.

3.2 Heat source estimation: application to simulation data

3.2.1 Flowchart

The flowchart shown in Fig. 4 illustrates the method used to study the influence of the

paint layer on the accuracy of the heat source estimation. An identical flowchart is used



for the two previously presented cases.

Imposed internal heat sources sFEM are applied to the plate without paint (WP,

Fig. 2.a) and to the plate with paint layers (PL), see Fig. 2.b. In the case without

paint, the computed external temperature is denoted TWP . When the sample is painted,

the temperature computed at the external and internal surfaces of the paint layer are

denoted TPLext and TPLint, respectively, and then the difference ∆TPL = TPLext−TPLint

is calculated. The influence of the paint on the measured temperature is characterized

by the external temperature difference ∆T = TWP − TPLext.

The simulated external temperature data TWP and TPLext are then post processed

using heat source models neglecting (homogeneous plate model: equation 7) or taking into

account (sandwich plate model: equation 10) the effect of the paint layers. The external

surface temperature from the sample without paint TWP is processed with equation (7)

in order to obtain the heat source denoted sWP . With paint, thermal data at the external

surfaces TPLext is processed with equations (7) and (10), in order to estimate the heat

sources sPLext and seqPLext, respectively.

The approximations of the operators located on the left hand side members of equa-

tions (7) and (10) are explained in [1, 13]. Spatio-temporal filtering operations are neces-

sary since the experimental thermal data are noisy. Filtering process was studied in [13]

in noisy data. In the present paper, temperature fields are homogeneous and the data are

only filtered in time. Moreover, these fields obtained numerically are noisy free, compared

to experimental data which are typically affected by a random noise (thermal resolution:

NETD of 20 mK). In order to compare this numerical study with an experimental one,

the same parameters for the low-pass temporal filtering as in the experimental case was

kept, i.e. filtering order of 10 and a low pass cut-off frequency of 1 % of the Nyquist

frequency. The filtering process parameters are identical in the two studied cases.

Then the differences between the reference heat source used in the FEM model (sFEM)



and sWP , sPLext, s
eq
PLext are calculated and denoted ∆sWP = sWP − sFEM , ∆sPLext =

sPLext − sFEM and ∆seqPLext = seqPLext − sFEM , respectively.

The energy (denoted E), associated with the different heat sources is calculated

through the following temporal integration:

E =

∫ t

0
s(t)dt. (11)

The energy imposed in the FEM model is denoted EFEM =
∫ t
0 sFEM(t)dt. Then the

energy estimated from the simulation without paint is denoted EWP =
∫ t
0 sWP (t)dt. From

the simulation with paint, energies EPLext =
∫ t
0 sPLext(t)dt and Eeq

PLext =
∫ t
0 s

eq
PLext(t)dt

are calculated. The associated differences ∆EWP = EWP −EFEM , ∆EPLext = EPLext−

EFEM , ∆Eeq
PLext = Eeq

PLext − EFEM are finally calculated.

3.2.2 Case 1 results

Temperatures TWP , TPLext and TPLint computed by the FEM model, for the two

geometries of Fig. 2.a and 2.b are plotted in Fig. 5.a. The material cools well from

Tini = 100◦C to T0 = 20◦C. The exothermic input heat source leads to a temperature

bump. The temperature difference between the external surface ∆T and between the

internal and external surface of the paint ∆TPL are plotted in Fig. 5.b. The temperature

of the external surface of the sample covered with paint is higher than that without

paint (∆T < 0) and the maximum difference is |∆T | ≈ 2.8◦C. As expected, the paint

isolates the sample from the exterior (TPLext < TPLint). The maximum difference |∆TPL|

is 0.5◦C. The temperature differences ∆T and ∆TPL are very high in comparison to the

thermal resolution of the infrared camera (±0.02◦C).

The temporal evolutions of the estimated heat sources sFEM , sWP , sPLext and seqPLext

are plotted in Fig. 5.c and differences ∆sWP , ∆sPLext and ∆seqPLext in Fig. 5.d. Without

paint, the estimated heat sources are close to those imposed in the FEM model. Due to

the filtering process, the maximum error is observed when heat sources quickly change



over time. With paint, the sandwich plate estimation model is better than the homoge-

neous plate model (∆sPLext > ∆seqPLext), especially when the imposed heat sources are

zero. With the sandwich plate model, the estimated heat sources are also equal to those

calculated without paint.

The energies EFEM , EWP , EPLext and Eeq
PLext are plotted in Fig. 5.e. The associated

relative errors ∆EWP , ∆EPLext and ∆Eeq
PLext are plotted as a function of EFEM in

Fig. 5.f. Without paint, the energy EWP is slightly lower than EFEM . With paint, the

energy EPLext is overestimated when the homogeneous plate model (eq. (7)) is used.

However, with the sandwich plate model (eq. (10)), the energy Eeq
PLext is almost equal to

EWP , with a slight underestimation with regard to the imposed energy EFEM . With the

two models considered (equations (7) and (10)), the maximum energy error is obtained

during the plateau, when heat sources are null. This could be explained by the fact that,

as seen in Figs. 5.c and 5.d, (for time > 25s) and when neglecting the paint, sPLext are

positive whereas seqPLext are negative when the paint is taken into account. The error is

lower during the energy increase than during the plateau. Errors in the middle of the

energy increase (EFEM = 7.107 J m−3, squares in Fig. 5.f), at the beginning of the

plateau (crosses in Fig. 5.f) and at the end of it (circles in Fig. 5.f) as shown in Table

2. First, in all the considered instants and for all the models, the error is less than 10%.

Then, without paint, the homogeneous plate model exhibits good accuracy with an error

always under 6%. With paint, the energy error is considerably reduced when using the

sandwich plate model, especially at the end of the experiment, with an error reduction

ranging from 10% with the homogeneous plate model to 5% with the sandwich plate

model.

3.2.3 Case 2 results

Temperatures TWP , TPLext and TPLint computed by the FEM model, for the two

geometries of Fig. 2.a and 2.b are plotted in Fig. 6.a. The initial and final temperature



Table 2. Energy estimation errors.

EFEM |∆EWP |
|∆EWP |
EFEM

|∆EPLext|
|∆EPLext|

EFEM
|∆Eeq

PLext
|

|∆E
eq

PLext
|

EFEM

(J m−3) (J m−3) (%) (J m−3) (%) (J m−3) (%)

7.107 4.106 6 % 6.106 9 % 5.106 7 %

13,5.107 (Plateau start) 4.106 3 % 7.106 5 % 5.106 4 %

13,5.107 (Plateau end) 8.106 6 % 1,3.107 10 % 7.106 5 %

of the external surface of the sample are equal to Tini = T0 = 20◦C. The maximal

temperature increase due to the exothermic input source is about 17◦C. When the heat

sources decrease or are close to zero, the sample cools naturally. Temperature differences

∆T and ∆TPL are plotted in Fig. 6.b. The temperature of the external surface of the

paint coated sample is lower than that without paint (∆T > 0) during the heating phase,

while the opposite occurs during the cooling phase (∆T < 0). The maximum difference is

|∆T | ≈ 1◦C. Once again, the paint isolates the sample from the exterior. The maximum

difference of |∆TPL| is 0.2◦C. The temperature differences ∆T and ∆TPL are greater

than the thermal resolution of the infrared camera.

The temporal evolutions of the estimated heat sources sFEM , sWP , sPLext and seqPLext

are plotted in Fig. 6.c and the differences ∆sWP , ∆sPLext and ∆seqPLext in Fig. 6.d. With-

out paint, the estimated heat sources are close to the ones imposed in the FEM model.

Once again, quick variations in the heat sources are smoothed by the filtering process.

With paint, the homogeneous plate model underestimates the heat source, especially close

to the maximum of the imposed heat source. However, the heat sources estimated using

the sandwich plate model (equation (10)) are identical to the ones estimated without

paint (eWP = eeqP lext).



The energies EFEM , EWP , EPLext and Eeq
PLext are plotted in Fig. 6.e. The associated

relative errors ∆EWP , ∆EPLext and ∆Eeq
PLext are plotted as a function of EFEM in

Fig. 6.f. Without paint, the calculated energy EWP is almost equal to the reference

EWP ≈ EFEM , with less than 2% error. With paint, the energy EPLext is underestimated

when the homogeneous plate model is used. However, with the sandwich plate model, it

becomes Eeq
PLext = EWP ≈ EFEM . The error is higher during the energy increase than

during the plateau. Errors in the middle of the energy increase (EFEM = 4.107 J m−3,

squares in Fig. 6.f) at the beginning of the plateau (crosses in Fig. 6.f) and at the end

of it (circles in Fig. 6.f) are given in Table 3. In all the considered instants and for

all the models, the error is less than 8%. Without paint, the homogeneous plate model

exhibits good accuracy with an error always under 2%. With paint, the energy error

is considerably reduced using the sandwich plate model, especially during the energy

increase with the error reduction ranging from 8% with the homogeneous plate model to

0.5% with the sandwich plate model when EFEM = 7%. During the plateau, the error is

almost null with the sandwich plate model.

Table 3. Energy estimation errors.

EFEM |∆EWP | |∆EWP |
EFEM

|∆EPLext|
|∆EPLext|

EFEM
|∆Eeq

PLext
|

|∆E
eq

PLext
|

EFEM

(J m−3) (J m−3) (%) (J m−3) (%) (J m−3) (%)

4.107 2.105 0,5 % 3,2.106 8 % 2.105 0,5 %

8.107 (Plateau start) 1,7.106 2 % 2,3.106 3 % 1,0.106 1 %

8.107 (Plateau end) 0 0 0 0 0 0



4. General discussion

In the previous section, the homogeneous plate model (equation (7)) was validated in the

two studied cases without paint. With paint, it was observed that the energy estimation

accuracy of this model was lower than that of the sandwich plate model (equation 10)

in the two studied cases.

The temperature homogeneity in the material thickness is one of the main hypotheses

adopted to formulate the models. Thus, the difference of temperature between the center

of the material (c), denoted Tc (see Fig. 2), and the outer surface of the sample previously

denoted TWP and TPLext without and with paint, respectively, are plotted in Fig. 7.a

and 7.b for the first case, and in Fig. 8.a and 8.b for the second case.

Without paint, the maximum difference is ∼ 0.025◦C and ∼ 0.005◦C in the first and

second case, respectively. This difference is equal or smaller to the thermal resolution of

classical infrared cameras. In this case, the temperature can be considered homogeneous

in the thickness direction, and the homogeneous plate model (equation (7)) allows good

estimation of the heat sources, as previously observed.

With paint, the maximum of temperature difference is ∼ 0.6◦C and ∼ 0.13◦C in the

first and second case, respectively. Temperature in the material is thus not homogeneous

in the thickness direction. This could explain why the homogeneous model (equation (7)),

that does not take the plate heterogeneity into account, is less accurate than the sandwich

model (equation (10)).

5. Conclusion

In this paper, a numerical benchmark is used to investigate the impact of a paint layer

on the temperature response of a sample and the importance of taking the paint layer

into account for heat sources estimation. It appears that the high emissivity paint used



isolates the sample from the external environment, so the temperature measured at the

surface is not the temperature of the central material.

For that study, a sample composed of a central material covered with two paint lay-

ers was considered. The central material was submitted to internal heat sources. Two

homogeneous thermal loadings were chosen.

Case 1 corresponds to natural cooling of the sample with high temperature variations

in the sample. From this case it can be concluded that the estimation, obtained without

taking the paint layer into account, globally leads to overestimation of the heat sources

and energy while the sandwich plate model allows to reduce these errors. The energy

estimation error is reduced from 10% with the homogeneous plate model to 5 % with the

sandwich plate model.

In case 2, the initial temperature is equal to room temperature, so smaller temperature

variations are observed in the sample surface. The energy estimation error is about 8%

with the homogeneous plate model, while it is always below 2% with the sandwich plate

model. Thus the sandwich plate model gives better results than the homogeneous plate

model.

This study shows that to estimate heat sources and the associated energy, the paint

layers have to be taken in account in the two studied cases. This study also highlights

the importance of verifying the temperature homogeneity in the thickness direction of

the sample as a function of the thermal loading conditions. For thick samples or samples

having low thermal conductivity, for example, this hypothesis needs to be verified and

the model used checked.

Authors want to highlight that several other sources of error to estimate heat sources

can be noted, e.g. the effect of the paint layer thickness heterogeneity, the model sen-

sitivity to the thermophysical properties uncertainties of the core material and of the

paint or the effect of the interface quality between the paint and core material. If this



problem shows the importance of taking into account the paint layer to estimate heat

sources, several other sources of error have to be investigated in future work.

6. Appendix

This appendix provides the mathematical formulation for the simplified models of an

heterogeneous material in the thickness direction.

The hypotheses adopted for these formulations are e1 = e3, k1 = k3, T̃1 = T̃2 = T̃ ,

∂T̃1

∂t = ∂T̃2

∂t = ∂T̃
∂t , and lap(T̃1) = lap(T̃2) = lap(T̃ ). Integration of equation (1) on the

thickness sandwich sample leads to:

1

e

∫ e/2

−e/2
ρC

∂T

∂t
dz −

1

e

∫ e/2

−e/2
klap(T )dz =

1

e

∫ e/2

−e/2
sidz +

1

e

∫ e/2

−e/2
sedz. (12)

Since the heat sources are equal to zero in the paint layers, the first term of the right

hand side of the equation can be written:

∫ e/2

−e/2
sidz =

∫ −e2/2

−e/2
s1dz +

∫ e2/2

−e2/2
s2dz +

∫ e/2

e2/2
s3dz =

∫ e2/2

−e2/2
s2dz = e2s̃2, (13)

Then, the first term of the left hand side can be written:

∫ e/2

−e/2
ρC

∂T

∂t
dz =

∫ −e2/2

−e/2
ρC

∂T

∂t
dz +

∫ e2/2

−e2/2
ρC

∂T

∂t
dz +

∫ e/2

e2/2
ρC

∂T

∂t
dz, (14)

with :

∫ e2/2

−e2/2
ρC

∂T

∂t
dz =

∫ e2/2

−e2/2
ρ2C2

∂T2

∂t
dz = e2ρ2C2

∂T̃2

∂t
, (15)

where T̃2 is the averaged temperature in the material 2. Then, with an appropriate

variable change:

∫ −e2/2

−e/2
ρC

∂T

∂t
dz =

∫ e1/2

−e1/2
ρ1C1

∂T1

∂t
dz = ρ1C1e1

∂T̃1

∂t
. (16)

This last formulation is applied to the third term of equation (14). Then, an identical



formulation as used for equation (14) with the Laplacian term, and the second term can

be written:

∫ e2/2

−e2/2
−klap(T )dz = −k2

∫ e2/2

−e2/2
(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
)dz

= −k2[
∂2

∂x2

∫ e2/2

−e2/2
Tdz +

∂2

∂y2

∫ e2/2

−e2/2
Tdz]− k2[

∂T

∂z
]
e2/2
−e2/2

= −k2e2lap2DT̃2 − k2[
∂T2

∂z
]
e2/2
−e2/2

(17)

Identical formulations are used for the first and third terms, leading to the following

equation:

∫ e/2

−e/2
−klap(T )dz = −k1e1lap2DT̃1 − k3e3lap2DT̃3 − k2e2lap2DT̃2

−k1[
∂T1

∂z
(−e2/2)] − k1[

∂T1

∂z
(−e/2)]

−k2[
∂T2

∂z
(e2/2)]− k2[

∂T2

∂z
(−e2/2)]

−k3[
∂T3

∂z
(e/2)] − k3[

∂T3

∂z
(e2/2)]

= (−2k1e1 − k2e2)lap2D(T̃ ) + k1(
∂T1

∂z
(−e/2) −

∂T3

∂z
(e/2)).

(18)

The conservation of flux through the sample surfaces in ±e2/2 leads to:

k1
∂T1

∂z
(−e2/2) = k2

∂T2

∂z
(−e2/2), and k2

∂T2

∂z
(e2/2) = k3

∂T3

∂z
(e2/2). (19)

This leads to the following equation:

∫ e/2

−e/2
−klap(T )dz = (−2k1e1 − k2e2)lap2DT̃ + k1(

∂T1

∂z
(−e/2) −

∂T3

∂z
(e/2)). (20)

Considering the conservation of flux on the two samples surfaces in ±e/2, the last term

of the previous equation is:

k1(
∂T1

∂z
(−e/2)−

∂T3

∂z
(e/2)) = 2(ǫσT̃ 4 + h(T̃ − T̃0)), (21)



It is now possible to write equation 12 in the following form:

2e1ρ1C1 + e2ρ2C2

e

∂T̃

∂t
−

2e1k1 + e2k2
e

lap2D(T̃ )+
2

e
(σT̃ 4 + h(T̃ −T0)) =

e2
e
s̃2 + s̃e. (22)

Considering the previous equation at initial time leads to:

s̃e =
2

e
[σǫT 4

0 ]. (23)

Thus, it is possible to formulate the complete 2D model:

2e1ρ1C1 + e2ρ2C2

e2

∂T̃

∂t
−
2e1k1 + e2k2

e2
lap2D(T̃ )+

2ǫσ

e2
(T̃ 4−T 4

0 )+
2h

e2
(T̃−T0)) = s̃2 = ρ2 ˜̇q2.

(24)

Then, integration of this equation in the transverse direction leads to the 1D model:

2e1ρ1C1 + e2ρ2C2

e2

∂
˜̃
T

∂t
−
2e1k1 + e2k2

e2
lap1D(

˜̃
T )+

2ǫσ

e2
(
˜̃
T 4−T 4

0 )+2h(
1

e2
+
1

l
)(
˜̃
T−T0)) = ˜̃s2 = ρ2

˜̇̃
q2.

(25)

and integration in the axial direction leads to the homogeneous model:

2e1ρ1C1 + e2ρ2C2

e2

∂
˜̃̃
T

∂t
+

2ǫσ

e2
(
˜̃̃
T 4 − T 4

0 ) + 2h(
1

e2
+

1

l
+

1

L
)(
˜̃̃
T − T0)) =

˜̃̃
s2 = ρ2

˜̃̃
q̇2. (26)

in which the terms 1
e2

+ 1
l ≈

1
e2

and 1
e2

+ 1
l +

1
L ≈ 1

e2
.
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Figure 1. Sandwich plate with the two paint layers of thickness e1 and e3.
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Figure 2. a) FEM model 0D without paint layers, b) FEM model 0D with paint layers.
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Figure 5. First case (Fig 3.a): a) Temperature variation, b) temperature difference, c) heat source estimation, d)

heat source differences, e) energy variationsand f) energy error.
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Figure 6. Second case (Fig 3.b): a) Temperature variation, b) temperature difference, c) heat source estimation,

d) heat source differences, e) energy variations and f) energy errors.
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paint and b) with paint.
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