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On the area of minimal surfaces in a slab
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Consider a non-planar orientable minimal surface Σ in a slab which is possibly with genus or with more than two boundary components. We show that there exists a catenoidal waist W in the slab whose flux has the same vertical component as Σ such that Area(Σ) ≥ Area(W), provided the intersections of Σ with horizontal planes have the same orientation.

Introduction

The catenoid is the first nontrivial minimal surface discovered. It was Euler who found it in 1744 in the process of proving that when the catenary is rotated about an axis it generates a surface of smallest area [START_REF] Euler | Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isopeimetrici lattisimo sensu accepti[END_REF]. In 1860 Bonnet showed that the catenoid is the only nonplanar minimal surface of revolution [START_REF] Bonnet | Mémoire sur l'emploi d'un nouveau système de variables dans l'étude des surfaces courbes[END_REF]. More recently Schoen also characterized the catenoid as the unique complete minimal surface with finite total curvature and with two embedded ends [START_REF] Schoen | Uniqueness, symmetry, and embeddedness of minimal surfaces[END_REF]. Similarly Lopez and Ros showed that the catenoid is the only complete embedded nonplanar minimal surface of finite total curvature and genus zero [START_REF] López | On embedded complete minimal surfaces of genus zero[END_REF]. Moreover, they proved that the catenoid is the unique complete embedded minimal surface in R 3 of Morse index one [START_REF] López | Complete minimal surfaces with index one and stable constant mean curvature surfaces[END_REF]. Finally, Collin [START_REF] Collin | Topologie et courbure des surfaces minimales proprement plongées de R 3[END_REF] characterized the catenoid as the unique properly embedded minimal annulus.

More recently, rotationally symmetric compact pieces of the catenoid have been characterized as minimal annuli in a slab in two ways. Pyo showed that the catenoid in a slab is the only minimal annulus meeting the boundary of the slab in a constant angle [START_REF] Pyo | Minimal annuli with constant contact angle along the planar boundaries[END_REF]. Also it was proved by Bernstein and Breiner that all embedded minimal annuli in a slab have area bigger than or equal to the minimum area of the catenoids in the same slab [START_REF] Bernstein | A variational characterization of the catenoid[END_REF]. That minimum is attained by the catenoidal waist along the boundary of which the rays from the center of the slab are tangent to the waist. This waist is said to be maximally stable because its proper subset is stable and any subset of the catenoid properly containing the waist is unstable (see Proposition 1, [START_REF] Choe | Index, vision number and stability of complete minimal surfaces[END_REF]).

Bernstein and Breiner conjectured that the theorem should also hold for an immersed minimal surface possibly with genus and/or with more than two boundary components in a slab. In this paper we prove this conjecture provided the minimal surface is orientable and the intersections of the minimal surface with horizontal planes have the same orientation. The orientation of a horizontal section is induced by the surface so that its conormal is upward at regular points. If the minimal surface in a slab has more than two boundary components or nonzero genus, it may happen that a horizontal section of the surface consists of two or more closed curves which have both clockwise and counterclockwise orientations. It may also happen that a horizontal section contains a curve of rotation number zero, since the surface is not assumed to be embedded. If none of this happens (see Definition 3.1 for a more precise statement), then we can prove the conjecture. Figure 1 shows the horizontal sections Σ ∩ P with the same orientation and with the mixed orientations. An explicit example of a surface with mixed orientations can be obtained by intersecting a Costa-Hoffman-Meeks surface with three catenoidal ends with a sufficiently thick slab.

For their proof Bernstein and Breiner used Osserman-Schiffer's theorem [START_REF] Osserman | Doubly-connected minimal surfaces[END_REF] that the length L(u) of the curve {u = const} for a harmonic function u on a minimal surface Σ satisfies

L (u) ≥ L(u),
where equality holds if and only if Σ is the catenoid or an annulus in R 2 . By comparison, we directly compute the area of Σ using the conformal metric ds 2 = cosh 2 κ(u, v)(du 2 + dv 2 ) on Σ, take the average of κ(u, v) along {u = const} and use the convexity of the function cosh 2 .

At the end of this paper, we propose some open problems in relation to our theorem.

Preliminaries

2.1. Weierstrass representation. We recall that a conformal minimal immersion from a Riemannian surface Σ into R 3 can be written as

x = Re 1 2 (1 -g 2 )ω, i 2 (1 + g 2 )ω, gω
where g is a meromorphic function on Σ (the Gauss map) and ω a holomorphic 1-form on Σ such that

• the zeros of ω have even orders,

• a point is a pole of g of order m ≥ 1 if and only if it is a zero of ω of order 2m. This is called the Weierstrass representation. In particular, critical points of the height function (that is, horizontal points of x(Σ)) are zeros and poles of g, and the order of such a point as a critical point of the height function coincides with its order as a zero or a pole of g. Moreover, the induced metric is given by

ds 2 = 1 4 (1 + |g| 2 ) 2 |ω| 2 .
Away from critical points of the height function, we can choose a local complex coordinate w such that the height function is given by Re(w), that is, gω = dw. In this case, the metric reads as

ds 2 = cosh 2 κ|dw| 2 , κ = ln |g| = Re(log g), cosh κ = 1 2 |g| + 1 |g| .
2.2. Flux. Let Σ be an oriented minimal surface in R 3 and γ an oriented smooth closed curve on Σ. Let τ be the unit tangent vector field on γ compatible with the orientation of γ. We define the conormal ν as the image of τ by the 90 • -rotation on Σ. Note that ν is determined by the orientations of Σ and γ, and changing one of these orientations changes ν into -ν. The flux vector (or force) of Σ along γ is defined by γ νds.

It is well known that two homologous closed oriented curves on Σ have the same flux vector.

Theorem

Given the catenoid

C = {(x, y, z) ∈ R 3 : cosh z = x 2 + y 2 }, C b a := C∩{a ≤ z ≤ b} is called a catenoidal waist.
If there exists a point p = (0, 0, c) such that the rays emanating from p are tangent to C along the boundary circles C ∩ {z = a, b}, then C b a is called a maximally stable waist. This is because the homotheties centered at p generate a Jacobi field J on C b a with |J| > 0 and vanishing only on ∂C b a . Let β > 0 be the unique solution to the equation

(3.1) tanh z = 1/z.
Then it is easy to see that the tangent to the graph of r = cosh z at z = β passes through the origin. It follows that C β -β is maximally stable. The image of a catenoidal waist (respectively, a maximally stable waist) by a translation or a homothety will still be called a catenoidal waist (respectively, a maximally stable waist). Definition 3.1. Consider the horizontal slab H a -a := {-a ≤ z ≤ a} in R 3 . Let Σ be a non-planar orientable compact immersed minimal surface in H a -a of R 3 with ∂Σ ⊂ ∂H a -a . We choose an orientation on Σ and we then give to any horizontal section of Σ (that is, the intersection of Σ with a horizontal plane) the orientation so that its conormal (see Section 2.2) is upward at regular points (in other words, the orientation of Σ ∩ {z = t} is that of ∂(Σ ∩ {-a ≤ z ≤ t})). We say that the horizontal sections of Σ have the same orientation if the rotation numbers of all components of all horizontal sections are either all positive or all negative (here, the rotation number is that of a curve in a horizontal plane oriented so that the normal to the plane is upward). Theorem 3.2. Let Σ be a non-planar orientable compact immersed minimal surface in the horizontal slab H a -a with ∂Σ ⊂ ∂H a -a such that the horizontal sections of Σ have the same orientation in the sense of Definition 3.1. Then there exists a catenoidal waist W ⊂ H a -a whose flux has the same vertical component as Σ such that

(3.2) Area(Σ) ≥ Area(W). Also (3.3) Area(W) ≥ Area a β C β -β ,
where β satisfies tanh β = 1 β and a β C β -β is the homothetic expansion of the catenoid C β -β by the factor of a β . The boundary circles of a β C β -β lie on the boundary of H a -a and a β C β -β is maximally stable. Moreover,

Area(Σ) = Area a β C β -β
if and only if Σ = a β C β -β up to translation. Proof. We use the orientation conventions explained in Definition 3.1. Without loss of generality, we can assume that all horizontal sections are oriented clockwise, that is, with negative rotation numbers.

The minimality of Σ in R 3 implies that the Euclidean coordinates x, y, z of R 3 are harmonic on Σ. The critical points of x, y, z are isolated on Σ. Let u = z| Σ and define v = u * , the harmonic conjugate of u on Σ. Note that v is multivalued on Σ but dv is well defined there. Let Σ be the set of regular points of z; then w = u + iv is a local complex parameter on Σ. The Gauss map g : Σ → C ∪ {∞} is a meromorphic function which is used to express the metric of Σ (see Section 2.1):

ds 2 = cosh 2 κ|dw| 2 , κ = ln |g| = Re(log g), cosh κ = 1 2 |g| + 1 |g| .
The key idea of the proof is to take the average of the harmonic function κ(u, v) along the level curves of u, γ c : {u = c}. To do so, we need to find the total variation of v along γ c :

(3.4)

γc dv = γc dz * := -f (c).
The unit conormal ν to γ c on Σ defines the flux (see Section 2.2) of Σ along γ c as follows:

γc νds = γc   dx(ν) dy(ν) dz(ν)   ds = - γc   dx * (τ ) dy * (τ ) dz * (τ )   ds,
where τ is the unit tangent to γ c , i.e., -90 • -rotation of ν on Σ. Hence f (c) equals the vertical component of the flux of Σ along γ c , which is in fact constant for -a ≤ c ≤ a. From now on, we simply denote this constant by f . This constant is positive since the conormal ν is upward, by our choice of orientation.

The average h(u) of κ(u, v) along γ u is defined by

h(u) = - 1 f γu κ(u, v)dv.
It should be remarked that the average is taken over all the components of γ(u) and so that the topology of Σ is irrelevant to h(u).

Let us compute h (u) away from the critical values of the height. By the Cauchy-Riemann equations,

h (u) = - 1 f γu κ u (u, v)dv = - 1 f γu κ * v (u, v)dv. Since log g = ln |g| + i arg g = κ(u, v) + i κ * (u, v),
we have κ * = arg g and so γu κ * v (u, v)dv equals the total variation of arg g on γ u , i.e., 2π times the total rotation number r(γ u ) of the set γ u which is the union of a finite number of closed curves. Hence

h (u) = - 2π • r(γ u ) f .
By our hypothesis, γ u consists of n closed curves with the same orientation assumed clockwise. Hence

(3.5) r(γ u ) ≤ -n ≤ -1.
Moreover this rotation number is constant on any interval without critical value of the height function.

The function h is piecewise linear and h is a step function. We have log g(w) = ±∞ at the points where the tangent plane to Σ is horizontal, i.e., g(w) = 0, ∞. We recall that these points are isolated. So h (u) is not defined at the height u of the horizontal points. Even so, h(u) is continuous at this height. This can be proved as follows.

We claim that the 1-form κ(u, v)dv extends continuously at a horizontal point p. Let Z be a complex coordinate around p such that Z(p) = 0,

dw dZ = O(Z m ) as Z → 0 and g(Z) = Z m or g(Z) = Z -m
for some positive integer m (such a complex coordinate exists by the characterization of horizontal points, see Section 2.1). Hence

κ(u, v)dv = Im(log |g(w)|dw) = O(Z m log |Z|dZ).
This proves the claim. And since γ u depends continuously on u, this proves that h is continuous at the height of a horizontal point. We now compute the area of Σ:

Area(Σ) = a -a γu cosh 2 κ(u, v)dv du ≥ a -a f cosh 2 h(u)du,
where we have the inequality due to the convexity of the function cosh 2 .

Recall that all the components of γ u are assumed to have the same orientation. Hence (3.5) implies that h(u) is an increasing function with slope at least 2π/f . If h(u) vanishes at some height d, define

k(u) = 2π f (u -d).
(See Figure 2 It follows that cosh h(u) ≥ cosh k(u). Therefore

(3.6) Area(Σ) ≥ a -a f cosh 2 h(u)du ≥ a -a f cosh 2 k(u)du.
By the way, for some

d 0 ∈ R k(u) = 2π f u + d 0 = Re 2π f w + d 0 .
Consider the Weierstrass data on (C/if Z, w):

G = exp 2π f w + d 0 and the 1-form 1 G(w)
dw.

These data give rise to the catenoid which we denote as C(2π/f ; d 0 ). So

Area(Σ) ≥ a -a f cosh 2 k(u)du = a -a f 0 cosh 2 ln exp 2π f w + d 0 dvdu = Area(C(2π/f ; d 0 ) ∩ H a -a ), which proves (3.2) with W = C(2π/f ; d 0 ) ∩ H a -a . Note here that Area(C(2π/f ; d 0 ) ∩ H a -a ) = a -a f cosh 2 2π f u + d 0 du = f 2 4π sinh 4π f a cosh(2d 0 ) + af ≥ f 2 4π sinh 4π f a + af, that is, (3.7) Area(C(2π/f ; d 0 ) ∩ H a -a ) ≥ Area(C(2π/f ; 0) ∩ H a -a
). Now we need to find the catenoidal waist in H a -a with smallest area. This was already proved by Bernstein-Breiner [START_REF] Bernstein | A variational characterization of the catenoid[END_REF], but is also proved here for completeness. This is a straightforward computation.

We observe that, by (3.7), a least area catenoidal waist is of the form C(λ; 0) ∩ H a -a for some λ > 0, i.e., symmetric with respect to the plane {z = 0}. So we have only to consider catenoidal waists of this form. The catenoid C(λ; 0) has 2π/λ as the vertical component of the flux along a horizontal circle. Hence

A(λ) := Area(C(λ; 0) ∩ H a -a ) = 2π λ a -a cosh 2 (λu)du = 2πa λ + π λ 2 sinh(2λa), and 
A (λ) = - 2πa λ 2 - 2π λ 3 sinh(2λa) + 2aπ λ 2 cosh(2λa).
Since A (λ) = 0 has a unique solution, Area(C(λ; 0) ∩ H a -a ) must have a unique minimum. At that minimum we can easily show that λ satisfies tanh(λa) = 1 λa .

Then (3.1) implies that β = λa and hence

(3.8) Area(C(2π/f ; 0) ∩ H a -a ) ≥ Area(C(β/a; 0) ∩ H a -a
). Since the central waist circle of C(β/a; 0) has radius a/β, we have In conclusion, we would like to propose the following:

C(β/a; 0) = a β C. Therefore C(β/a; 0) ∩ H a -a = a β C β -β ,
Problems. 1. Does there exist a minimal surface with two boundary components in a slab which has a horizontal section with mixed orientations? (See Figure 1.) 2. Let Σ ⊂ R 3 be an immersed minimal annulus in a slab H such that Σ ∩ P is a figure-eight curve for any horizontal plane P ⊂ H. And let W be the least area maximally stable catenoidal waist in H. Is it true that Area(Σ) ≥ Area(W)? More generally, is it possible to remove in Theorem 3.2 the hypotheses on the orientability and on the rotation numbers of the level sets of the surface?

3. Given a minimal hypersurface Σ in a slab H of R n , n ≥ 4, show that its volume is bigger than that of an (n -1)-dimensional catenoid in H (see [START_REF] Blair | On a generalization of the catenoid[END_REF] for the higher dimensional catenoid), or their volumes are equal if and only if Σ is the maximally stable catenoidal waist symmetric with respect to the mid-hyperplane of H.

4.

Given a minimal surface Σ in a slab H 2 × [-a, a] of the homogeneous manifold H 2 × R, where H 2 denotes the hyperbolic plane, prove a theorem similar to Theorem 3.2.

  .) If h(u) has no zero and min h(u) = h(-a) > 0, define k(u) = 2π f (u + a) + h(-a), and if max h(u) = h(a) < 0, define k(u) = 2π f (u -a) + h(a).Then we have for every u h(u) ≤ k(u) ≤ 0 or 0 ≤ k(u) ≤ h(u).

  which, together with (3.7) and (3.8), gives(3.3). Clearly a β C β -β is maximally stable. if Σ = W = C(2π/f ; d 0 ) ∩ H a-a . This completes the proof.
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