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Optimal Design for Prediction in Random Field
Models via Covariance Kernel Expansions

Bertrand Gauthier and Luc Pronzato

Abstract We consider experimental design for the prediction of a realization of a
second-order random field Z with known covariance function, or kernel, K. When
the mean of Z is known, the integrated mean squared error of the best linear pre-
dictor, approximated by spectral truncation, coincides with that obtained with a
Bayesian linear model. The machinery of approximate design theory is then avail-
able to determine optimal design measures, from which exact designs (collections
of sites where to observe Z) can be extracted. The situation is more complex in the
presence of an unknown linear parametric trend, and we show how a Bayesian linear
model especially adapted to the trend can be obtained via a suitable projection of Z
which yields a reduction of K.

1 Introduction

We consider a centered second-order random field (Zx)x∈X indexed over X , a
compact subset X of Rd , d ≥ 1, with covariance function E{ZxZx′} = K(x,x′) =
K(x′,x). We also consider a σ -finite measure µ on X which will be used to define
the Integrated Mean Squared Error (IMSE) for prediction, see (1). We assume that
µ(X ) = 1 without any loss of generality. We suppose that K : X ×X → R is
continuous and thus belongs to L2

µ×µ(X ×X ). This framework is now classical
for computer experiments, where (Zx)x∈X represents the output of a computer code
with input variables x ∈X , in the sense that it forms a prior on the possible be-
havior of the code when x vary in X , see in particular [10]. The design problem
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then consists in choosing n sites x1, . . . ,xn where to observe Zx without error (i.e., n
inputs values for the computer code) in order to predict at best the realization of Zx
over X . Note that the objective concerns prediction of one instance of the random
field, based on a finite set of error-free observations.

The best linear predictor of Zx, unbiased and in terms of mean squared error (the
simple kriging predictor), based on the vector of observations zn = (Zx1 , . . . ,Zxn)

>

obtained with the design Dn = (x1, . . . ,xn), is given by k>(x)K−1zn, where k(x) =
(K(x1,x), . . . ,K(xn,x))> and the matrix K has elements {K}i j = K(xi,x j). Its Mean
Squared Error (MSE) is MSE(x;Dn) = K(x,x)−k>(x)K−1k(x).

The IMSE will be computed for the measure µ, which weighs the importance
given to the precision of predictions in different parts of X ,

IMSE(Dn) =
∫

X
MSE(x;Dn)dµ(x) . (1)

Choosing a design Dn with minimum IMSE is then a rather natural objective; how-
ever, IMSE-optimal designs are considered as difficult to compute, see [10]. The
introduction of the following integral operator on L2

µ(X ) yields a spectral repre-
sentation of the IMSE and is at the core of the design approach presented in this
paper.

For all f ∈ L2
µ(X ) and x ∈X , we define

Tµ[ f ](x) =
∫

X
f (t)K(x, t)dµ(t) .

From Mercer’s theorem, there exists an orthonormal set {φ̃k,k ∈N} of eigenfunc-
tions of Tµ in L2

µ(X ) associated with nonnegative eigenvalues, the eigenfunctions
corresponding to non-zero eigenvalues being continuous on Sµ, the support of µ.
Moreover, for x,x′ ∈ Sµ, K has the representation K(x,x′) = ∑

∞
k=1 λk φ̃k(x) φ̃k(x′),

where the λk denote positive eigenvalues that we assume to be sorted by decreasing
values, and the convergence is uniform on compact subsets of Sµ. As shown below,
see (2), the integration over X in (1) can then be replaced by a summation over
k, the index of eigenvalues. There is a slight technicality here, due to the fact that
Sµ may be strictly included in X , so that the eigenfunctions φ̃k, which are only
defined µ-almost everywhere, may not be defined at a general design point xi ∈X .
This is the case for instance when µ is a discrete measure supported at a finite set of
points XQ⊂X (thus in particular when the IMSE is approximated via a quadrature
rule) and Dn is not a subset of XQ. A general way to avoid this difficulty is via the
introduction of the canonical extensions

φk = (1/λk)Tµ[φ̃k] , λk > 0 ,

which are defined on the whole set X and satisfy φk(x) = φ̃k(x) on Sµ. Note that
the φk are continuous since we assumed that K(·, ·) is continuous. One may refer to
[4] for more details. Then, K(x,x′) = ∑

∞
k=1 λk φk(x)φk(x′) for all x,x′ in X and
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IMSE(Dn) = τ−
∞

∑
k=1

λ
2
k φ
>
k

K−1
φ

k
, (2)

where τ = ∑
∞
k=1 λk and φ

k
= (φk(x1), . . . ,φk(xn))

>. A spectral truncation that uses
only the ntrc largest eigenvalues yields an approximation of IMSE(Dn),

IMSEtrc(Dn) = τtrc−
ntrc

∑
k=1

λ
2
k φ
>
k

K−1
φ

k
= trace(Λtrc−ΛtrcΦ

>
trcK−1

ΦtrcΛtrc) , (3)

with τtrc = ∑
ntrc
k=1 λk, Φtrc the n× ntrc matrix with elements {Φtrc}ik = φk(xi) and

Λtrc = diag{λ1, . . . ,λntrc}. This satisfies IMSEtrc(Dn)≤ IMSE(Dn)≤ IMSEtrc(Dn)+
τerr, where τerr = τ− τtrc = ∑k>ntrc λk, see [4, 6].

Following [2, 13], we recall below (Sect. 2) how, using its Karhunen-Loève de-
composition, (Zx)x∈X can be interpreted as a Bayesian Linear Model (BLM) with
correlated errors having the eigenfunctions φk, k = 1, . . . ,ntrc, as regressors, and for
which the IMSE of prediction coincides with IMSEtrc(Dn). A similar decomposi-
tion has been used in [3], but for the estimation of trend parameters (or equivalently,
for the prediction of the mean of Zx). The IMSE for a BLM with uncorrelated er-
rors takes the form of a Bayesian A-optimality criterion, which opens the ways for
the construction of approximate optimal designs (design measures) by convex op-
timization, see [8]. Exact designs Dn, that is, collections of sites where to observe
Z, can be extracted from these optimal measures, see Sect. 3. However, replacing
correlated errors by uncorrelated ones, in order to be able to use the approximate
design machinery, introduces an additional approximation (besides spectral trunca-
tion). Whereas the approximation in [13] relies on an homoscedastic model, the one
we propose in Sect. 2 uses a more accurate heteroscedastic model. The situation is
more complex when a linear parametric trend is present, and in Sect. 4 we show
how a suitable projection of (Zx)x∈X on the linear subspace spanned by the trend,
equivalent to a kernel reduction, yields a BLM with smaller errors than the direct
approach of [13] that uses the original kernel K.

2 Bayesian Linear Models

Exact BLM The Karhunen-Loève decomposition of Zx yields

Zx =
ntrc

∑
k=1

βkφk(x)+ εx , (4)

where εx, x ∈X , is a centered random field with covariance given by

E{εxεx′}= Kerr(x,x′) = K(x,x′)−Ktrc(x,x′),
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with Ktrc(x,x′) = ∑
ntrc
k=1 λkφk(x)φk(x′) and where the βk are mutually uncorrelated

centered r.v., orthogonal to εx for all x∈X , with var(βk) = λk. No approximation is
involved at this stage, and this BLM gives an exact representation of (Zx)x∈X . Con-
sider the predictor Ẑx = ∑

ntrc
k=1 β̂kφk(x) = φ

>
trc
(x)β̂ , with φ

trc
= (φ1(x), . . . ,φntrc(x))

>

and β̂ = (Φ>trcK−1
errΦtrc +Λ

−1
trc )
−1Φ>trcK−1

errzn the estimator that minimizes the regu-

larized LS criterion J(β ) = (zn−Φtrcβ )>K−1
err(zn−Φtrcβ )+β

>
Λ
−1
trc β (β̂ coincides

with the posterior mean of β when Zx is Gaussian). Direct calculation shows that
the IMSE of Ẑx equals IMSEtrc(Dn) given by (3) and can also be written as

IMSEtrc(Dn) = trace[(Φ>trcK−1
errΦtrc +Λ

−1
trc )
−1] .

Approximate BLM with uncorrelated errors In [13], the correlated errors εx of (4)
are replaced by uncorrelated homoscedastic errors having variance σ2 = τerr = τ−
τtrc. A more accurate approximation of the exact model (4) is obtained when using
uncorrelated but heteroscedastic errors, with the same variance σ2(x) =Kerr(x,x) as
εx. We shall call this model the heteroscedastic BLM and denote by Σerr the diagonal
matrix diag{Kerr(x1,x1), . . . ,Kerr(xn,xn)}. The curve (solid line) on the top of Fig. 3-
Right shows σ2(x), x ∈ [0,1], for the Matérn 3/2 kernel K(x,x′) =C3/2,10(|x− x′|),
where

C3/2,ϑ (t) = (ϑ t +1) exp(−ϑ t) , (5)

with ntrc = 10. The first 4 eigenfunctions φk for this kernel are plotted in Fig. 2-
Left. The strongly oscillating behavior of σ2(x), due to the form of eigenfunctions
in Ktrc, motivates the use of the heteroscedastic BLM instead of an approximate
model with homoscedastic errors. This seems important within the framework of
computer experiments, but would be less critical, however, in presence of additive
uncorrelated measurement errors, as considered in [13]; in that case, the errors εx
due to spectral truncation are even neglected in [3]. The IMSE for prediction with
the heteroscedastic BLM is

IMSEhBLM
trc (Dn) = trace[(Φ>trcΣ

−1
errΦtrc +Λ

−1
trc )
−1] . (6)

3 Optimal Design

The IMSE (6), considered as a function of the exact design Dn, has the form of an
A-optimality criterion for the Bayesian information matrix Φ>trcΣ−1

errΦtrc +Λ
−1
trc , see

[8]. For ξ a probability measure on X (i.e., a design measure), let

M(ξ ) =
∫

X
σ
−2(x)φ

trc
(x)φ>

trc
(x)dξ (x) ,

which satisfies IMSEhBLM
trc (Dn) = trace[(nM(ξn) + Λ

−1
trc )
−1], with ξn the empiri-

cal measure (1/n)∑
n
i=1 δxi associated with Dn. For any α ≥ 0, the Bayesian A-
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optimality criterion

ψα(ξ ) = trace[(αM(ξn)+Λ
−1
trc )
−1]

is a convex function of ξ which can easily be minimized using an algorithm for
optimal design, see, e.g., [9, Chap. 9]. The solution is much facilitated when (i) µ

is a discrete measure with finite support XQ (a quadrature approximation is used to
compute the IMSE) and (ii) only design measures ξ dominated by µ are considered
(design points are chosen among quadrature points in XQ). Indeed, only the values
φ̃k(x j) for x j ∈XQ are then used in all calculations, without having to compute the
canonical extensions φk = (1/λk)Tµ[φ̃k], see Sect. 1, and the φ̃k(x j) are obtained by
the spectral decomposition of a Q×Q matrix, with Q = |XQ|, see [4, 5]. Once an
optimal design measure ξ ∗α minimizing ψα(·) has been determined, we still have to
extract from it an exact design Dn with n points (and no repetitions since there are no
observation errors). We have tried several procedures; all are based on the selection
of n points among the support of ξ ∗α , Sξ ∗α = (x(1), . . . ,x(m)) say, and involve some
trial and error for tuning values of α and ntrc in order to facilitate extraction of an
n-point design when n is given a priori. They are listed below:

1. Keep the n points x(i) of Sξ ∗α with largest weight ξ ∗α(x
(i)).

2. Perform a greedy (one-point-at-a-time) minimization of the IMSE using the finite
set Sξ ∗α as design space.

3. Perform a minimum-spanning-tree clustering of Sξ ∗α , with the metric ∆(x,x′) =
K(x,x)+K(x′,x′)− 2K(x,x′) induced by K, with n clusters (the xi then corre-
spond to the barycenters of x( j) in clusters, with weights the ξ ∗α(x

( j))).

Choosing α and ntrc of the same order of magnitude as n seems reasonable. Note
that while 1. and 2. maintain the xi within XQ when µ has finite support XQ
and ξ ∗α is dominated by µ, this is not the case for 3. and canonical extensions
φk = (1/λk)Tµ[φ̃k] must then be computed (which requires summations over XQ).
After extraction of a n-point design Dn, a local minimization of IMSE(Dn) (a prob-
lem in Rn×d) can be performed using any standard algorithm for unconstrained op-
timization (e.g., conjugate gradient, variable metric), since optimal points for obser-
vation of Zx need to be as correlated as possible with points within X , and therefore
lie in the interior of X . Here also canonical extensions must be computed.

An illustration of procedure 3. is presented in Fig. 1 for X = [0,1]2 and
K(x,x′) = C3/2,10(‖x− x′‖), see (5), with ntrc = α = 10; µ is the uniform measure
on a regular grid XQ of Q = 33× 33 points and a vertex-exchange algorithm with
Armijo-type line search [1] is used to determine ξ ∗α supported on XQ.

4 Kernel Reduction for Models with Parametric Trend

Consider now the random field Yx = g>(x)θ +Zx, where Zx is as in Sect. 1, g(x) =
(g1(x), · · · ,gp(x))> is a vector of (known) real-valued trend functions defined on
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Fig. 1 The 20 squares cor-
respond to the support of ξ ∗α
when the vertex-exchange
algorithm is stopped (the di-
rectional derivative of ψα (ξ )
exceeds −10−4), the associ-
ated minimum spanning-tree
identifies n = 12 clusters, the
stars indicate the optimal 12-
point design obtained by local
minimization of the IMSE

X and where θ = (θ1, . . . ,θp) ∈Rp is an unknown vector of parameters. The Best
Linear Unbiased Predictor (BLUP) of Yx (the universal kriging predictor), based
on observations yn = (Yx1 , . . . ,Yxn)

>, is g>(x)θ̂ +k>(x)K−1(yn−Gθ̂), where θ̂ =
(G>K−1G)−1G>K−1yn with G the n× p matrix with elements {G}i j = g j(xi) (we
assume that G has full column rank). Its MSE is

MSE(x;Dn) = K(x,x)−k>(x)K−1k(x)
+[g(x)−G>K−1k(x)]>(G>K−1G)−1[g(x)−G>K−1k(x)] ,

see, e.g., [11, Chaps. 3,4], and IMSE(Dn) =
∫
X MSE(x;Dn)dµ(x).

Similarly to Sect. 2, we can consider an exact BLM Yx = f>(x)γ + εx, where
f>(x) = (g>(x),φ>

trc
(x)) and γ = (θ>,β>)>. The predictor of Yx is then Ŷx =

f>(x)γ̂ , where γ̂ = (F>K−1
errF + Γ−1)−1F>K−1

erry, with F = (G,Φtrc) and Γ−1 =

diag{0, . . . ,0,λ−1
1 , . . . ,λ−1

ntrc} where there are p zeros. Its IMSE coincides with the
truncated version of IMSE(Dn) and is given by

IMSEtrc(Dn) = trace[(F>K−1
errF+Γ

−1)−1U] ,

where U = (f|f>)L2
µ
=
∫

X
f(x)f>(x)dµ(x) =

(
(g|g>)L2

µ
(g|φ>

trc
)L2

µ

(φ
trc
|g>)L2

µ
Idntrc

)
,

with Idntrc the ntrc-dimensional identity matrix. Note that U does not depend on
Dn. Approximation of Yx by a heteroscedastic BLM where uncorrelated errors
with variance σ2(x) = Kerr(x,x) are substituted for εx, gives a predictor with
IMSEhBLM

trc (Dn) = trace[(F>Σ−1
errF+Γ−1)−1U], i.e., a Bayesian L-optimality crite-

rion which can be minimized following the same lines as in Sect. 3. However, in
general the realizations of (Zx)x∈X are not orthogonal to the linear subspace T
spanned by the trend functions g, so that, roughly speaking, this direct approach
involves unnecessarily large error variances σ2(x).

Denote by p the orthogonal projection of L2
µ(X ) onto T : for any f ∈ L2

µ(X ),
p f = g>(g|g>)−1

L2
µ

(g| f )L2
µ
. Suppose for simplicity that the sample realizations of
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Fig. 2 First 4 eigenfunctions φk(x), x ∈X = [0,1], for the kernel K(x,x′) =C3/2,10(|x−x′|) (Left)
and for Kq(x,x′) adapted to the trend functions g(x) = (1,x,x2)> (Right)

(Zx)x∈X belong to L2
µ(X ) and define pZx = g>(x)(g|g>)−1

L2
µ

∫
X g(t)Zt dµ(t), so that

Yx = g>(x)θ +Zx = g>(x)θ +pZx +qZx = g>(x)θ ′+qZx , where q= idL2
µ
−p and

θ
′ = θ +(g|g>)−1

L2
µ

∫
X g(t)Zt dµ(t). The covariance kernel of (qZx)x∈X , called re-

duction of the kernel K in [12], is

Kq(x,x′) = E{(qZx)(qZx′)}= K(x,x′)+g>(x)Sg(x′)−b>(x)g(x′)−g>(x)b(x′) ,

where S = (g|g>)−1
L2

µ

(Tµ[g]|g>)L2
µ
(g|g>)−1

L2
µ

and b(x) = (g|g>)−1
L2

µ

Tµ[g](x). A key

property here is that, for a given design Dn, the two random fields g>(x)θ + Zx
and g>(x)θ +qZx with unknown θ yield the same BLUP and same IMSE. This can
be related to results on intrinsic random functions, see [7]; notice, however, that the
kernel reduction considered here applies to any linear parametric trend and is not
restricted to polynomials in x.

Figure 2 presents the first four eigenfunctions for the kernels K(x,x′) (Left) and
Kq(x,x′) (Right) for a one-dimensional random process on [0,1] with Matérn 3/2
covariance function, see (5), and trend functions g(x) = (1,x,x2)>. The eigenfunc-
tions oscillate at higher frequency for Kq(x,x′) than for K(x,x′): in some sense, ker-
nel reduction has removed from K the energy which can be transferred to the slowly
varying trend functions. This is confirmed by Fig. 3-Left which shows the first 20
eigenvalues for both kernels. One can thus expect that for the same number ntrc of
eigenfunctions, an heteroscedastic BLM will be more accurate when based on Kq

than when based on K. This is confirmed by Fig. 3-Right where σ2(x) = Kerr(x,x)
is plotted for both kernels when ntrc = 10.
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Fig. 3 Left: first 20 eigenvalues (sorted by decreasing values) for the kernel K(x,x′) =C3/2,10(|x−
x′|) (top, solid line) and for Kq(x,x′) adapted to the trend functions g(x) = (1,x,x2)> (bottom,
dashed line). Right: σ2(x), x ∈X = [0,1], for the heteroscedastic BLM with K(x,x′) (top, solid
line) and with Kq(x,x′) (bottom, dashed line); ntrc = 10 in both cases
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