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Conductivity of periodic composites made of matrix and polydispersed aggregates

Quy Dong To" and Guy Bonnet
Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS,
5 Boulevard Descartes, 77454 Marne-la-Vallée Cedex 2, France

We present closed-form expressions of the effective conductivity of composites made of matrix and
impenetrable polydispersed particles. The approach developed in a recent work has been generalized to treat
periodic multiphase composite materials. Particular cases including orthorhombic arrangements of spherical or

spheroidal inclusions and random distributions of spheres are considered where simple closed-form expressions

are obtained. The case of random distributions allows us to recover Mori-Tanaka estimation after introducing
partial structure factors as a statistical information on the microstructure.

PACS number(s): 46.65.4g,72.80.Ng, 72.80.Tm

I. INTRODUCTION

Determining the effective response of heterogeneous ma-
terials from their constituents is of both theoretical and
practical interest. The so-called homogenization procedure
which allows such a determination usually relies on solving the
boundary value problem on a representative volume element
(RVE) and finding the relation between the average quanti-
ties [1]. If the microstructure of the heterogeneous material
is periodic, rigorous definitions of the overall properties
were derived for many classes of problems [2]. Numerical
homogenization techniques based on periodic RVEs have also
been applied successfully to periodic structures [3,4] and to
systems with random nature in many situations [5-7]. The
convergence of these methods becomes a serious problem
for high contrasts, and a refinement using the spectrum of
the Green’s operator can help to the convergence in these
cases [8.9].

The present work presents a solution of the homogenization
problem of periodic media composed of matrix and inclu-
sions, where the effective conductivity is concerned. Most
of the literature works on these types of microstructure deal
with two phases composites, including the matrix material
[7.10-16]. Despite their popularity and technological impor-
tance, materials made from particles of different sizes and
properties received less consideration (see, e.g., Refs. [1.17—
20] and the references therein). In this paper, we propose a
general estimation of the effective conductivity of impene-
trable polydispersed particles and treat the hard ellipsoidal
and spheres as special cases. The approach developed by
the authors is a generalization of the recent work on two-
phases materials [21], and its origin can be traced back
to Nemat-Nasser-Iwakuma-Hejazi (NIH) approximation in
linear elasticity [22]. The latter has been shown to perform
well for a large range of volume fractions.

From the governing integral equation, an analytical ap-
proximation is applied to each species « containing particles
of the same size and material, and the average localization
tensor of all m species in the model can be determined
by solving a linear system of m equations. The coefficients
of this linear system of equations depend obviously on the
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distribution of the different kinds of inclusions. In the case
of composites containing only one kind of inclusions, the
expression of effective properties is expressed by using the
Fourier transform coefficients of the characteristic function
which defines the domain containing the inclusions, while
for composites containing different kinds of inclusions, the
solution contains terms coupling the different domains related
to different inclusions as shown in Ref. [1]. These terms, which
do not appear in the case of monodispersion, must now be
obtained, which is a different aspect compared to the original
method [21]. Two different cases are treated in detail.

A first case corresponds to adistribution of inclusions which
are centered at the points of lattices (cubic or orthorhombic).
In this case, the effective properties can be obtained in a
closed form, which can be effected by computing analytically
the “coupling terms” corresponding to different kinds of
inclusions. Closed form solutions have been obtained for cubic
lattice or tetragonal arrangement of two families of spheres or
ellipsoids. Application results are in a good agreement with
numerical methods based on Fourier transform. The extension
to ellipsoidal inclusions constitutes also an original extension
of the method introduced in Ref. [21].

A second case is the one of a random distribution of
polydispersed hard spheres. In the case of an isotropic random
distributions of spheres, a statistical connection with partial
structure factors has been established. It was shown that, in
the infinite volume limit, simple expressions are obtained,
depending only on the volume fractions and properties of the
species. The final expression of the effective conductivity is
identical to the Mori-Tanaka estimation for multicomponent
composites [ 18], which is connected to the Clausius-Mossotti
approximation [20]. This result is particularly interesting,
because the classical way of expressing the Mori-Tanaka
estimation, following the Benveniste reformulation [23], is to
consider that the interaction between phases is approximated
by subjecting each inclusion separately to the mean tempera-
ture gradient in the matrix phase. It is clear that this formulation
does not rest on any statistical information, while our result
rests explicitly on such information. Our result is therefore, for
the Mori-Tanaka distribution, the equivalent of the “perfectly
disordered distribution™ associated with the well-known self-
consistent model [24] and completes the relation between “ad
hoc™ estimations (self-consistent, Mori-Tanaka, etc.) and the
statistical information to which it corresponds.



Section II presents the general formalism for periodic
materials, which introduces the coupling coefficients. This
formalism is detailed in order to produce explicitly the
effective conductivity in the case of a periodic cell containing
three planes of symmetry. Section III presents the estimation
of the conductivity of bimodal periodic arrangements of
spheres or ellipsoids. Finally, Sec. IV presents the estimation
of the conductivity of a random isotropic distribution of
polydispersed bimodal hard spheres.

Regarding the notation found in the paper, we use bold char-
acters to denote the vector and matrix quantities. The notation s
is used to denote the convolution integral, center dot - for vector
products, and nothing for the action of a matrix on a vector.

II. PERIODIC CONDUCTION PROBLEM
AND ITS SOLUTION FOR SPECIFIC SYMMETRIES
OF THE PERIODIC CELL

A. Governing integral equation

Let us consider a periodic media made by repeating
infinitely a parallepipedic cell of volume V =a; x a; x a3
along the three directions x| ,x2, and x3. The cell has heteroge-
neous nature in terms of thermal conduction, and its thermal
conductivity K is a function of position x. To determine the
effective conductivity K" of the material, we must solve the
periodic problem in the unit cell [2] and find the relation
between Q, the average of the local flux q. and E, the average
of the local (minus) temperature gradient e. Alternatively, we

can solve e*(x) = —V T from the integral equation [21]
1 o
(K'—Kx){E+ Z T) I:V ‘/;/ e (x')e! (X ’dx’]
§#40
= K'e*(x), )

with K° being any second order tensor, usually taken to be
isotropic, and T'(§) the second order tensor defined as

FE)=§xE §=§/& &= @
Here the vector field e*, which may be called the free temper-
ature gradient, is defined from the reference conductivity K’
and the local Fourier law
q(x) = K[e(x) — e*(x)]. (3)
The infinite sum in (1) involve all wave vector & with
components &;:
27 Zin

a;

g,' = ZinsN € Z, i=1.23. 4)

Since the solution e*(x) is linear in E, we can write

|
vae*(x)zLE (5)

and derive the effective conductivity of the material by the
expression

K"=K'(I-L). (©6)
It is worthwhile noticing that the reference material may

be isotropic even if the overall material is anisotropic. The
purpose of the paper is in closed form solutions of the previous

integral equation. However, a classical way to obtain the
solution of this integral equation is to use an iterative numerical
solution. In the following, this numerical solution, whose
description is shortly recalled in Appendix A, is used as a
reference whose results are compared with the closed form
solutions obtained thereafter.

B. A formula for the effective conductivity
of matrix-inclusion composites

We shall now use (1) to study the main problem where the
composite is a mixture of hard particles embedded in a matrix.
The particles are classified into m groups of species (denoted
thereafter species) according to their geometry and material.
Assuming that the conductivity of each phase is isotropic and
using the matrix conductivity kg as the reference value, Eq. (1)
is then reduced to m integral equations:

. 1 -
E + ZG'E-\[‘(E) I:V] e*(x’)y—lé'-x (]xr]
£#0 v
ko

= P e*(x),

VX eQ, i=12,..m, (1)

for each group domain €2, of conductivity k, and volume
fraction f,. Making use of the fact that, due to the choice
of reference material, e* vanishes in the matrix phase, we
integrate both sides of (7) over domain €2, and obtain

1 : -
i§-x oy —iEX o
Q,,E+—V E F(E)fae dx Eﬂ /;Zﬂe(x)e dx

40 @
/ e*(x)dx, a=1.2,....m. (8)
2

= ko — ka

At this step, we evaluate the integral [, e*(x)e’s¥ dx by
using the approximation [21,22]

f e*(x)e* N dx =~ I(§)L,E, 9)
Q

with
" 1
mm:f e dx, —/ efx)dx =L,E. (10
Q, Q2 Ja,

In the case of dilute ellipsoidal inclusions, the approxima-
tion (9) is exact since e* is uniform inside the inclusion
[25-29]. For a moderate volume fraction range below the
percolation threshold, the simplification (9) was shown to
perform largely better [21] than in the dilute case. Indeed, it is
based on average approximation and does not strictly require
the uniformity of e* contrarily to the dilute case. Obviously
this procedure recovers the same results as those coming from
the dilute case at low concentrations.

The presence of the second order tensor L, associated with
phase « in (10) is due to the linearity of the problem in E.
Substituting (9) into (7) yields a system of m linear equations
for Ly:

koLq
0 N Al =1L
P Zﬂ: plg
1 _
Aup = ——5 Y ERELE(—E), (11)
faV ££0



where I is the second order identity tensor. After solving (11)
to obtain all tensors L, the effective conductivity of the
mixture can be computed from

K =k <I—quLa). (12)

As an illustration, we consider a mixture of two species
(m = 2). Inverting (11) yields the following expression for
localization tensors L and Lj:

L= |act (Rl 4 kl o _IA
a = af m_ ao | — ko_kﬂ_ BB Pa

3 -1
e (2 -ae) .

a#B. af=12. (13)
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C. Effective conductivity for specific symmetries
of the periodic cell

1. Orthotropic cells

If the microstructure takes the three planes x; =0 (i =
1,2,3) as planes of symmetry, the material has the orthotropic
symmetry. In this case, all tensors Ayg and L, are diagonal in
the current basis Oxx2x3, and mathematical operations with
them are highly simplified. For example, the multiplication
can be done without respecting their left-right order,

AB = BA, (14)
and the fractional notation can be used without any ambiguity:
AB~! =B—'A=A/B=%. (15)
As a result, we can obtain K from Eq. (12)
K (%‘AQIH'AIZ)]PI + (% —Al+Au)f
ko (%% — An)(n% — An) — AnAy

(16)

2. Cubic cells

In a more special case where the distribution of all
heterogeneous phases are symmetrical with respect to nine
planes x; = 0 and x; & x; = 0 with i, j = 1,2,3, the overall
conductivity is isotropic. Indeed, it can be shown that for all
a, I,(&) is symmetrical with respect to nine planes § = 0 and
& x£&; =0 with i,j = 1,2,3. The following relation can be
deduced immediately:

1
Aap = Al Aup =73 > LE)Ig(—8). (17)
T g0

Tensors L, are also scalar matrices, say, L, = LI, with L,
being determined from

P — A

*o—ky _Alm L] 1

_Aml s ko—ok,,, - Amm L,,, 1

(18)

As a result, the effective conductivity is isotropic and equal to
1f ff kett

K" =k, —=1- L. (19

o Ea fala )

For a mixture of two species (m = 2), the effective conductiv-
ity finally reads
ke (kok_“,‘.z - A22+A12)f1+(k0k+kl — A +An)f

ko (hﬁk: —All)(kokTokl—All)—AlZAZI

(20)

In the following applications, we shall focus on materials
possessing three or nine planes of symmetry and be limited
to expressions (16) and (16) with the main concern being the
evaluation of Agg and Agp.

III. EXPLICIT SOLUTIONS FOR PERIODIC
ARRAYS OF SPHERES AND ELLIPSOIDS

The heterogeneous material is constituted from an or-
thorhombic arrangement of polydispersed spheres or ellip-
soids, in which the final effective conductivity can be either
isotropic or anisotropic. For the sake of clarity, we consider
only body-centered arrangements and treat separately the
isotropy and anisotropy effect in different subsections.

A. Cubic lattice arrangement of spheres

The basic cell is a cube of side length a containing a sphere
of radius R| and conductivity ky located at the center and eight
eighths of a sphere of radius R, and conductivity k, at the eight
corners [see Fig. 1(a)]. In this case, the number of (inclusion)
species is m = 2, and the characteristic functions of phases
1) (&) and I;(§) are given by, for the sphere at the center,

11(&) =3V h(m), (21)
and for the spheres at the corner,
L&) = 3Vah(m)(—1)7 e+ (22)
with
nop = LTI R,
P
Vi = %”R;}. a=12, (23)

FIG. 1. 2D images of RVEs with polydispersed hard aggre-
gates (left: orthorhombic body centered arrangement, right: random
distribution).
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FIG. 2. Grid of & in 2D. The lattice sum 3., I(§)I5(=£) in
the volume element D is approximated by p fn P()dV.

where & is the modulus of §.

Coefficients A,g can be computed either numerically or
analytically by using an extension of the method presented in
Ref. [21]. The former involves a summation over all & # 0 as
defined in (17). In the latter approach, we make use of the fact
that the & points form a regular lattice in § space with density
p= (27'r/a)3 and 1,(§)Ig(—§) is a decaying function with §.

Then, I,(8)Ig(—&) can be written as [,(§)Ig(—§) =
h(&E Ra)h(§ Rg)Pop where dgpg accounts for the fluctuating
term (— )71+ in [,

For a sufficiently remote and large domain D in Fourier
space, we estimate the infinite sum (see Fig. 2) by

Z la(E)Iﬂ(—g) = p/;) Paﬂ(g)dv.

geD
Pop(€) = h(& Ro)h(E Ry) Dagp. (24)

where ®.g is the average value of the fluctuating term @,
over D.which is equal to ®,p = dup for the centered cubic
arrangement. As a result, we have

Pi(§) = 9VAR (1), Pn(E) = 9V3R (),
Piy(§) = Py(§) =0. (25)

Finally the computation of the remainder of the lattice
sums for main terms Py, are similar to the ones obtained in
the monodispersed case, and the computation of the coupling
terms Pyg.a # f shows that the lattice sum is more rapidly
convergent than for main terms, the complementary integral
being null.

The value of P,g(§) depends uniquely on § and will be
denoted as P,g(§) afterwards. Certainly, the above approxi-
mation is not valid for D close to the origin. Then the infinite
sum Ze;&o I, (§)I5(—&) is best approximated by keeping the
important leading terms, while estimating the remainder lattice

sum by using a continuous integral in the § space:

D L8 = Y LEI-E)
§#0 &1 <&

a? 0 ,
o [ Pweae. o
2% Je,

In (26), the cutoff distance £. determines the number of
leading terms kept in the series. From the values of Pog. a # B,
it comes that, for the coupling terms, the contribution of the
integral over domain D to the evaluation of the lattice sum is
strictly null. Therefore, the evaluation of the lattice sum can
be confined to the terms close to the origin.

Denoting €, = 2 R, /a, @ = 1,2 and keeping four leading
terms, which has been found satisfactory, yields the following
expressions:

Ava = faA¥(€d) + ¢(2€4),
Az _ 2L e, @7
f fi
in which A* and B* are given by
A*(e) = 18h*(e) + 36h3(V2€) + 24h*(V3€)
+ 18h%(V3e),
B*(e1.€2) = —18h(e1)h(er) + 36h[V2e)h(V2e]

—24h(v/3e)h(V/3€y) + 18h(2€))h(2€y), (28)

and the function ¢ is defined as

© 3 — cos 2e + 2sinfe  2sin2e  2Si(2¢) N 1

€)= -— - —.

4 3me 37ed el 3 3
(29)

Finally, the effective conductivity is given by relation (20) in
which coefficients A, are given by relations (27) and (28).
The results for the effective conductivity related to the
previously defined polydispersed structure are shown in Fig. 3.
The results show that the present estimation scheme agrees
very well with the exact result issued from the complete Fourier

s
]

Present
o Exact solution (FFT)

w

Effective conductivity k*"k,
n
N o

-
o

0 0.1 0.2 0.3 0.4 05 0.6
Volume fraction f=f1 +f2

FIG. 3. (Color online) Comparison between present estimation
[Eq. (16)] and exact solution (Fourier transform method with
resolution 128 x 128 x 128). The microstructure is body-centered
cubic with Ry = 2Rz, ki = 10ko. and k2 = 0.1ko. The maximal
volume fraction is 0.62 when the spheres touch each other.



transform-based method [7] described in Appendix A, for a
large range of volume fractions, up to f = 0.4.

B. Microstructures with anisotropy effects

We study two examples based on body-centered arrange-
ments of orthorhombic type possessing three planes of sym-
metry. In these cases, the approximation of the lattice sum
with continuous integral as done in the previous section yield
closed form expressions for Agg.

1. Example 1 (spherical inclusions and parallelepipedic box)

The unit cell is a parallelepipedic box of dimensions
ay x ay x az with spherical inclusions of radius Ry and R
(two species). The expressions for [,(§) and P,p(§) are
unchanged with respect to the cubic lattice case, the same as
Egs. (21)—~25). A similar lattice sum approximation as Eq. (24)
and Fig. 2 is also applicable in this situation. The only
difference is that we have a parallelepipedic grid with the
density p = ayayas/8m3. The explicit expressions for Ay
taking &, as a cutoff radius become

Aap = 9fp Y E@EN(MM(p)(—1)"H2F o £ B,
1§ <&

Awe =9fu Y E@EN (na) + 96 Ro)L. (30)
1€1<é.

We remark that the nondiagonal terms of A4 are mainly due
to the leading terms in the lattice sum, as for the isotropic case.

2. Example 2 (spheroidal inclusions and parallelepipedic box)

In the second example, the unit cell is a parallelepipedic box
of dimensions a; x a, x as, but the inclusions are spheroids
with the same semiaxes ratio and with x; being the revolution
axis. Denoting R,/y,R, and R, as semiaxes of species «,
a = 1,2, the shape functions of the two species admit the
following expression:

(&) = 3Vah(m), (&) = 3Vah(na)(—1) 2+,

2,02 4 £2 4 2 4 s
Na = Rar/&1 /X~ + &5 + &5, Vea=gRa~ 31

By making the following homothetic change:

E=&/x. =8, =8, (32)

the lattice sum in & space can be converted to & space. With
the help of Appendix B, the analytical approximations of the
matrices Aqq and Ayp lead to the following expressions:

XEPR (RLE")

(Aua)ll = gfa T2 1 22 1 212 + 3CI¢(R¢1$()~
E’Z«;’ XEC+E+ 87
Zh*(RaE")
(Aua )22 = 9for Z 5 + 3C2(p( Ra€r)~

LSO+ e

E/?.hl(Ra /)
2 : 5 +3C30(Ro&e),

(Awa)3z = 9 fu Z m

§'<gl
(33)

and

2 2]
“&"h(R.&")h(RpE")

(Aaﬂ)ll ngﬂ 2 :X']H_’—lzﬁ;:(
g X8 +&° +&

(Aap)2 = 9f5 )

&' <g]

_])1|+:2+:3_

E72h(RoEh(RE")

2612 2 n” (_I)ZI+:2+:j‘
XE+E 6

h(R.E"h(REE")

- S 5 (—l):'+"'2+:3.
xR+ +E]

(Aap)s = 9fp Y

&<
(34)

The factors Cy,C>, and C3 depend on the shape of the inclusion.
For oblate inclusions (x > 1),

5

o 2
C:=Ci=350 +2=y), Ci= %(y -,
(35)

with y = /x? — 1 and » = arctan y.

For prolate inclusions (x < 1),

2

| 2 -
C=C=55(u—ps’ =5, € = %(u —5), (36)

with 8 = \/1 — x2 and jt = tanh™" 5.

It is interesting to remark that Cy, C;, and C5 given by (35)
and (36) are identical to depolarization factors along directions
1, 2. and 3 of spheroidal inclusions [30].

From results in Figs. 4 and 5, the present estimation recovers
the anisotropy effect due to the material distribution in both
cases and agrees well with the exact solutions issued from
the FFT iterative scheme, the departure from the FFT solution
appearing, however, at a lower concentration for the case of
the spheres in a parallelepipedic box. For spherical inclusions,
the anisotropy is weaker and becomes much more significant
at high volume fraction. In this case, the direction dependent
conduction is due to the arrangement of the inclusions and
not to their shapes. In the case of ellipsoidal inclusions,
the anisotropic effect is much stronger, and it is already
considerable at small volume fraction.

150 : .
—_ k:':/k0 (present)
;\gc’ 14F eff
% —_ kzzlkO (present)
z o kﬂ/ko(FFT)
2 13p o
3 & Kk, (FFT)
R SR R—
2
3
& 11
10 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Volume fraction f=f, +1,

FIG. 4. (Color online) Example 1: Effective conductivity along
two different directions x;,x, estimated by Eq. (16). The unit cell
is parallelepedic box of dimension 1 x 2 x 2 with the spheres of
properties Ry = 2R,, ky = 10kq, and ky = 0.1k,.
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FIG. 5. (Color online) Example 2: Effective conductivity along
two different directions xy,x, estimated by Eq. (16). The unit
cell is parallelepedic box of dimension 2 x 1 x | with ellipsoidal
inclusions. The ellipsoids are identical in size and shape with the
semiaxes 2R, R, and R (i.e., Ry = R, = R, x = 0.5) but different in
properties k; = 10kg and ky = 0.1k,.

IV. RANDOM ISOTROPIC DISTRIBUTIONS
OF POLYDISPERSED HARD SPHERES

The case of random distributions of polydispersed hard
spheres represents an approximation of many situations of
practical interest. Let us therefore consider, inside a sufficiently
large cubic volume V of size a, a set of N hard spheres
of different families «, associated with particle numbers N
and fraction numbers n,, which are randomly distributed [see
Fig. 1(b)]. These quantities and the volume fractions f, are
interconnected via the relations

o avsa
N=ZN(,. na=N—. fa=N . (37)

N Vv

First, we remark that the partial structure factor S,g between
two species @ and f is defined from the expression [31]

| N, Np
_ iE-x; —i&-x;
Saﬂ({’)—ﬁ<§ e E e > (38)
i J

and related to the partial pair distribution function gep as
follows:

Sap(&) = nadap + nan,gp/ [8ap(r) — e &% dr. (39)
v

In (38) and (39), (..) denotes the ensemble average, 84 the
Kronecker delta and x; and x; the sphere centers. Assuming
that the distributions of the spherical inclusions are isotropic
(for all species) and adopting the change of variable 7 = r/Rp.
we obtain

Saﬂ(s)
Ny

o0 . .
=5aﬂ+3f,,/ [g,,,;(r)-l]s'"nﬂfdf. (40)
0 B

For randomly heterogeneous materials, the terms L, in (19)
can be replaced by (L, ). However, in the framework of ergodic
media [20], it is reasonable to assume that L,, for each phase is
stationary in the infinite volume limit and equal to (L), which

leads to the following approximation:
(Lo) = Las (AgpLp) = (Agp)Lgp.

Now, the determination of L, can be effected. based on (18)
using (Aqp) instead of Agg. From another point of view, the
characteristic function 1, (§) of phase « in one sample takes
the form

Ya,B.  (41)

. No
I(§) = 3Vm5m”“_”w Zei&xi' (42)

[

Therefore, based on (38), the ensemble average of (17) can be
rewritten as follows:

‘;Vxﬂ (Sin g — 1y €OS 1)
Aap = Z - E—
(sinng — ng cosng)

X 3

Mg

In the infinite volume limit, (17) admits the integral form

Saﬂ(g ). (43)

2 [ (sin g — N COS Ng)
(Agp) 2 = [ ER e = gecon )
T Jo Na
X(Sln']ﬂ—f]ﬂ cosnﬂ)Suﬂ(_E)d @4
ng Na

It is clear that expression (44) could be derived from (43) as
a limit case where the lattice point becomes infinitely dense
and (26) holds true for all domain D. Since, from the hard
sphere assumption, the spheres are nonoverlapping, g.z(r)
must vanish for r < R, + Rp.

Substituting (40) into (44) and making use of the fact
that [32]

/°° (sin 9g — 1o COS ) (siNNg — Ng cOs Ng)
0 ng ”f?
1 + yap

sinngr dng

=0, VF> Ro/Rpg = na/np

(45)

and  yap =

we obtain finally a remarkably simple expression for (Aqg):

(Agg) = M (46)
It implies that, based on (18), (19), and (46), we obtain
T N [V B
4 e — 5= | [ Lm 1

(47)

Combining (47) and (19) and after some algebraic manipula-
tions, the effective conductivity can be recast in the following
form:

o/ ko—

keﬂ 142 Zu 74_/‘ o/kn
DR = o

T a Tk, /ko
This final formula is explicit, and it is interesting to remark
that it depends only on volume fraction regardless the local

structure of the particles S,g(§) or gup(r).




Another fundamental remark is that this last formula is
strictly identical to the one obtained by using the Mori-Tanaka
scheme for multicomponent composites [ 18], a generalization
of the Clausius-Mossotti approach. However, in our derivation,
there is no “ad hoc™ assumption as the one described in the
introduction: our derivation is based essentially on statistical
assumptions.

V. FINAL REMARKS AND DISCUSSION

In this paper, we have computed the effective conductivity
of multicomponent composite materials. The proposed com-
putation scheme is directly based on an integral equation for
the free temperature gradient and has many points in common
with the collocation resolution method. The present work
has generalized the previous results concerning two phase
composites [21,22] by obtaining closed form solutions related
to polydispersed distributions in the case of periodic inclusion-
matrix structures of orthotropic symmetry containing spherical
or spheroidal inclusions and also in the case of isotropic
random distributions. Compared to previous results obtained
in Ref. [21], the paper has shown how the closed form
approximation of the coupling terms can be effected. In
addition, it provides closed form solutions in the case of
spheroidal inclusions. Our results show that the closed-form
solution agrees quite well with numerical solution obtained by
the numerical FFT method which is used as a reference, being
able to obtain the solution at any order of accuracy.

In the latter case of a random distribution, the final solution
has been found by using the statistical information on the
material, including radial distribution function and structure
factor. In the homogenization limit, a very simple closed form
is obtained and is found to be identical to Mori-Tanaka scheme
for multicomponent composites [ 18,33] and independent of the
local distribution of the particles Syg(§) or gep(r). This result
gives a strong basis to the Mori-Tanaka solution, which rests
usually only on “ad hoc™ assumptions.

This last result comes from the assumption of an isotropic
distribution of hard sphere particles. Nevertheless, anisotropy
effects can also be treated within the framework of the present
method, using directly the ensemble average definition of
(Aaﬂ) in (11) and S(&) in (38). Since realistic anisotropic
ensembles can be generated by available atomistic simulation
techniques [5] in suitable conditions, the determination of the
effective conductivity is feasible and shall be addressed in a
future work.
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APPENDIX A: INTEGRAL EQUATION AND ITS
CLASSICAL NUMERICAL SOLUTION USING AN
ITERATIVE SCHEME

We note that in Fourier transform-based numerical meth-
ods, an equivalent equation to (1) is used:
8K = [K" = K(v)],

e(x) = E + G % 5Ke(x), (Al)

where G = T'(K”)~! The solution procedure is to use a
fixed point recurrence for solving (A1) from the initial field
e(x) =E,

eV (x) = E+ G 6KeV ' (x), (A2)

until convergence. At each step, the evaluation of T's (periodic
convolution integral) is done using the fast Fourier transform
(FFT) and its inverse [7]. The computation domains in the
Fourier and real space are meshed with voxel elements related
to a given resolution. The basic iterative scheme (A2) is not the
unique way to solve (A1). Itis well known that the convergence
rate is sensitive to the contrast ratio and to the choice of the
reference materials. Alternative schemes have been proposed
to improve the basic scheme [15,34] in some aspects, but the
convergence is always difficult in the case of high contrast
between physical properties.

APPENDIX B: EVALUATION OF INTEGRALS

The analytical approximation throughout the paper requires
the evaluation of the following integral:

22,2 ’ ’
, X5 " (R E)d§
Zi=9%ap / T Ty
&8 X"El + 5}_2 + §3
’,2h2 R _ENdE'
Z =9fap’/ M with k=23
&'>E! X'El' + .53' + 53'
(B1)
where p’ is the density of the wave vector &’
, _ X@1a2as
= B2
83 (B2)
Making use of the fact that
4R}
Jo =177, (B3)
3xaaraz
the integral Z; can be recast into the following form:
Zy = 3Ck(0(Ragr).
1 x2E72dS
i Sl T ST
A Jign=1 X6 +E + &
1 2dS
Ci=— S i k=23,
A Jien= X6+ &7
(B4)

where Ci, k = 1,2,3 are integrals over the surface of a unit
sphere at the origin and ¢ is the function defined in (29). The
evaluation of Cy can be done in spherical coordinate systems
(r,0.¢). for example,

cr— 1f’ x* cos” 8 sin6df
T2 )y sin26 + xlcos28’
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C3=C3=l/ sin” 0d6 (BS)
0

4 sin? 6 + x2cos?6’

The evaluation of C,C,, and Cj yields finally the closed form
solutions (35)—(36).
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