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Extension de la méthode de modélisation multiphysique DPSM à l'analyse d'écoulements fluidiques, par exploitation des analogies avec les domaines de l'électromagnétisme et des ultrasons

Extension to of DPSM (Distributed Points Sources Method) multi-physical modelisation to fluid computation, using other domains' analogies. DPSM is a semianalytical method to solve ingeneering problems in several domains like electrostatic, eletromagnetism or ultrawaves. It's used in NDC to find defaults or to restore internal characteristics. Methodd is based a meshing boundaries surfaces (instead of the whole volume) and to compute solutionby inverting matrix (without iterations). It's extension to fluid dynamic gives a methodology to study problems invloving differents domains simultaneoulsy.

Introduction

La méthode DPSM (Distributed Points Sources Method) [PLA] est une méthode semianalytique utilisée dans les domaines des ultrasons, de l'électrostatique ou de l'électromagnétisme. Elle permet une modélisation pour résoudre différents problèmes d'ingénierie nativement en dimension 3. Elle est bien adaptée au contrôle non destructif et permet modéliser des défauts ou de restituer la composition ou les caractéristiques interne de certains objets (poche d'air, taux d'humidité...). La méthode, basée sur des maillages de surfaces (au lieu de tout l'espace) et sur un calcul direct non itératif, est beaucoup plus performante que les méthodes classiques par éléments finis. En outre, une fois la résolution initiale réalisée, les calculs sur différents points de l'espace ou pour différentes conditions aux limites se font par produits en calculs directs. Par superpositions, elle permet de modéliser les phénomènes successivement, pour comprendre à la fois l'influence unitaire de chacun d'eux et de restituer la totalité des phénomènes.

Le contexte

En mécanique des fluides, l'équation de Navier-Stokes permet de calculer les grandeurs associées aux écoulements autour d'obstacles, comme la pression, les vitesses ou la portance… Cette équation est simplifiée en faisant l'hypothèse que le fluide est idéal, c'est-à-dire qu'il est newtonien, stationnaire, stratifié ou incompressible. Les équations simplifiées sont analogues à celles que l'on a en électromagnétisme ou en ultrasons. La décomposition du champ des vitesses de l'écoulement en utilisant le théorème de Helmoltz-Hodge, permet de séparer la résolution en 2 étapes successives. L'extension de la méthode à la mécanique des fluides permet de modéliser les écoulements en dimension 3 d'une manière plus rapide que les méthodes aux éléments finis et plus générale que les études théoriques résolues principalement en 2D. Elle permet ainsi de calculer la portance, la trainée, les lignes d'écoulement ou de faire des calculs d'hydrodynamiques pour les écoulements dans les tuyaux ou pour modéliser les carènes de bateaux.

Les analogies
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Mécanique des fluides

Les écoulements des fluides soumis à une force f vérifient le principe fondamental de la dynamique. Dans l'hypothèse où le fluide est newtonien (la viscosité est indépendante de la vitesse), les vitesses de l'écoulement vérifient l'équation de Navier-Stokes :
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En se limitant à f=g (force de pesanteur), pour un fluide stationnaire
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utilisant p la pression dynamique (au lieu de la pression mécanique), en introduisant le vecteur de Lamb
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L'équation de Navier-Stokes se transforme en :
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Théorème de Helmoltz-Hodge

Les champs C(r) des vitesses en mécanique des fluides ou les champs électriques en électrostatique ou des courants en électromagnétique, sont des champs vectoriels.

Si on suppose de plus, qu'ils sont réels, dérivables, à supports bornés et de carré intégrables, alors d'après le théorème de Helmoltz-Hodge, ils se décomposent en
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Pour la définition intégrale de la décomposition et pour exprimer le potentiel, nous allons utiliser les fonctions de Green et les convolutions :
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En prenant le Laplacien de K, et en utilisant la formule du double rotationnel, nous trouvons C
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On a vu (eq.2) la formulation de la décomposition du vecteur de Lamb pour l'équation de Navier Stockes, en un rotationnel et une divergence.

Dans le domaine électromagnétique, les équations de Maxwell expriment les champs E et B à partir de leurs rotationnels et divergence.
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Dans le cas d'un domaine non borné, la décomposition se fait en 3 termes.
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Le premier champ correspond à un écoulement incompressible irrotationnel, dit écoulement potentiel [JEC]. Il est analogue au problème électrostatique où 
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Densité volumique de charges

Dans les hypothèses de Helmoltz, nous faisons l'analogie de V et E et la vorticité à la densité de courant.

Ces analogies présentent l'inconvénient de na pas être totalement similaires dans la mesure où la vitesse, les potentiels et la densité de courant sont des vecteurs alors que la vorticité et l'induction magnétique sont des pseudo vecteurs.

Pour palier à ces inconvénients, des chercheurs proposent d'autres modèles d'analogies comme Marmanis [MAR] basées sur le vecteur de Lamb ou Tonti [TON] basée sur les associations entre les grandeurs physiques et les éléments géométriques orientées de base.

Les analogies de Helmholtz restent celles qui sont les plus proches de la physique des domaines étudiés.

La méthode DPSM, définition et application à l'électromagnétisme et aux ultrasons

La méthode DPSM est une méthode semi analytique de représentation de phénomènes physiques permettant simuler des problèmes d'ingénieries. C'est une méthode numérique de points singuliers qui, à partir d'une solution pour une source et de conditions aux limites imposées sur les interfaces, permet de calculer les grandeurs sur l'ensemble de l'espace considéré. Cette méthode est rapide car elle ne demande que le maillage des surfaces des interfaces et non pas le maillage complet de l'espace 3D et donne la solution directement par inversion d'une matrice, sans faire d'itérations de convergence.

La résolution se fait en 3 étapes. Dans un premier temps, on discrétise les surfaces actives en remplaçant chaque élément de surface par un point test portant des conditions aux limites et une (ou plusieurs) source équivalente reculée par rapport à la surface et portant la solution singulière connue à un facteur  près. Dans un second temps, on génère une matrice de couplage entre les sources et les points tests que l'on inverse pour déterminer les facteurs  . Par unicité de la solution, les facteurs ne dépendent que des sources et pas des points de l'espace sur lesquels on veut calculer les grandeurs. Ces facteurs peuvent être définis en calculant les solutions pour n'importe quel point de l'espace, en particulier sur les points tests où les conditions limites sont connues. La dernière étape consiste à calculer directement les grandeurs aux points de l'espace à partir des solutions singulières et des facteurs calculés à l'étape 2. Les sources rayonnent dans le milieu dans lequel elles ne sont pas car elles en sont séparées par leur interface, ce qui permet de calculer dans tous les points de l'espace sans avoir aucune singularité.

Exemple de mise en équation avec un transducteur acoustique A émettant dans un milieu 1 fluide contenant une bulle d'air B. 
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(les sources vertes rayonnent dans la bulle mais pas dans le milieu 1). Pour l'ensemble des points tests du transducteur, on obtient en écriture matricielle :
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et pour l'ensemble des points de la bulle :
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La matrice globale prend la forme  .

M CL 

. La dimension de la matrice M est na+2nb. Le nombre de sources correspond aux nombres de CL (pour des CL de dimension 3, il faut affecter un triplet de sources à chaque point test). L'inversion de la matrice donne les valeurs des  . Le calcul de la pression en un point M quelconque de l'espace est 

Conclusion

La méthode 3D de modélisation semi-analytique DPSM, de par son approche multiphysique, permet d'obtenir des équations d'interaction entre des objets et leur environnement. Dans le cas de systèmes instrumentaux de géométrie complexe, ou de phénomènes multi-domaines, il est généralement indispensable d'avoir une représentation théorique du résultat attendu.

Cette méthode a déjà été très largement utilisée et comparée aux méthodes exploitées usuellement (éléments finis par exemple) notamment dans le cas de capteurs interagissant avec un environnement tels que l'on peut rencontrer en contrôle non destructif. L'objectif étant de réaliser l'optimisation de systèmes de mesure, ou d'intégrer un modèle direct dans un schéma de type problème inverse (cas de l'imagerie de défauts par courants de Foucault par exemple) [BAU], [KUN], [CHE].

L'objet de cet article était de décrire une extension nouvelle de la méthode aux calculs en mécanique des fluides, basée sur des analogies avec d'autres domaines de la physique. L'application sur laquelle nous travaillons actuellement exploite cette extension DPSM Méca Flu dans le cadre de simulateurs de vols, qui nécessitent des temps de calculs très courts (moins de 30 ms entre chaque cycle) afin de conserver l'aspect 'temps réel' de la simulation. L'objectif affiché consiste à 'injecter' le plus possible de lois physiques dans les algorithmes de calculs du système pour en augmenter le réalisme, et ainsi optimiser le simulateur de vol.

Dans ce cadre, la méthode DPSM est un outil d'analyse et de synthèse assez rapide et flexible (il est également possible de moduler le nombre de points du maillage pour diminuer encore les temps de calcul), facile à mettre en oeuvre qui et donne une très bonne approche des résultats attendus.

  Les potentiels correspondant vérifiant l'équation de Poisson :0   .Le second champ correspond à un écoulement incompressible rotationnel dit tourbillonnaire[JEC]. Il est analogue au problème magnétique. La vorticité correspond à la densité de courant électrique :Le troisième champ est harmonique et correspond à la dilatation volumique. Cela correspond au champ électrique créé par une distribution de charges. Or, dans ce cas où le champ s'annule à l'infini, cette fonction harmonique est identiquement nulle et la décomposition se réduit à 2 termes. Les champs de nos domaines d'étude vérifient cette propriété de décroissance vers 0 à l'infini.Plus généralement, les analogies pour les champs potentiels sont les suivantes :
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 1 Figure 1 : Sources et points test d'un transducteur acoustique et d'une bulle. La pression acoustique unitaire exercée par chacune des nA sources SiA en chaque point test PjA,B situé à une distance rij est :
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  valent 0 ou 1 selon que le point M est dans ou hors de la bulle.
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 2 Figure 2 : Exemple de résultat avec une bulle (à g) et la norme de la vitesse dans la bulle (à d)
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 4 Figure 4 : Comparaison théorique (en rouge) et calculée par la méthode DPSM (en bleu) à différentes vitesses de rotation
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 5 Figure 5. Comparaison des polaires entre une étude en soufflerie et avec le logiciel aux éléments finis Fluent (à g) et avec la méthode DPSM (à d)
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 67 Figure 6. Pressions et trajectoires au tour d'un profil Naca4430 (à G) et écoulement selon le temps (à D)

et pour le champ rotationnel :

, vitesse de rotation du cylindre. 

Comparaison de la méthode avec des solutions théoriques et expérimentales

Dans le cas de l'effet Magnus, le champ des vitesses d'un cylindre de longueur infini en rotation dans un fluide non visqueux, a pour solution

(eq.9)