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In this paper, we investigate the sign changes of Fourier coefficients of half-integral weight Hecke eigenforms and give two quantitative results on the number of sign changes.

Introduction

The study of sign-changes of Fourier coefficients of automorphic forms is recently very active. For modular (Hecke eigen-)forms of integral weight, the consequential result from Matomäki and Radziwill [START_REF] Matomäki | Multiplicative functions in short intervals[END_REF] is exceptionally charming, where the multiplicative properties of the Fourier coefficients play a substantial role. However the modular forms of half-integral weight do not share the same kind of multiplicativity, and many problems deserve delving.

Let ℓ 2 be a positive integer, and denote by S ℓ+1/2 the set of all cusp forms of weight ℓ + 1/2 for the congruence subgroup Γ 0 [START_REF] Dedeo | Generalized Kloosterman sums over rings of order 2 r[END_REF]. Consider the coefficients in the Fourier expansion of a complete Hecke eigenform f ∈ S ℓ+1/2 at ∞,

(1.1) f(z) = n 1 λ f (n)n ℓ/2-1/4 e(nz) (z ∈ H ),
where e(z) = e 2πiz and H is the Poincaré upper half plane. A specific question is the number of sign-changes when all λ f (n) are real. We interlude with the meaning of sign-changes of a sequence.

Let N be a subset of N endowed with the ordering of integers. The sets of squarefree integers or arithmetic progressions are basic examples. Given a real sequence {a n } n∈N . A sign-change is realized via a closed and bounded interval [i, j] ⊂ (0, ∞) such that (i) its end-points i, j lie in N and satisfy a i a j < 0, and (ii) a n = 0 for all n ∈ (i, j) ∩ N. The sequence {a n } n∈N is said to have a sign-change in the interval I if I contains one such interval [i, j]. Besides, the number of sign-changes of {a n } n∈N in [1, x], denoted by C N (x), is meant to be the number of intervals [i, j] contained in [1, x]. † Let ♭ be the set of squarefree numbers. Hulse, Kiral, Kuan & Lim [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF] proved that the sequence {λ f (t)} t∈♭ has an infinity of sign-changes. A quantitative version is given in Lau, Royer & Wu [START_REF] Lau | Sign of Fourier coefficients of modular forms of half integral weight, Mathematika[END_REF]Theorem 4], which says C ♭ f (x) ≫ x (1-4̺)/5-ε where C ♭ f (x) denotes the number of sign-changes of {λ f (t)} n∈♭ in [1, x] and the constant ̺ is determined by (3.5) below. Conjecturally ̺ = ε but it is still hard to guess the tight lower bound.

On the other hand, Meher & Murty [START_REF] Meher | Sign changes of Fourier coefficients of half-integral weight cusp forms[END_REF] studied the sign-change problem for Hecke eigenforms f in Kohnen plus subspace of S ℓ+1/2 . A form f in the plus space has its Fourier coefficients supported at integers n ≡ 0 or (-1) ℓ ( mod 4), i.e. f has the Fourier expansion at ∞ of the form f(z) = (-1) ℓ n≡0,1(mod 4)

λ f (n)n ℓ/2-1/4 e 2πinz .
When f is a Hecke eigenform in the plus space and its coefficients λ f (n) are all real, Meher & Murty proved in [START_REF] Meher | Sign changes of Fourier coefficients of half-integral weight cusp forms[END_REF]Theorem 2] that {λ f (n)} n∈N has a sign-change in the short interval (x, x + x 43/70+ε ] for any ε > 0 and for all sufficiently large x x 0 (ε). An immediate consequence is C N f (x) ≫ x 27/70-ε . This work naturally motivates the sign-change problem for arithmetic progressions.

In this paper, we furnish progress, based on our work in [START_REF] Jiang | On Fourier coefficients of modular forms of half integral weight at squarefree integers[END_REF], in the above problems for complete Hecke eigenforms f ∈ S ℓ+1/2 . Firstly for the case N = ♭, we sharpen the lower bound for C ♭ f (x). Theorem 1. Let ℓ 2 be an integer and f ∈ S ℓ+1/2 a complete Hecke eigenform such that its Fourier coefficients are real. Let ̺ be defined as in (3.5) below, and ϑ any number satisfying

0 < ϑ < min( 1-2̺ 3 , 1 4 ). Then (1.2) C ♭ f (x) ≫ f,ϑ
x ϑ for all x x 0 (f, ϑ), where the constant x 0 (f, ϑ) and the implied constant depend on f and ϑ only.

Remark 1. In particular, Conrey & Iwaniec [START_REF] Conrey | The cubic moment of central values of automorphic L-functions[END_REF] gives ̺ = 1 6 + ε which leads to C ♭ f (x) ≫ f,ε x 2/9-ε for all x x 0 (f, ε), improving the exponent 1 15 -ε in [START_REF] Lau | Sign of Fourier coefficients of modular forms of half integral weight, Mathematika[END_REF]. Secondly we generalize the case of N = N in Meher & Murty [START_REF] Meher | Sign changes of Fourier coefficients of half-integral weight cusp forms[END_REF] to arithmetic progressions. Let Q 1 be an integer, and a = 0 or a ∈ N with (a, Q) = 1. Define

(1.3) A = A a,Q := {n ∈ N : n ≡ a (mod Q)}.
We study the sign-changes of {λ f (n)} n∈A and sharpen the exponent 43 70 + ε of Meher & Murty's result to 1 2 , which in turn gives the better lower bound C N f (x) ≫ x 1/2 . Theorem 2. Assume the same conditions for f and ̺ in Theorem 1. Let Q 1 be odd and A = A a,Q defined as in (1.3). Suppose one of the following condition holds:

1 • Q = 1; 2 • a = 0 and Q = p|Q p αp
where all α p are odd; 3 • (a, Q) = 1 and Q = p|Q p αp where all α p are 2.

Then there are positive constants c 0 = c 0 (f, Q) and x 0 = x 0 (f, Q) such that the sequence {λ f (n)} n∈A has at least one sign change in the interval (x, x + c 0 x 1/2 ] for all x x 0 .

In particular, we have

C A f (x) ≫ f,Q x 1/2 for all x x 0 .

Methodologies

Let λ f (n) be the coefficients as in (1.1) and N a subset of N. Define (2.1)

S N f (x) := n x n∈N λ f (n).
A typical approach for the sign-change detection exploits the oscillation exhibited in the mean S N f (x), while to locate the sign-change, the mean over short intervals, i.e. S N f (x + h) -S N f (x) for small h, will be a good device. Suppose a sign-change is found in the interval [x, x + h] for every x large enough. Then it follows immediately that the number of sign-changes in [1, x] is at least x/h + O(1) (and hence ≫ x/h). A standard way to study S N f (x) is via the Dirichlet series. But for various N, we get different degree of its analytic information.

For N = ♭, i.e. the case of squarefree integers, we only get an analytic continuation of the Dirichlet series

(2.2) L ♭ f (s) := ♭ t 1 λ f (t)t -s
in the half-plane ℜe s > 1 2 , where ♭ t 1 ranges over squarefree integers t 1. As illustrated in [START_REF] Lau | Sign of Fourier coefficients of modular forms of half integral weight, Mathematika[END_REF], it turns out that the weighted mean is more effective. Thus, to prove Theorem 1, we first derive (2.3) below,

♭ x t x+h λ f (t) min log x + h t , log x t ≪ ε h 1 2 x ε . (2.3)
The better exponent 1 2 (versus 3 4 in [START_REF] Lau | Sign of Fourier coefficients of modular forms of half integral weight, Mathematika[END_REF]) of h is a key for the improvement. Another key is to have a mean square formula with better O-term. In [START_REF] Lau | Sign of Fourier coefficients of modular forms of half integral weight, Mathematika[END_REF], we showed that

X<n 2X |λ f (n)| 2 = D f X + O f,ε X β+ε . with β = 3 4 + ̺.
Here we sharpen it to β = 3 4 in Lemma 4.1 and then conclude Theorem 1 with argument in [START_REF] Lau | Sign of Fourier coefficients of modular forms of half integral weight, Mathematika[END_REF]. This will be done in Section 4.

Next for N = A (see (1.3)), we shall provide a truncated Voronoi formula for S A f (x) in Section 6. This result is itself interesting since the Voronoi formula is an vital tool for many applications, see [START_REF] Ivić | The Riemann zeta-function[END_REF], [START_REF] Jutila | On exponential sums involving the divisor function[END_REF] for example. Then we complete the proof of Theorem 2 with the method of Heath-Brown and Tsang [START_REF] Heath-Brown | Sign changes of E(T ), ∆(x), and P (x)[END_REF]. However the congruence condition underlying A gives rise to new (but interesting) difficulties. To transform the congruence, additive characters of modulus d|Q will be invoked and then two consequences follow: the summands in the Voronoi formula are intertwined with Kloosterman-Salié sums, and the frequencies in the cosines are of the form √ n/d. We need to select a suitable frequency for amplification with a pair of non-vanishing Salié sum and Fourier coefficient in the associated summand. The implementation is successful when Q fulfills the conditions in Theorem 2, which will be elucidated in Sections 7 & 8. It is worthwhile to remark that the mean square result of λ f (n) is not needed for the method in [START_REF] Heath-Brown | Sign changes of E(T ), ∆(x), and P (x)[END_REF].

Background

A cusp form f ∈ S ℓ+1/2 has Fourier expansions at the three inequivalent cusps ∞, - 1 2 , 0 of Γ 0 (4), which are respectively given by (1.1), and (3.1), (3.2) below:

(3.1)

g(z) := 2 ℓ+1/2 (-8z + 1) -(ℓ+1/2) f 4z -8z + 1 = 2 ℓ+1/2 n 1 λ g (n)n ℓ/2-1/4 e(nz) and (3.2) h(z) := (-i2z) -(ℓ+1/2) f -1 4z = n 1 λ h (n)n ℓ/2-1/4 e(nz).
Following the argument in [13, Section 2.2], we have

(3.3) n x |λ f (n)| 2 ∼ x (for all three cases f = f, g, h).
When f is a complete Hecke eigenform, we know from [START_REF] Jiang | On Fourier coefficients of modular forms of half integral weight at squarefree integers[END_REF] that g and h are Hecke eigenforms of T(p 2 ) for all odd prime p. A consequence is, cf. [10, Lemma 3.2 with Q = {2}]: for all odd m 1, all squarefree t and j 0,

(3.4) λ f (2 j t) = 0 ⇒ λ f (2 j tm 2 ) = 0 (f = f, g, h).
In addition, we have the following pointwise estimate, see [START_REF] Jiang | On Fourier coefficients of modular forms of half integral weight at squarefree integers[END_REF]Lemma 3.3].

Lemma 3.1. Let f be a complete Hecke eigenform, g and h be defined as above. For any integer m = tr 2 where t 1 is squarefree, we have

λ f (m) ≪ f |λ f (t)|τ (r) 2 + |λ f (t)|τ (r) 2 ≪ f,̺ t ̺ τ (r) 2
for f = f, g, h respectively, where τ (n) is the divisor function and ̺ satisfies (3.5) below. The first implied ≪-constant depends only f and the second implied ≪-constant depends at most on f and ̺.

Here ̺ denotes the exponent for which

(3.5) λ f (t) ≪ ̺ t ̺ ∀ t squarefree,
i.e. the bound towards the Ramaujan Conjecture for the half-integral weight Hecke eigenforms. The conjectural value is

̺ = ε. Conrey & Iwaniec [2] obtained ̺ = 1 6 + ε. Let d 1 be an integer and (u, d) = 1. Define the twisted L-function for f by (3.6) L f (s, u/d) = m 1 λ f (m)e(mu/d) m s (ℜe s > 1)
and define similarly for g and h. These twisted L-functions when attached with suitable factors may be expressed as integrals of f along vertical geodesics, and extend to entire functions, cf. [6, (4.4)-(4.5)]. Moreover Hulse et al found the functional equation for L f (s, u/d), which is put in the following form

(3.7) q s d L ∞ (s)L f (s, u/d) = i -(ℓ+1/2) q 1-s d L ∞ (1 -s) L f (1 -s, v/d), where uv ≡ 1 (mod d) and L ∞ (s) := (2π) -s Γ s + ℓ 2 -1 4
) is the gamma factor, cf. [6, Lemma 4.3] and [START_REF] Jiang | On Fourier coefficients of modular forms of half integral weight at squarefree integers[END_REF]. The conductor q d and the dual L-function L f (s, v/d) are defined as follows:

q d = d or 2d according to 4 | d or not, (3.8) and (3.9) L f (s, v/d) := n 1 λ(n; d)̟ d (n, v)n -s , where (3.10) λ(n; d) ̟ d (n, v) 4 | d λ f (n) ε 2ℓ+1 v d v e -nv d 2 d λ g (n) ε 2ℓ+1 v d v e -nv 4d 2 ∤ d λ h (n) i ℓ+1/2 ε -(2ℓ+1) d v d e -4nv d with 44 ≡ 1 (mod d).
In [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF], Hulse et al applied L f (s, u/d) to obtain the analytic properties of L ♭ f (s), which was sharpened to the following result [10, Theorem 1]. Lemma 3.2. For a complete Hecke eigenform f ∈ S ℓ+1/2 , the series L ♭ f (s) extends analytically to a holomorphic function on ℜe s > 1 2 , and for any ε > 0, (3.11)

L ♭ f (s) ≪ f,ε (|τ | + 1) 1-σ+2ε ( 1 2 + ε σ 1 + ε, τ ∈ R)
, where the implied constant depends on f and ε only.

Remark 2. Using Lemma 3.2 in place of [START_REF] Lau | Sign of Fourier coefficients of modular forms of half integral weight, Mathematika[END_REF]Proposition 7], the estimate in (2.3) follows plainly from the same argument as in [13, Section 4.1], so we do not repeat here.

Proof of Theorem 1

We start with the following lemma where the O-term in (4.1) is smaller than [13, (14)].

Lemma 4.1. Let ℓ 2 be a positive integer and f ∈ S ℓ+1/2 be a complete Hecke eigenform. Then for any ε > 0 and all x 2, we have

(4.1) n x |λ f (n)| 2 = D f x + O f,ε x 3/4+ε ,
where D f is a positive constant depending on f. Proof. We choose two smooth compactly supported functions w ± such that

• w -(x) = 1 for x ∈ [X + Y, 2X -Y ], w -(x) = 0 for x 2X and x X; • w + (x) = 1 for x ∈ [X, 2X], w + (x) = 0 for x 2X + Y and x X -Y ; • w (j) ± (x) ≪ j Y -j for all j 0; • the Mellin transform of w(x) is (4.2) w ± (s) := ∞ 0 w ± (x)x s-1 dx = 1 s • • • (s + j -1) ∞ 0 w (j) ± (x)x s+j-1 dx ≪ j Y X 1-σ X |s|Y j ∀ j 1; • trivially w ± (s) ≪ X σ and (4.3) w ± (1) = X + O(Y ).
Obviously we have

(4.4) n |λ f (n)| 2 w -(n) X<n 2X |λ f (n)| 2 n |λ f (n)| 2 w + (n).
Let the Dirichlet series associated with |λ f (n)| 2 be defined as (see e.g. [13, (11)])

D(f ⊗ f, s) = ∞ n=1 |λ f (n)| 2 n -s .
By the Mellin inversion formula

w ± (x) = 1 2πi 2+i∞ 2-i∞ w ± (s)x -s ds, we write n |λ f (n)| 2 w ± (n) = 1 2πi (2) w ± (s)D(f ⊗ f, s) ds.
With the help of Cauchy's residue theorem, we obtain that (4.5) 

n λ f (n) 2 w ± (n) = D f w ± (1) + 1 2πi (κ) w ± (s)D(f ⊗ f, s) ds,
D(f ⊗ f, s) ≪ f,ε (1 + |τ |) 2 max(1-σ,0)+ε ( 1 2 < σ 3), we derive n |λ f (n)| 2 w ± (n) = D f X + O f,ε Y + X 1+κ Y -1 .
Taking κ = 1 2 + ε and Y = X 3/4 , and combining the obtained estimation with (4.4), we find that

X<n 2X |λ f (n)| 2 = D f X + O f,ε X 3/4+ε ,
which implies (4.1) after a dyadic summation. Now we return to prove the theorem. Take h = x η where η > 3 4 is specified later. Lemma 4.1 gives

(i) Ch x n x+h λ f (n) 2 and (ii) x/m 2 t (x+h)/m 2 λ f (n) 2 ≪ hm -3/2
for any m √ x + h, where the positive constant C and the implied ≪-constant depend on f and η only. Combining (i) with Lemma 3.1 leads to

Ch x n x+h λ f (n) 2 C ′ m √ x+h τ (m) 4 ♭ x/m 2 t (x+h)/m 2 λ f (t) 2
where ♭ confines the running index over squarefree integers only and C ′ > 0 is a constant depending at most on f. By (ii) and the fact m A τ (m) 4 m -3/2 ≫ A -1/2+ε , we conclude that for a large enough constant A,

m A τ (m) 4 ♭ x/m 2 t (x+h)/m 2 λ f (t) 2 {C/C ′ + O(A -1/2+ε )}h ≫ h
which is [13, (23)]. Thus, repeating the same argument (in [13, (24)-( 26)]), we obtain [13, (26)] with a smaller admissible h = x η (here η > 3 4 is required instead of η > 3 4 +̺). Next we note that the new estimate (2.3) improves the upper bound h 3/4 x ε in [13, (21) of Section 4.2] to h 1/2 x ε . Consequently, we get the new lower bound

x -1-̺ h 2 + O(h 1/2 x ε )
for [13, (27)]. The optimal choice of η is 2 3 (1 + ̺) + ε, and together with the constraint η > 3 4 , we choose η = max 2 3 (1 + ̺), 3 4 + ε. We complete the proof of Theorem 1 with the same argument in remaining part of [13, Section 4.2].

Preparation for the truncated Voronoi formula

Applying the additive character to replace the congruence condition, that is,

Q -1 d|Q * u (mod d) e u(n -a) d = δ n≡a (mod Q)
where δ * = 1 if * holds and 0 otherwise, we have

(5.1) S A f (x) := n x n≡a(mod Q) λ f (n) = Q -1 d|Q S f (x, a/d), where (5.2) S f (x, a/d) := * u (mod d) e -au d n x λ f (n)e nu d .
Here * u(mod d) denotes the sum over u (mod d) with (u, d) = 1. The inner sum over n is clearly associated with L f (s, u/d), thus we introduce the auxiliary function

L f (s, a/d) := * u (mod d) e - au d L f (s, u/d). (5.3)
The Dirichlet series associated to S A (x), (5.4)

L f (s, a, Q) := n 1 n≡a(mod Q) λ f (n)n -s is equal to (5.5) L f (s, a, Q) = Q -1 d|Q L f (s, a/d).
Plainly L f (s, a/d) satisfies a functional equation by (3.7),

q s d L ∞ (s)L f (s, a/d) = i -(ℓ+1/2) q 1-s d L ∞ (1 -s) L f (1 -s, a/d) (5.6)
where L f (s, v/d) is defined as in (3.9) and

L f (s, a/d) = * u (mod d) e - au d L f (s, u/d) (uu ≡ 1 (mod d)).
When ℜe s > 1, we may express L f (s, a/d) as a Dirichlet series whose coefficients are products of λ(n; d) and the Kloosterman-Salié sums. Indeed, by (3.9), we have

L f (s, a/d) = n 1 λ(n; d)K(a, n; d)n -s (5.7)
where (noting v = u (mod d)),

(5.8) K(a, n; d) := * u (mod d) ̟ d (n, u)e - au d
.

By (3.10), K(a, n; d) =                      * u (mod d) ε 2ℓ+1 u d u e - au + nu 4d if 4 | d, * u (mod d) ε 2ℓ+1 u d u e - 4au + nu 4d if 2 d, i ℓ+1/2 ε -(2ℓ+1) d * u (mod d) u d e - au + 4nu d if 2 ∤ d.
Lemma 5.1. Let τ (d) be the divisor function. We have

(5.9) |K(a, n; d)| ≪ (d, n) 1/2 d 1/2 τ (d).
Moreover, for the case 2 ∤ d, if there exists x ∈ {a, n} such that (x, d) = 1, then

K(a, n; d) = i ℓ+1/2 ε -2ℓ d d 1/2 x d y 2 ≡an(mod d) e y d . (5.10)
Proof. We express K(a, n; d) in terms of Kloosterman-Salié sums (see Appendix for their definitions), as follows:

(5.11) K(a, n; d) =        K 2ℓ+1 (n, a; d) for 4 | d, 1 4 K 2ℓ+1 (n, a; 4d) for 2 d, i ℓ+1/2 ε -(2ℓ+1) d S(4n, a; d) for 2 ∤ d,
where in the case of 2 d, the range of summation is enlarged to a reduced residue system (mod 4d). From (9.2) below, we have

(5.12) |K(a, n; d)| ≪ (d, n) 1/2 d 1/2 τ (d).
The formula (5.10) follows from the result in [9, Lemma 4.9] for the Salié sum.

Lemma 5.2. Let d 1 and a be any integers. For any ε > 0, we have

(5.13) L f (σ + iτ, a/d) ≪ d (3-σ)/2+2ε (1 + |τ |) 1-σ+2ε (-ε σ 1 + ε, τ ∈ R),
where the implied ≪-constant depends on f and ε only. 

L f (s, a/d) = i -(ℓ+1/2) q 1-2s d L ∞ (1 -s) L ∞ (s) n 1 λ(n; d)K(a, n; d) n 1-s .
Thus, with (5.12) and Stirling's formula, it follows that

L f (-ε + iτ, a/d) ≪ (d 3/2 (1 + |τ |)) 1+ε n 1 |λ(n; d)|(n, d) 1/2 n -(1+ε) ≪ (d 3/2 (1 + |τ |)) 1+ε because |λ(n; d)|(n, d) 1/2 |λ(n; d)| 2 + (n, d), implying that the last summation is ≪ n 1 |λ(n; d)| 2 n -(1+ε) + l|d l -ε n 1 n -(1+ε) ≪ τ (d).
An application of Phragmén-Lindelöf principle completes the proof.

Truncated Voronoi formula

This section is devoted to the Voronoi formulas. In order for a simpler form for the result, let us set, with the notation (5.8), φ a (n, d) := √ q d i -(ℓ+1/2) K(a, n; d) ≪ (n, d) 1/2 τ (d)d (6.1) by (5.12), and trivially |φ a (n, d)| √ 2d 3/2 . We have the following result.

Theorem 3. Let ℓ 2 be an integer and f ∈ S ℓ+1/2 be an eigenform of all Hecke operators. Then for any ε > 0, we have

(6.2) S f (x, a/d) = x 1/4 π √ 2 n M λ(n; d)φ a (n, d) n 3/4 cos 4π √ nx q d - ℓ + 1 2 π + O f,ε x ε d 2 (x 1/2+̺ M -1/2 + M ̺ )
uniformly for 2 M x and 1 d x 1/2 , where ̺ is defined as in (3.5). Moreover for 1 Q x 1/2 and any integer a,

S A f (x) = x 1/4 √ 2πQ d|Q n M λ(n; d)φ a (n, d) n 3/4 cos 4π √ nx q d - ℓ + 1 2 π + O x ε Q(x 1/2+̺ M -1/2 + M ̺ ) .
In particular, for Q x 1 2 -̺ and any a, (6.3)

S A f (x) ≪ f,ε Q 1/3 x (1+̺)/3+ε . Remark 3. It is shown in [15, Proposition 3.2] that S N f (x) ≪ x 2/5+ε
, which is superseded by the particular case A = N (and Q = 1) of (6.3) for ̺ = 1/6 + ε is admissible.

Proof. Let d x 1/2 , 1 M x and T > 1 be chosen as

T 2 = q -2 d 4π 2 (M + 1/2)x ≫ 1. (6.4)
We apply the Perron formula (cf. [16, Corollary II.2.2.1]) to (5.3) 

with κ := 1 + ε, σ a = α = 1 and B(n) = C ε n ̺ to write (6.5) S f (x, a/d) = 1 2πi κ+iT κ-iT L f (s, a/d) x s s ds + O f,ε dx 1+̺ T .
We deform the line of integration to the contour L joining the points κ-iT , -ε-iT , -ε + iT , κ + iT . Let L v := [-ε -iT, -ε + iT ]. By Lemma 5.2, the integrals over the horizontal segments of L are ≪ x ε (xT -1 + d 3/2 ), and the pole of the integrand at s = 0 gives L f (0, a/d) ≪ d 3/2+ε . By the functional equation (5.6), the integral over L v equals

1 2πi Lv L f (s, a/d) x s s ds = q d i -(ℓ+1/2) 1 2πi Lv L ∞ (1 -s) L ∞ (s) L f (1 -s, a/d) √ x q d
2s ds s By (5.7) and (6.1), we express (6.5) into (6.6)

S f (x, a/d) = √ q d 2π n 1 λ(n; d)φ a (n, d) n I Lv 2π √ nx q d + O dx 1+̺ T + d 3/2 x ε
where

I Lv (y) := 1 2πi Lv Γ(1 -s + ℓ/2 -1/4) Γ(s + ℓ/2 -1/4) • y 2s s ds.
Next we apply the stationary phase method to bound I Lv (y) for large y and give an asymptotic expansion in terms of trigonometric functions for small y. With Stirling's formula, for τ > 0, the integrand equals e iπ(ℓ-1)/2 y 2σ τ -2σ e 2iτ log(ey/τ ) 1 +

c 1 τ -1 + O τ -2
for any |τ | 1 and |σ| A, where c 1 and A > 0 denote some suitable constants and the implied O-constant is independent of τ and y. Set g(τ ) := 2τ log(ey/τ ), then g ′ (τ ) = 2 log(y/τ ). With the second mean value theorem for integrals (cf. [16, Theorem I.0.3]), we obtain for y > T and σ = -ε, (6.7)

T 1 y 2σ τ -2σ e ig(τ ) 1 + c 1 τ -1 + O τ -2 dτ ≪ T 2ε y 2σ log y T -1 + T 2ε-1 y 2σ ,
and for y < T and σ = 1 2 + ε,

(6.8) ∞ T y 2σ τ -2σ e ig(τ ) 1 + c 1 τ -1 + O τ -2 dτ ≪ T -1-2ε y 2σ log y T -1 + T -1-2ε y 2σ .
For n > M, we infer by (6.7) that

I Lv 2π √ nx q d ≪ k x √ n 2ε log n M + 1/2 -1 + d(Mx) -1/2 . By λ(n; d) ≪ n ̺+ε from Lemma 3.1 and |φ a (n, d)| √ 2d 3/2 , it follows that √ q d n>M |λ(n; d)φ a (n, d)| n 1+ε log n M + 1/2 -1 ≪ d 2 M ̺ M <n<2M |n -(M + 1/2)| -1 ≪ d 2 M ̺+ε .
Consequently we deduce that (6.9)

√ q d 2π n>M λ h (n)φ a (n, d) n I Lv 2π √ nx q d ≪ x ε d 2 M ̺ + x ε d 2 (Mx) -1/2 .
For n M, we complete the path L v to the contour L * v so as to apply [1, Lemma 1], where L * v is the positively oriented contour consisting of

L v , L ± v and L ± h with L ± v := [ 1 2 + ε ± iT, 1 2 + ε ± i∞), L ± h := [-ε ± iT, 1 2 + ε ± iT ].
Correspondingly we denote by I L ± v and I L ± h the integrals over these segments. By (6.8), the integral over the vertical line segments L ± v is

I L ± v ≪ x ε n M 1/2 log n M + 1/2 -1
, while for the horizontal segments, I L ± h contributes at most O((n/M) ε ). Thus (6.10)

√ q d 2π n M λ(n; d)φ a (n, d) n I L ± v + I L ± h ≪ x ε d 2 M ρ-1/2 M/2 n M n -1/2 log M + 1/2 M + 1/2 -n -1 ≪ x ε d 2 M ̺ .
Inserting (6.10) and (6.9) into (6.6), we get from our choice of T , (6.11)

S f (x, a/d) = √ q d 2π 1 n M λ(n; d)φ a (n, d) n I L * v 2π √ nx q d + O x ε d 2 (x 1/2+̺ M -1/2 + M ρ ) .

Now all the poles of the integrand in

I L * v (y) := 1 2πi L * v Γ(1 -s + ℓ/2 -1/4)Γ(s) Γ(s + ℓ/2 -1/4)Γ(s + 1) y 2s ds.
lie on the right of the contour L * v . After a change of variable s into 1 -s, we have

I L * v (y) = 1 π I 0 y 2 , with I 0 (y) := 1 2πi Lε Γ(s + (2ℓ -1)/4)Γ(1 -s) Γ(1 -s + (2ℓ -1)/4)Γ(2 -s) y 1-s ds.
Here L ε consists of the line s = 1 2 -ε + iτ with |τ | T , together with three sides of the rectangle whose vertices are 1 2 -ε -iT , 1 + ε -iT , 1 + ε -iT and 1 2 -ε + iT . Clearly our I 0 is a particular case of I ρ defined in [1, Lemma 1], corresponding to the choice of

parameters A = δ = N = ω = α 1 = 1, β 1 = µ = (ℓ -2)/4, ρ = m = 0, a = -3 4 , c 0 = 1 2 , h = 2, k 0 = -(ℓ + 1)/2. It hence follows that (6.12) I L * v 2π √ nx q d = e ′ 0 2π q d (nx) 1/4 cos 4π √ nx q d - ℓ + 1 2 π + O d 1/2 (nx) -1/4 .
The value of e ′ 0 [1, Lemma 1] is 1/ √ π, and the main term in (6.2) follows from (6.12) and (6.11). With a simple checking, the O-term in (6.12) gives a term that will be absorbed in (6.11).

Finally we set M = Q 4/3 x (1+4ρ)/3 and note from (6.1) that

n M |λ(n; d)φ a (n, d)| n 3/4 ≪ d 1+ε n M |λ(n; d)| 2 n -3/4 + d 1+ε n M (n, d)n -3/4 ,
which is ≪ x ε dM 1/4 with (3.3).

Preparation for the proof of Theorem 2

We consider odd Q only, then q d = 2d and λ(n; d) = λ h (n) for all d | Q. The idea of proof is the same as in Heath-Brown & Tsang [START_REF] Heath-Brown | Sign changes of E(T ), ∆(x), and P (x)[END_REF], however, some new technicality arises because of the new frequencies ( √ n/q d rather than √ n). Consequently, instead of √ 1, we shall apply their argument to the frequency √ n 0 /Q where n 0 = 2 j f 0 with j 0 and f 0 squarefree, and simultaneously, require the coefficient λ h (n 0 )φ a (n 0 , Q) to be non-vanishing. We can guarantee the existence of n 0 under certain circumstances. For convenience, let us recall our notation (specialized to this case 2 ∤ d):

S A f (x) = n x n≡a(mod Q) λ f (n) and S f (x, a/d) := n x λ f (n)R d (n -a).
where R d (m) = * u(mod d) e (mu/d) is the Ramanujan sum. Their associated Dirichlet series are

L f (s, a, Q) := n 1 n≡a(mod Q) λ f (n)n -s and L f (s, a/d) := n 1 λ f (n)R d (n -a)n -s . Moreover, L f (s, a, Q) = Q -1 d|Q L f (s, a/d) and (2d) s L ∞ (s)L f (s, a/d) = i -(ℓ+1/2) (2d) 1-s L ∞ (1 -s) L f (1 -s, a/d)
where

L f (s, a/d) := n 1 λ h (n)K(a, n; d)n -s .
Lemma 7.1. Under the assumption that {λ f (n)} n∈N is a real sequence, for all a, d, the sequences {i Proof. Suppose not, say, L f (s, a/d 0 ) ≡ 0. Then

-(ℓ+1/2) λ h (n)K(a, n; d)} n∈N are real. Proof. Since the Ramanujan sum R d (m) is real-valued, L f (s, a/d) is real-valued for s ∈ (1, ∞) under the given assumption. The holomorphicity of L f (s, a/d) implies that L f (s, a/d) is holomorphic. Thus L f (s, a/d) = L f (s, a/d)
n 1 n≡a(mod Q) λ f (n)n -s = Q -1 d|Q d =d 0 L f (s, a/d) = n 1 n -s λ f (n)Q -1 d|Q d =d 0 R d (n -a).
With the standard formula for the Ramanujan sum, we infer that

δ n≡a(mod Q) λ f (n) = λ f (n)Q -1 d|Q d =d 0 δ|d (d/δ)|(n-a) µ(δ)(d/δ) ∀ n 1.
Take n ≡ a (mod Q) such that λ f (n) = 0. We obtain that

Q -φ(d 0 ) = d|Q d =d 0 φ(d) = d|Q d =d 0 δ|d µ(δ)(d/δ) = Q.
Contradiction arises.

Proposition 1. Let Q 1 be odd and 0 a < d. Suppose n 0 = 2 j f 0 with f 0 squarefree and j 0 is an integer such that

(7.1) λ h (n 0 )φ a (n 0 , Q) = 0.
Then there are constants c 0 = c 0 (f, Q, n 0 ) and

x 0 = x 0 (f, Q, n 0 ) such that S A f (x) attains at least one sign change in the interval [x, x + c 0 √ x] for all x x 0 .
Proof. Let α a parameter determined later and T be any sufficiently large number. Set

F f (t + αu) := π Q S A f ((Q(t + αu)) 2 ) √ t + αu (t ∈ [T, 2T ], u ∈ [-1, 1]).
By Theorem 3 with M = (QT ) 2 , we deduce that

F f (t + αu) = d|Q n (QT ) 2 λ h (n)φ a (n, d) n 3/4 cos π(t + αu) Q √ n d - ℓ + 1 2 π + O Q(QT ) 2̺-1/2+ε .
Let τ = 1 or -1, and define

k τ (u) := (1 -|u|)(1 + τ cos(2πα √ n 0 u)).
Then as in the proof of [START_REF] Lau | The number of Hecke eigenvalues of same signs[END_REF]Lemma 3.2], for any n ∈ N and t ∈ R, the integral

r n = r n (α, τ, t) := 1 -1 k τ (u) cos 2π(t + αu) Q √ n d - ℓ + 1 2 π du satisfies (7.2) r n = δ Q √ n=d √ n 0 • τ 2 cos 2πt √ n 0 - ℓ + 1 2 π + O min 1, 1 α 2 n + δ Q √ n =d √ n 0 min 1, 1 (α - n,d ) 2
,

where α - n,d = α|Q √ n -d √ n 0 |/d, δ * = 1 if * holds, or 0 otherwise. The O-constant is absolute. Observe that Q √ n = d √ n 0 if and only if 2 j f 0 = (Q/d) 2
n which is equivalent to n = 2 j f 0 = n 0 and d = Q since f 0 is squarefree and Q/d is odd. Following from (7.2) and (7.2), the integral

J τ (t) = 1 -1 F f (t + αu)k τ (u) du
can be written as

(7.3) J τ (t) = τ 2 λ h (n 0 )φ a (n 0 , Q) n 3/4 0 cos 2πt √ n 0 - ℓ + 1 2 π + E + O Q(QT ) 2̺-1/2+ε
where

E ≪ 1 α 2 d|Q n (QT ) 2 |λ h (n)φ a (n, d)| n 7/4 + d|Q d 2 α 2 n (QT ) 2 Q √ n =d √ n 0 |λ h (n)φ a (n, d)| n 3/4 |Q √ n -d √ n 0 | 2 •
Using the bounds φ a (n, d) ≪ d 3/2 and λ h (n) ≪ n ̺ , a little calculation gives

E ≪ Q 3 n ̺+1/4 0 α -2 . Let A 0 := |λ h (n 0 )φ a (n 0 , Q)|n -3/4 0
, which is > 0. Fix a sufficiently large α = α(f, n 0 , Q), so that E is < 1 8 A 0 , and then a sufficiently large 

T 0 = T 0 (f, n 0 , Q, α) such that the O-term O Q(QT ) 2̺-1/
(Q(t m -α)) 2 , (Q(t m + α)) 2 ] whose length is ≪ α(Q 2 t m ) ≪ f,Q,n 0 √ x when x = (Qt m ) 2 .
Our result follows readily.

Proof of Theorem 2

In view of Proposition 1, the main task is to study the condition

λ h (n 0 )φ a (n 0 , Q). Recall φ a (n, Q) = √ 2Qi -(ℓ+1/2) K(a, n; Q) by (6.1). Clearly, φ a (n, 1) = √ 2.
In general, we have by Lemma 9.1 (2), (8.1)

φ a (n, Q) = 2Q ε -(2ℓ+1) Q p α Q S(n4Q p , aQ p ; p α )
where S(m, n; c) is defined as in (9.1), Q p = Q/p α and xx ≡ 1 (mod p α ) for each term inside the product, ∀ p α Q.

♠ Case 1. Q = 1. It suffices to find a squarefree t and a j 0 such that λ h (2 j t) = 0. By Lemma 7.2, L f (s, 1) and thus L f (s, 1) = n 1 λ h (n)n -s are not identical to the zero function. Thus λ h (n) = 0 for some n ∈ N. Write n = 2 j tm 2 where t is squarefree and m is odd, λ h (2 j t) = 0 from (3.4).

♠ Case 2. a = 0 and p α Q implies α being odd. By Lemma 9.1 (2)-( 3) and (8.1), φ 0 (n, Q) = 0 if (n, Q) > 1. Repeating the argument in Case 1, we get λ h (n)φ 0 (n, Q) = 0 for some n ∈ N. This n has to be coprime with Q. Write n = 2 j tm 2 with squarefree t and odd m, then λ h (2 j t) = 0 (from λ h (2 j tm 2 ) = 0) and φ 0 (2 j t, Q) = 0 because 

S(hk, 0; Q) = h Q S(k, 0; Q) if (h, Q) = 1,
φ a (2 j tm 2 , Q) = √ 2Qε -2ℓ Q a Q c a2 j t (m, Q) where (8.2) c b (m, d) = y (mod d) y 2 ≡bm 2 (mod d) e y d .
As in (8.1), we have the factorization

c a2 j t (m, Q) = p α Q c Qpa2 j t (m, p α )
and the lemma below assures (m, Q) = 1 and φ a (2 j t, Q) = 0 when φ a (2 j tm 2 , Q) = 0. Hence this case is also complete. where τ (n) is the divisor function. This follows from the well-known Weil's bound for Kloosterman sums and the following lemma. Lemma 9.1. We have the following results:

(a) Let c = qr with r ≡ 0 (mod 4) and (q, r) = 1. Then K 2ℓ+1 (m, n; c) = K 2ℓ+2-q (mq, nq; r)S(mr, nr; q)

where qq ≡ 1 (mod r) and rr ≡ 1 (mod q). (b) Let q be odd, q = uv with (u, v) = 1. Then S(m, n; q) = S(mu, nu; v)S(mv, nv; u) where uu ≡ 1 (mod v) and vv ≡ 1 (mod u). The first sum does not vanish only when y 2 ≡ 4mn (mod p t-1 ), but in this case, the second sum equals zero. i.e. G t (4mnp b -y 2 ) = 0. So F (y) = g(1, p t )G t (4mnp b -y 2 ) = 0, implying F (x) = 0. (e) Refer to [START_REF] Dedeo | Generalized Kloosterman sums over rings of order 2 r[END_REF], cf. [3, Section 14].

where 1 2

 2 < κ < 1 and D f := Res s=1 D(f ⊗ f, s). By (4.3), (4.2) with j = 2 and the convexity bound[START_REF] Lau | Sign of Fourier coefficients of modular forms of half integral weight, Mathematika[END_REF] Proposition 7] 

Proof.

  Let ℜe s = 1 + ε. By (3.3) and (3.6), we have trivially L f (s, u/d) ≪ ε 1 and with (5.3), L f (s, a/d) ≪ ε d. Next for ℜe s = -ε, we infer from (5.6) and (5.7) that

  from the definition of the Salié sum. ♠ Case 3. (a, Q) = 1 and p 2 | Q, ∀ p|Q. The argument is similar to the previous casesfirstly finding n = 2 j tm 2 , with squarefree t and odd m, for which λ h (n)φ 0 (n, Q) = 0. But now we need (5.10) to analyze the Salié sum, which gives

Lemma 8 . 1 .•l 2

 812 Let b ∈ Z, p an odd prime and α 2. Define c b (m, p α ) as in(8.2). Then(i) c b (m, p α ) = 0 if p | m, and (ii) c b (1, p α ) = 0 if c b (m, p α ) = 0 with p ∤ m. Proof. (i) Write m = p β m ′ where p ∤ m ′ . • α = 2γ 2β. Then c b (m, p α ) =y 2 ≡0(mod p α ) α = 2γ + 1 2β. Then y is of the form y = lp γ+1 , and as γ 1, c b (m, p α ) = y 2 ≡0(mod p α ) e y p α = l(mod p γ ) e l p γ = 0.• α > 2β 2. Then y = lp β and thusc b (m, p α ) = l 2 ≡bm ′2 (mod p α-2β ) y≡p β l(mod p α ) ≡bm ′2 (mod p α-2β ) t(mod p β ) e l + tp α-2β p α-β = l 2 ≡bm ′2 (mod p α-2β) Suppose c b (m, p α ) = 0 where (m, p) = 1. We may assume p 2 ∤ b, for otherwise, c b (m, p α ) = c b/p 2 (mp, p α ) = 0 by (i). Also p b cannot happen because, when α 2, p 2 | b if p | b and y 2 ≡ bm 2 (mod p α ) has solutions. Thus p ∤ b. Now c b (m, p α ) = 0 implies the congruence y 2 ≡ bm 2 (mod p α ) is soluble, and with (m, p) = 1, y 2 ≡ b (mod p α ) has two solutions, say, ±y 0 and p ∤ y 0 . We see that y 2 ≡b(mod p α ) e y p α = 2 cos 2π y 0 p α = 0 because otherwise, y 0 /p α = (2r + 1)/4 for some r ∈ Z or equivalently, 4y 0 = (2r + 1)p α which contradicts to p ∤ y 0 . 9. Appendix Let us denote, as in [8, Section 3], the Kloosterman-Salié sum by K 2ℓ+1 (m, n; c) := d (mod c) where c ∈ N and m, n ∈ Z. Then we have the following estimate, |K 2ℓ+1 (n, m; d)| and |S(m, n; d)| d 1/2 τ (d)(d, n, m) 1/2 (9.2)

( c )

 c For an odd prime p and odd α, if p | m, then S(m, 0;p α ) = 0. (d) If (c, 2) = 1, then |S(m, n; c)| (m, n, c) 1/2 c 1/2 τ (c). (e) Let 4|r|2 ∞ . Then |K 2ℓ+1 (m, n; r)| (m, n, r) 1/2 r 1/2 τ (r).Proof. (a) See [8, p. 390, Lemma 2]. (b) See [8, p. 390, Lemma 3]. (c) By definition, for odd α, we have S(m, 0; p α ) = x (mod p α ) When α = 1, S(m, 0; p α ) = x (mod p α ) x p = 0 as p | m. Suppose α 3. Putting x = lp + v, we get l (mod p α-1 ) Iwaniec [9, Section 4.6] handled the case (c, 2n) = 1, and thus (c, 2m) = 1 too by symmetry. Together with (b), it suffice to deal with p | (m, n) and c is a power of p. Consider S := S(p a m, p a+b n; p a+t ) where b 0

  Lemma 7.2. When the sequence {λ f (n)} n∈A contains nonzero terms, the function L f (s, a/d) is non-identically zero for all d | Q.

on C (as they are equal on (1, ∞)). The lemma follows.

  2+ε is1 8 A 0 for all T T 0 . Now observe that for any m ∈ N, the absolute value of the cosine factor is 1/ √ 2 if t = t m where > 0 whenever t m > T 0 + α. Since J ± (t m ) are of opposite signs and the kernel function k τ is nonnegative, there is a pair of t ± m ∈ [t m -α, t m +α] for which ±F f (t ±

	This implies |J τ (t m )| > 1 4 (	t m := (m + 1 8 )n -1/2 0 2 -1)A 0 m ) > 0. Equivalently, S A . √ f (y) attains a sign change in every
	interval of the form [	

  , p ∤ mn, a, t 1 and a + t is odd. (The case that a + t is even is done with the classical Kloosterman sum.) Clearly, As in [8, p. 67], we obtainF (y) = g(1, p t )G t (4mnp b -y 2 ) where G t (4mnp b -y 2 ) = (-1) r p a+t-r δ y 2 ≡4mnp b (mod p t-r ) As |g(1, p t )| p t/2 by [9, (4.43)], we see that |F (1)| 2p a+t/2 . Case 2: t is even. Then G t (4mnp b -y 2 ) =

	we conclude										
		F (y) = g(1, p t )					
							r=0,1				
	and											
		F (x) = p -t	y (mod p t )	F (y)e	xy p t
			= g(1, p t )	r=0,1 (-1) r p a-r	y (mod p t )	e	xy p t .
												y 2 ≡4mnp b (mod p t-r )
			d (mod p a+t )		d p	e	d(4mnp b -y 2 ) p t
		=	u (mod p a+t-1 )	e	u(4mnp b -y 2 ) p t-1	v (mod p)	v p	e	v(4mnp b -y 2 ) p t-1	.
	S =	d (mod p a+t )	d p	e	md + p b nd p t	=		m p	d (mod p a+t )	d p	e	d + p b mnd p t	.
										d p	e	x 2 d + p b mnd p t	.
	and its Fourier transform								
					F (y) =	x (mod p t )	F (x)e -	xy p t .
							d (mod p a+t )		d p	t+1	e	d(4mnp b -y 2 ) p t	.
	Case 1: t is odd. Then								
		G t (4mnp b -y 2 ) =	* d (mod p a+t )	e		d(4mnp b -y 2 ) p t
					=	r=0,1 (-1) r p a	d (mod p t-r )	e	d(4mnp b -y 2 ) p t-r	.

Mimicking Iwaniec's proof in

[8, p. 67] 

(in fact attributed to Sarnak), we consider

F (x) = d (mod p a+t ) Since d (mod p t-r ) e d(4mnp b -y 2 ) p t-r = p t-r δ y 2 ≡4mnp b (mod p t-r ) ,
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