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Introduction

Some modular forms are endowed with nice arithmetic properties, for which techniques in analytic number theory can be applied to unveil their extraordinary features. For instance, Matomäki and Radziwill [START_REF] Matomäki | Multiplicative functions in short intervals[END_REF] made an important progress for multiplicative functions with an application (amongst many) to give a very sharp result on the holomorphic Hecke cusp eigenforms of integral weight. The Hecke eigenforms of halfintegral weight is substantially different from the case of integral weight. A simple illustration is the multiplicativity of their Fourier coefficients. If f is a Hecke eigenform of integral weight (for SL 2 (Z)), its Fourier coefficient a f (m) will be factorized into a f (m) = p r m a f (p r ). However, for a Hecke eigenform f of half-integral weight (for Γ 0 (4)), we only have a f (tm 2 ) = a f (t) p r m a f (p 2r ) for any squarefree t, due to Shimura. (Both a f (1) = a f (1) = 1 are assumed.) This, on one hand, alludes to the mystery of {a f (t)} ♭ t 1 † and, on the other hand, provides an interesting object {a f (n)} n 1 whose multiplicativity (is limited to the square factors) has no analogue to the classical number-theoretic functions.

The classical divisor function τ (n) := d|n 1 appears to be Fourier coefficients of some Eisenstein series. In the literature there are investigations on {τ (t)} ♭ t 1 and on the associated Dirichlet series L(s) := ♭ t 1 τ (t)t -s , which is however rather obscure. Using the multiplicative properties of τ (n), L(s) is connected to the reciprocal of the Riemann zeta-function ζ(2s) 3 , and it extends analytically to a holomorphic function on (a slightly bigger region containing) the half-plane ℜe s > 1 2 except at s = 1. A further extension is equivalent to a progress towards the Riemann Hypothesis.

On the other hand, to study the sign-changes in {a f (t)} ♭ t 1 , Hulse et al. [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF] recently considered L ♭ f (s) := ♭ t 1 λ f (t)t -s (where λ f (t) = a f (t)t -(ℓ/2-1/4) ). Interestingly they showed that L ♭ f (s) extends analytically to a holomorphic function in ℜe s > 3 4 . One naturally asks how far L ♭ f (s) can further extend to. Compared with the case of τ (n) but without adequate multiplicativity, a continuation to the region ℜe s > 1 2 is curious, non-trivial and plausibly (very close to) the best attainable with current technology.

The argument of proof in [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF] is based on the convexity principle and includes two key ingredients:

(a) the inequality λ f (tr 2 ) ≪ ε |λ f (t)|r ε , (b) the functional equations of the twisted L-functions for f by additive characters e(un/d). The inequality (a) is a substitute for the unsettled Ramanujan Conjecture for halfintegral weight Hecke eigenforms, and this is derived from the Shimura correspondence and the Deligne bound for modular forms of integral weight. According to various d's, the functional equations of (b) involves the Fourier expansions of f at different cusps, which is detailedly computed in [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF]. However, due to the multiplier system, the Fourier expansion at the cusp 1 2 is not of period 1, of which Hulse et al seemed not aware. We shall propose an amendment in Section 4.

Our main goal is to prove that L ♭ f (s) extends analytically to ℜe s > 1 2 . We shall not use the convexity principle but apply the approximate functional equation with the point s close to the line ℜe s = 1 2 (from right). The cancellation amongst the exponential factors and real quadratic characters arising from the twisted L-functions are explored. Without a known Ramanujan Conjecture, the inequality (a) is crucial and indeed we need more -an inequality of the same type for the Fourier coefficients at all cusps, which is done in Section 3. There we study the Fourier coefficients of a (complete) Hecke eigenform at the two cusps 0 and 1 2 , and derive some inequalities and bounds useful for analytic approaches, which are of their own interest.

Main results

Let ℓ 2 be a positive integer, and denote by S ℓ+1/2 the set of all holomorphic cusp forms of weight ℓ + 1/2 for the congruence subgroup Γ 0 (4). The Fourier expansion of f ∈ S ℓ+1/2 at ∞ is written as

(2.1) f(z) = n 1 λ f (n)n ℓ/2-1/4 e(nz) (z ∈ H ),
where e(z) = e 2πiz and H is the Poincaré upper half plane. Define

(2.2) L ♭ f (s) := ♭ t 1 λ f (t)t -s
for s = σ + iτ with σ > 1, where ♭ t 1 ranges over squarefree integers t 1. Theorem 1. Let ℓ 2 be a positive integer and f ∈ S ℓ+1/2 be a complete Hecke eigenform. The series L ♭ f (s) in (2.2) extends analytically to a holomorphic function on ℜe s > 1 2 . Moreover, for any ε > 0 we have

(2.3) L ♭ f (s) ≪ f,ε (|τ | + 1) 1-σ+2ε ( 1 2 + ε σ 1 + ε, τ ∈ R)
, where the implied constant depends on f and ε only.

Remark 1. It follows immediately the Riesz mean

♭ t x (1 -t/x)λ f (t) ≪ x 1/2+ε
, exhibiting a support towards square-root cancellation of {λ f (t)} ♭ n 1 . An application of Theorem 1 is a better lower bound (than [START_REF] Lau | Sign of Fourier coefficients of modular forms of half integral weight[END_REF]Theorem 4]) for the sign-changes of {λ f (t)} ♭ t 1 with t ∈ [1, x]. Together with a refinement on the mean square formula, we shall prove the next theorem in Section 8.

Theorem 2. Let ℓ 2 be an integer and f ∈ S ℓ+1/2 a complete Hecke eigenform such that its Fourier coefficients are real. Denote by C ♭ f (x) the number of sign changes of λ f (t) where t ranges over squarefree integers in [1, x]. ‡ Let ̺ ∈ (0, 1 4 ) be defined as in (3.13), and ϑ any number satisfying

0 < ϑ < min( 1-2̺ 3 , 1 4 ). Then for all x x 0 (f, ϑ), C ♭ f (x) ≫ f,ϑ
x ϑ where the constant x 0 (f, ϑ) and the implied constant depend on f and ϑ only.

3.

Half-integral weight cusp forms for Γ 0 (4)

We follow Shimura [START_REF] Shimura | On modular forms of half-integral weight[END_REF] to explicate the definition of f ∈ S ℓ+1/2 . The main aim is to discuss some properties of the Fourier coefficients at all cusps when f is a complete Hecke eigenform.

Let GL + 2 (R) be the set of all real 2 × 2 matrices with positive determinant. Define G to be the set of all (α, ϕ(z)) where α = a b c d

∈ GL + 2 (R) and ϕ(z) is a holomorphic function on H such that ϕ(z) 2 := ς det(α) -1/2 (cz + d), for some ς ∈ C with |ς| = 1. Then G is a group under the composition law (α, ϕ(z))(β, ψ(z)) = (αβ, ϕ(βz)ψ(z)). The projection map (α, ϕ(z)) → α is a surjective homomorphism from G to GL + 2 (R). We write (α, ϕ(z)) * = α. Let f be any complex-valued function on H . The slash operator ξ → f | [ξ] , defined as f | [ξ] := ϕ(z) -(2ℓ+1) f (αz) if ξ = (α, ϕ(z)), gives an anti-homomorphism on G, i.e. f | [ξη] = (f | [ξ] )| [η] . Define for γ = a b c d ∈ Γ 0 (4) and z ∈ H , j(γ, z) := θ(γz) θ(z) = ε -1 d c d (cz + d) 1/2 ,
where ε d = 1 or i according as d ≡ 1 or 3 (mod 4), the extended Jacobi symbol c d and the square root (cz+d) 1/2 are defined as in [START_REF] Shimura | On modular forms of half-integral weight[END_REF]. The map γ → γ * with γ * := (γ, j(γ, z)) is an one-to-one homomorphism from Γ 0 (4) to G. For γ ∈ Γ 0 (4), we will abbreviate

f | [γ * ] as f | [γ] .
A cusp form f of weight ℓ + 1/2 for Γ 0 (4) is a holomorphic function on H such that 1 • f| [γ] = f for all γ ∈ Γ 0 (4), 2 • f admits a Fourier series expansion at every cusp a ∈ {0, -1 2 , ∞},

f| [ρ] = n∈Z n+r>0
c n e((n + r)z). ‡ See [START_REF] Lau | Sign of Fourier coefficients of modular forms of half integral weight[END_REF] for explanation in detail.

Here ρ ∈ G satisfies that its projection is a scaling matrix for the cusp a, i.e. ρ * (∞) = a, and for some |t| = 1,

ρ -1 η * ρ = (η ∞ , t) with η ∞ := 1 1 1 ,
where η is a generator of the stabilizer Γ a in Γ 0 (4) for the cusp a. The value of r ∈ [0, 1) is determined by e(r) = t 2ℓ+1 . (See [15, p.444].)

3.1. Fourier expansions at the three cusps. Explicitly we take ρ = ρ a where

ρ a =                  1 1 , 1 for a = ∞, 1 -2 1 , (-2z + 1) 1/2 for a = -1 2 , -1 4 , 2 1/2 (-iz) 1/2
for a = 0.

(3.1)

Set η a = ρ a * η ∞ ρ a -1 * .
Then η a ∈ Γ 0 (4) for all the three cusps. A direct checking shows that ρ -1 a η * a ρ a = (η ∞ , t a ) where t a = 1, i, 1 for a = ∞, -1 2 , 0, respectively. (When a = -1 2 , the factor

ε -1 -1 -4 -1 inside j(η * a , z) equals i.) Hence, for f ∈ S ℓ+1/2 , f(z + 1) = f(z) (note f| [ρ∞] = f) and f| [ρ 0 ] (z + 1) = f| [ρ 0 ] (z), while for a = -1 2 , f| [ρa] (z + 1) = t 2ℓ+1 -1/2 f| [ρaη∞] (z) = i 2ℓ+1 f| [η * a ] | [ρa] (z) = i 2ℓ+1 f| [ρa] (z). (3.2) Let α = 4 1 , 2 -1/2 .
For our purpose, we set

(3.3) g(z) := f| [ρ -1/2 ] | [α] (z) = 2 ℓ+1/2 f| [ρ -1/2 ] (4z) and h(z) := f| [ρ 0 ] (z).
Their Fourier series expansions (at ∞) are of the form (3.4)

g(z) = 2 ℓ+1/2 n 0 c n e (4n + (2 + (-1) ℓ-1 ))z = 2 ℓ+1/2 n 1 λ g (n)n ℓ/2-1/4 e(nz), say,
where the sequence {λ g (n)} is supported on positive integers n ≡ (-1) ℓ (mod 4), and

(3.5) h(z) = n 1 λ h (n)n ℓ/2-1/4 e(nz). Remark 2. (i) The cusp form h(z) is f 0 (z) in [3] but g(z) = f 1 2 (4z), not f 1 2 (z), there. The Fourier expansion of f 1 2 (z) at ∞ is of the form n 1 c n e((n + 1 4 )z). (ii)
The form h is a cusp form for Γ 0 (4) but g is a cusp form for Γ 0 (16). (iii) Using the Rankin-Selberg theory, one can prove that

(3.6) n x |λ f (n)| 2 ∼ c f x (f = f, g or h)
for some constant c f > 0. See [10, Section 3], for example. (There the assumption that f is a complete Hecke eigenform is not necessary, which is clearly seen from the proof.)

Eigenform properties of a complete Hecke eigenform at various cusps.

Let N be a positive integer divisible by 4, and p ∤ N be any prime. The action of the Hecke operator T(p 2 ) on a modular form f of half-integral weight ℓ + 1/2 for Γ 0 (N) is defined as (cf. [15, p.451])

T(p 2 )f := p ℓ-3/2 0 b<p 2 f | [α ⋆ b ] + 1 h<p f | [β ⋆ h ] + f | [σ ⋆ ] ,
where

α ⋆ b := α b , p 1/2 = 1 b p 2 , p 1/2 , β ⋆ h := β h , ε -1 p -h p = p h p , ε -1 p -h p , σ ⋆ := σ, p -1/2 = p 2 1 , p -1/2 .
Suppose f is a complete Hecke eigenform, i.e. T(p 2 )f = ω p f for all prime p. One may wonder whether g and h defined as in (3.3) are eigenforms. We can prove the following.

Lemma 3.1. Let p be any odd prime. If f ∈ S ℓ+1/2 is an eigenform of T(p 2 ), then so are the forms g and h defined in (3.3) and both have the same eigenvalues as f.

Proof. Let N = 4 or 16, and ∆ 0 = Γ 0 (N) * be the image of Γ 0 (N) under the lifting map. It suffices to show that for (i)

ρ -1/2 α, N = 16 and (ii) ρ = ρ 0 , N = 4, the elements ρα ⋆ b , ρβ ⋆ h , ρσ ⋆ (0 b < p 2 , 1 h < p) form a set of representatives for ∆ 0 \ ∆ 0 σ ⋆ ρ ⊔ 1 h<p 2 ∆ 0 β ⋆ b ρ ⊔ 0 b<p 2 ∆ 0 α ⋆ b ρ .
(i) For the case ρ = ρ -1/2 α, we check by routine calculation that

∆ 0 ρσ ⋆ = ∆ 0 α ⋆ (p 2 +1)/2 ρ, ∆ 0 ρα ⋆ (p 2 -1)/8 = ∆ 0 σ ⋆ ρ, {∆ 0 ρβ ⋆ h : 1 h < p} = {∆ 0 α ⋆ d ρ : p (1 -2d)}, {∆ 0 ρα ⋆ b : p ∤ (1 + 8b)} = {∆ 0 α ⋆ d ρ : p ∤ (1 -2d)}, {∆ 0 ρα ⋆ d : p (1 + 8b)} = {∆ 0 β ⋆ h ρ : 1 h < p}. For example, from ρ = ρ -1/2 α = 4 -8 1 , 2 -1/2 (-8z + 1) 1/2 we obtain ρ * β h ρ -1 * = γα d , where γ = p + 8h (4h -d(p + 8h))p -2 -16h (p -8h + 16hd)p -2 ∈ Γ 0 (16) if we take 1 d < p 2 such that d(p + 8h) ≡ 4h ( mod p 2 ). Note that this choice implies p -8h + 16hd ≡ p(1 -2d) (mod p 2 ) and dp ≡ 4h(1 -2d) (mod p 2 ). The latter implies p | (1 -2d), so the former is ≡ 0 (mod p 2 ). Next the ϕ-part of ρβ ⋆ h ρ -1 is ε -1 p -h p (-16hz + p -8h) 1/2 p -1/2 .
To evaluate the ϕ-part of γ * α ⋆ d , we remark that j(γ, z) = j(γ -1 , γz) -1 and thus consider γ * -1 whose j-part is simply

ε -1 p+8h 16h p + 8h (16hz + p + 8h) 1/2 . Hence, the ϕ-part of γ * α ⋆ d is ε p h p (-16γα d z + p + 8h) -1/2 p 1/2 . From γα d = ρ * β h ρ -1 * and ε p -1 p = ε -1
p , we easily verify this case. The other cases are checked in the same way.

(ii) For the case ρ = ρ 0 , we find similarly that

∆ 0 ρσ ⋆ = ∆ 0 α ⋆ 0 ρ, ∆ 0 ρα ⋆ 0 = ∆ 0 σ ⋆ ρ, {∆ 0 ρβ ⋆ h : 1 h < p} = {∆ 0 α ⋆ pd ρ : 1 d < p}, {∆ 0 ρα ⋆ d : p b} = {∆ 0 β ⋆ h ρ : 1 h < p}, {∆ 0 ρα ⋆ b : p ∤ b} = {∆ 0 α ⋆ d ρ : p ∤ d}.
3.3. Shimura's correspondence and bounding coefficients. Let f ∈ S ℓ+1/2 , not necessarily a complete Hecke eigenform. By Shimura's theory [15, Section 3], for any squarefree t 1, there is a cusp form Sh t f of weight 2ℓ for Γ 0 (2) such that

(3.7) t ℓ/2-1/4 L(s + 1 2 , χ t ) n 1 λ f (tn 2 )n -s = L(s, Sh t f),
where L(•, χ t ) is the Dirichlet L-function associated to the character

χ t (n) = χ 0 (n) -1 n ℓ t
n (χ 0 is the principal character mod 4) and L(s, F ) := n 1 λ F (n)n -s is the L-function for the cusp form of integral weight 2ℓ with nebentypus χ 2 0 ,

F (z) = n 1 λ F (n)n (2ℓ-1)/2 e(nz).
The Shimura lift f → Sh t f commutes with Hecke operators: Sh t (T(p 2 )f) = T (p)(Sh t f) for all primes p. § It follows that the coefficients λ f (mp 2r ) satisfy a recurrence relation in r when f is a T(p 2 )-Hecke eigenform. Moreover, if f is a Hecke eigenform of T(p 2 ) for all p / ∈ S (where S is any set of primes), the right-hand side of (3.7) will admit a factorization (see Corollary 1.8 and Main Theorem in [START_REF] Shimura | On modular forms of half-integral weight[END_REF])

(3.8) t ℓ/2-1/4 L(s + 1 2 , χ t ) n 1 λ f (tn 2 ) n s = n 1 p|n⇒p∈S λ Sh t f (n) n s p / ∈S 1 - ω p p s + χ 0 (p) p 2s -1
, where T(p 2 )f = ω p p (2ℓ-1)/2 f. Remark that the product p / ∈S remains the same for lifts of different squarefree t's.

The commutativity between Sh t and T(p 2 ) implies that ω p is also an eigenvalue of the Hecke operator T (p) for Sh t f. Decompose (3.9)

Sh t f(z) = i c i f i (ℓ i z)
where each f i is a newform (of perhaps lower level) and f i (ℓ i z)'s are linearly independent. Let S ′ be the set of all prime p dividing the level of Sh t f, so S ′ = {2} in our case. [6, (2.14)] and [START_REF] Iwaniec | Analytic number theory[END_REF]Section 14.7].) Applying T (p) on both sides of (3.9), we thus see that ω p is the T (p)-eigenvalue of some newform (for p ∤ level of Sh t f) and hence 

If p / ∈ S ′ , then T (p)(f i (ℓ i z)) = (T (p)f i )(ℓ i z), ∀ i. (See
(3.10) |ω p | 2 ∀ p / ∈ S ∪
|λ f (m)| |λ f (q)|τ (r) 2 .
Remark 3. Every integer m 1 decomposes uniquely into the desired form: Decompose m uniquely into m = tn 2 where t is squarefree, write n = ur such that p | u implies p ∈ Q and p | r implies p / ∈ Q, and then set q = tu 2 .

Proof. Let m = qr 2 = tu 2 r 2 be decomposed as in Remark 3. By (3.8), we see that

t ℓ/2-1/4 λ f (tu 2 r 2 ) = ab=u λ Sh t f (a)µ(b) χ t (b) √ b cd=r ω c µ(d) χ t (d) √ d ,
where ω c is the coefficient of c -s in p / ∈Q (1 -ω p p -s + χ 0 (p)p -2s ) -1 and µ(d) is the Möbius function. The case r = 1 tells that the first bracket is t ℓ/2-1/4 λ f (tu 2 ), i.e. t ℓ-1/4 λ f (q). Next, since |ω c | τ (c) (by (3.10) and its definition), the absolute value of the second bracket is τ (r) 2 .

3.4. Bounds for coefficients of a complete Hecke eigenform at all cusps. ¶ In case f is a complete Hecke eigenform, we may express (3.8) as

(3.11) t ℓ/2-1/4 L(s + 1 2 , χ t ) n 1 λ f (tn 2 )n -s = t ℓ/2-1/4 λ f (t)L(s, F ),
where the Shimiura lift F is a cusp form independent of t. As the Ramanujan's conjecture holds for holomorphic newforms of integral weight, the rth Fourier coefficients of F are ≪ f τ (r)r ℓ-1/2 , where the implied constant is independent of t. Consequently the question of the size of λ f (m) is reduced to the size at the squarefree part of m:

λ f (m) ≪ f |λ f (t)|τ (r) 2 (3.12)
if m = tr 2 and squarefree t. Due to Iwaniec [START_REF] Iwaniec | Fourier coefficients of modular forms of half-integral weight[END_REF] or Conrey & Iwaniec [START_REF] Conrey | The cubic moment of central values of automorphic L-functions[END_REF], etc, there are good estimates for

(3.13) λ f (t) ≪ f,̺ t ̺ ∀ squarefree t,
for some 0 < ̺ < 1 4 . The value of ̺ is 1 6 + ε by [START_REF] Conrey | The cubic moment of central values of automorphic L-functions[END_REF]. ¶ The content of this subsection is not used in the remaining part of the paper but we would include here for its own interest and for applications in other occasions.

We know from Lemma 3.1 that for a complete Hecke eigenform f, the forms g and h are eigenforms of T(p 2 ) with the same corresponding eigenvalue for all odd prime p. But for p = 2, we do not get the same conclusion. This may result in an unpleasant situation of without (3.12). Note that Lemma 3.2 gives at most a bound of the form |λ f (t2 2j )|τ (r) 2 (where f = g, h). Now we attempt to clarify as much as possible.

In view of [15, Proposition 1.5], the Hecke operator T( 22 ) is the same as the operator U 4 whose action is 

(f |U 4 )(z) = 1 4 ν (mod 4) f z + ν 4 = n 1 a(4n) e(nz) (3.14) if f (z) = n 1 a(n) e(nz
f| [ρ -1/2 ] (z + ν) = 2 ℓ-3/2 f| [ρ -1/2 ] (z) 0 ν 3 i ν(2ℓ+1)
where the sum is obviously zero. Thus g is also a complete Hecke eigenform although it takes the different eigenvalue 0 for T(2 2 ), implying the validity (3.12) for g as well.

However for the case of h, we cannot get the conclusion of T( 22 )-eigenform and we shall get the analogous bound via some bypass. To its end, let us recall Niwa's result in [START_REF] Niwa | On Shimura's trace formula[END_REF], cf. Kohnen [8, p. 250], saying that U 4 W 4 is Hermitian operator on S ℓ+1/2 and (Note that the operator acts on f from right.) In particular we observe that c = 0, because otherwise, -2µ 2 f = 0 implying f = 0. As h = f|W 4 and W 4 is an involution (i.e. W 2 4 is the identity), we deduce that (h|U 4 ) = µf + 2µ 2 c -1 h. (3.17)

U 4 W 4 U 4 W 4 -µU 4 W 4 -2µ 2 = 0, (3.16) where µ = 2 2ℓ+1 2 ℓ-1 = (-1) ℓ(ℓ+1)/2 2 ℓ-1 and (f |W 4 )(z) = (-2iz) -(ℓ+1/2) f (-1 4z ) = f | [ρ 0 ] (z). Suppose f|T(2 2 ) = cf
We separate into two cases:

• Case 1: c 2 = 2µ 2 .
We set α := cµ/(2µ 2 -c 2 ) and consider the form H := h + αf ∈ S ℓ+1/2 . Then cα + µ = 2αµ 2 /c and thus by (3.17),

H|T(2 2 ) = H|U 4 = 2µ 2 c -1 H.
i.e. The cusp form H is an eigenform of T(2 2 ), and by Lemma 3.1, H is also an eigenform of T(p 2 ) for all odd primes p. (Note that f and h have the same T(p 2 )eigenvalue.) Consequently, both coefficients λ H (m) and λ f (m) satisfy (3.12). As λ h (m) = λ H (m) -αλ f (m), we establish (3.18) for h.

Here we write f|T(p 2 ) for T(p 2 )f.

• Case 2: c 2 = 2µ 2 .

We infer from (3.17) and (3.14) that for all integers n 1,

4 ℓ/2-1/4 λ h (4n) = µλ f (n) + cλ h (n).
Let d = c/4 ℓ/2-1/4 . This recurrence relation gives

λ h (4 J n) = d J λ h (n) + µ 4 ℓ/2-1/4 1 j<J d j λ f (4 J-j n).
Note µ 2 = 2 2ℓ-2 , so |d| = 1, and (3.12) holds for λ f (4 J-j n). Hence, for any integer m = tr 2 4 J where t is squarefree and r is odd, 2 and consequently

λ h (m) ≪ |λ h (tr 2 )| + J 2 |λ f (t)|τ (r) 2 . By Lemma 3.2 with Q = {2}, we get |λ h (tr 2 )| ≪ |λ h (t)|τ (r)
λ h (m) ≪ (|λ h (t)| + |λ f (t)|)J 2 τ (r) 2 ≪ (|λ h (t)| + |λ f (t)|)τ (r2 J ) 2 .
In summary, we have proved the following. Lemma 3.3. Let f be a complete Hecke eigenform, g and h be defined as in (3.3). For any integer m = tr 2 where t 1 is squarefree, we have

λ f (m) ≪ f |λ f (t)|τ (r) 2 + |λ f (t)|τ (r) 2 ≪ f,̺ t ̺ τ (r) 2 (3.18)
for f = f, g, h respectively, where ̺ satisfies (3.13). The first implied ≪-constant depends only f and the second implied ≪-constant depends at most on f and ̺.

Remark 4. When f lies in the Kohnen plus space, the Hecke operator T + (2 2 ) := 3 2 U 4 pr is taken in place of T( 22 ), where pr is the orthogonal projection onto the plus space, cf. [9, p. 42-43]. If f is an eigenform of T + (2 2 ) and T(p 2 ) for all odd primes p, then Lemma 3.3 will still be valid. Firstly Lemma 3.1 and (3.11) hold for f and hence (3.12). Next we claim (3.12) holds for g and h. For g, (3.15) holds if f ∈ S ℓ+1/2 , thus g is a complete Hecke eigenform so (3.12) holds. Note 2µh = f| U 4 once f is in the plus space, see [8, Proposition 2]; thus 2µλ h (m) = λ f (4m), the claim follows from (3.12) for f.

A preparation

We start with the method of proof in [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF] for the set-up. Meanwhile we amend, for the case 2 d, the functional equation to relate f with g (not f 1 2 in [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF]), cf. [3, (4.5)] and our Remark 2 (i). Lastly we indicate the vital components for improvement with a first attempt (see Proposition 1 and Remark 6).

Define ½ r 2 (n) = 1 if r 2 | n and 0 otherwise. Replace the divisibility condition with additive characters, we can write

½ r 2 (n) = 1 r 2 u(mod r 2 ) e nu d 2 = 1 r 2 d|r 2 * u(mod d) e nu d ,
where * u(mod d) runs over u(mod d) coprime to d. Recall µ(n) 2 = r 2 |n µ(r). When σ > 1, one thus has Consequently they proved that

L ♭ f (s) = ∞ r=1 µ(r) r 2
(4.4) D r (s) ≪ r 2-4σ+ε (1 + |τ |) 1-σ+2ε (-ε σ 1 + ε).
To obtain the functional equation of L f (s, u/d), one considers for rational q,

Λ(f, q, s) := ∞ 0 f(iy + q)y s+ ℓ 2 -1 4 dy y = Γ(s + ℓ 2 -1 4 ) (2π) s+ ℓ 2 -1 4 m 1 λ f (m) e(mq) m s •
The integral is absolutely convergent for every s ∈ C. We define Λ(g, q, s) and Λ(h, q, s) in the same way. 

λ(n; d) ̟ d (n, v) 4 | d λ f (n) ε 2ℓ+1 v d v e -nv d 2 d λ g (n) ε 2ℓ+1 v d v e -nv 4d 2 ∤ d λ h (n) i ℓ+1/2 ε -(2ℓ+1) d v d e -4nv d with 44 ≡ 1 (mod d). Write (4.7) L ∞ (s) := (2π) -s Γ s + ℓ 2 -1 4
) and 

(4.9) q s d L ∞ (s)L f (s, u/d) = i -(ℓ+1/2) q 1-s d L ∞ (1 -s) L f (1 -s, v/d) where uv ≡ 1 (mod d).
Remark 5. For the case 2 d, the right-side of the equation (4.9) is of period d or probably its divisor in the parameter v, which is not obvious in view of the factor e(-nv 4d ). Indeed, one checks that

̟ d (n, v + d) = ̟ d (n, v) by using (i) if d = 2h where h is odd, then d v = -2 h h v ; (ii) n ≡ (-1) ℓ (mod 4
) in light of the support of {λ g (n)}. Assume σ < 0. Applying the functional equation (4.9) to (4.3), we obtain

(4.10) D r (s) = i -(ℓ+1/2) r -2 L ∞ (1 -s) L ∞ (s) d|r 2 q 1-2s d n 1 λ(n; d) n 1-s * u (mod d) ̟ d (n, v).
With 

̟ d (n, v) ≪ d 1/2 τ (d)(d, n) 1/2 . (4.11)
But in fact it carries more arithmetic properties, as shown below. 

̟ 2 e a 2 b (m, v) = G e,b (m)a 2 f |a 2 µ(f ) f ½ a 2 /f (m),
where Let ε > 0 be small and σ = -ε. Applying (4.11) and Stirling's formula to (4.10), it follows that (recalling

q d = d or 2d) D r (-ε + iτ ) ≪ r -2 (1 + |t|) 1+ε d|r 2 d 3/2+3ε n 1 |λ(n; d)|(d, n) 1/2 n -(1+ε) ≪ (r(1 + |t|)) 1+ε because |λ(n; d)|(n, d) 1/2 |λ(n; d)| 2 + (n, d), implying that the last summation is ≪ n 1 |λ(n; d)| 2 n -(1+ε) + ℓ|d n 1 n -(1+ε) ≪ d ε .
By [3, Lemma 4.2], we have D r (1+ε+iτ ) ≪ r -2 . An application of Phragmén-Lindelöf principle gives D r (σ + iτ ) ≪ r 1-3σ+ε (1 + |τ |) ε . To assure the convergence in (4.1), we require 1 -3σ < -1 and hence conclude the following.

Proposition 1. L ♭ f (σ + iτ ) ≪ f,ε (|τ | + 1)
1-σ+2ε for 2 3 + ε σ 1 + ε and τ ∈ R. Remark 6. We have applied only the mean square estimate (3.6) for g and h, and only the Hecke eigenform property of f is used. In the next section, we will invoke the arithmetic property revealed in (4.12), the eigenform properties of all f, g, h and the approximate functional equation to prove the main result.

Proof of Theorem 1

We begin with the approximate functional equation for L f (s, u/d) below, whose proof is given in Section 7. 

L f (s, u/d) = m 1 λ f (m) e(mu/d) m s V m q d T + i -(ℓ+1/2) (q d T ) 1-2s m 1 λ(m; d)̟ d (m, v) m 1-s V s,T m q d T
where uv ≡ 1 (mod d), V (y) and V s,T (y) are smooth functions on (0, ∞) and satisfy the following: for any

0 < η < 1 4 , V (y) = 1 + O η (y η ), V s,T (y) = L ∞ (1 -s) T 1-2s L ∞ (s) + O η (y η ) ≪ η 1 + y η ,
and for any η > 0, both V (y) and V s,T (y) ≪ η y -η . Now we deal with L ♭ f (s). In (4.1), we replace the even squarefree r by 2r and thus 

L ♭ f (s) =
♭ f (s) into three pieces, L ♭ f (s) = M ∞ (f, s) + M 1/2 (f, s) + M 0 (f, s), where M ∞ (f, s) := - 1 4 ∞ r=1 odd µ(r) r 2 d|r 2 * u(mod 4d) L f (s, u/4d), M 1/2 (f, s) := - 1 4 ∞ r=1 odd µ(r) r 2 d|r 2 * u(mod 2d) L f (s, u/2d), M 0 (f, s) := 3 4 ∞ r=1 odd µ(r) r 2 d|r 2 * u(mod d) L f (s, u/d).
We shall verify the uniform convergence for the three series of holomorphic functions in ℜe s > 1 2 , and concurrently obtain the desired upper estimate (2.3). Let σ 0 = 1 2 + ε 0 where ε 0 > 0 is arbitrarily small but fixed, and T 1 be any integer. Consider s = σ + iτ where σ 0 σ σ 0 + 

L f s, u 2 e a 2 b
where e = 0, 1, 2. Now we apply Lemma 5.1 and observe, as before, the set of v given by uv ≡ 1 (mod d) runs through a reduced residue class as u varies. We are led to

Σ 1 = a,b,c µ(2abc) (abc) 2 m 1 λ f (m) m s V m a 2 bT e * u (mod 2 e a 2 b) e mu 2 e a 2 b , (5.1) 
Σ 2 = T 1-2s e a,b,c µ(2abc) a 4s b 1+2s c 2 m 1 λ f,e (m) m 1-s V s,T m a 2 bT e * v(mod 2 e a 2 b) ̟ 2 e a 2 b (m, v), (5.2) 
where λ f,e (m) := λ(m; 2 e ), see (4.6), and T e = 2T or 4T according as e = 0 or not (so that q 2 e a 2 b T = a 2 bT e , see (4.5)).

Inserting (4.12) into Σ 2 in (5.2), we further decompose a = f g and m = f g 2 h in light of the squarefreeness of f and the conditions f | a 2 and (a 2 /f ) | m.

(5.3) Σ 2 = T 1-2s e f,g,b,c µ(f )µ(2f gbc) f 3s g 2s b 1+2s c 2 h 1 λ f,e (f hg 2 ) h 1-s V s,T h f bT e G e,b (f hg 2 ).
To justify the uniform convergence, it suffices to consider the sum over dyadic ranges: (f, g, b, c) ∼ (F, G, B, C), meaning F f < 2F , etc. Denote by Σ F,G,B,C 2 the expression on the right-side of (5.3) under this range restriction. We estimate each summand trivially with the bound G e,b (m) ≪ √ b in Lemma 4.2. A little simplification leads to

(5.4) Σ F,G,B,C 2 ≪ T 1-2σ e (f,g,b,c) ∼(F,G,B,C) |µ(2f gbc)| f 3σ g 2σ b 1/2+2σ c 2 h 1 |λ f,e (f hg 2 )| h 1-σ V s,T h f bT e .
Next we treat the sum over h in order for the following estimate * * :

(5.5)

h 1 |λ f,e (f hg 2 )| h 1-σ V s,T h f bT e ≪ G ε (T F B) σ-1/2+ε h (F BT ) 1+ε |λ f,e (f h)| √ h •
To establish (5.5), we invoke Lemmas 3.1 and 3.2, to remove g inside λ f,e (f hg 2 ), and the estimate for V s,T . Set Q to be the set of all primes not dividing g, and write h = qr 2 where p 2 |q implies p ∈ Q and p|r implies p / ∈ Q (see Remark 3). As (2f, g) = 1, Q contains 2 and all the prime factors of f . Thus p 2 |f q implies p ∈ Q. Thus, |λ f,e (f hg 2 )| = |λ f,e (f q(gr) 2 )| ≪ ε |λ f,e (f q)|(gr) ε . From Lemma 5.1, we deduce the estimate

V s,T h f bT e ≪ ε (F BT ) ε for h (F BT ) 1+ε , h -2 otherwise.
The sum over h (F BT ) 1+ε is negligible, in fact ≪ (T F GB) ε (for which we may use the crude bound |λ f,e (f q)| ≪ (f q) 1/2 by (3.6)). Consequently, the left side of (5.5) is

≪ (F BT ) ε qr 2 (F BT ) 1+ε g ε r 2(σ-1)+ε |λ f,e (f q)|q -(1-σ) ≪ G ε (F BT ) σ-1/2+ε q (F BT ) 1+ε
|λ f,e (f q)|q -1/2

(recalling σ σ 0 > 1/2) which is (5.5) after renaming q into h. Inserting (5.5) into (5.4), we deduce that

Σ F,G,B,C 2 ≪ (T F GB) ε T -σ+1/2 F -2σ G -2σ+1 B -σ C -1 f ∼F h (F BT ) 1+ε |λ f,e (f h)|(f h) -1/2 .
Write m = f h and note the divisor function τ (m) ≪ ε m ε . The double sum is

≪ ε (F 2 BT ) ε m≪(F 2 BT ) 1+ε |λ f,e (m)|m -1/2 ≪ ε (F 2 BT ) 1/2+ε
, by (3.6). In summary, we get

Σ F,G,B,C 2 ≪ ε (T F GB) ε T 1-σ F 1-2σ G 1-2σ B -σ+1/2 C -1 .
Recall σ 0 = 1 2 + ε 0 and take ε ε 0 /2. Consequently, uniformly for σ 0

σ σ 0 + 1 2 and T -1 |τ | T , we have Σ F,G,B,C 2 → 0 as max(F, G, B, C) → ∞, concluding the uniform convergence. Moreover, as T 1-σ ≪ (1 + |s|) 1-σ , it follows that Σ 2 ≪ F,G,B,C Σ F,G,B,C 2 ≪ ε (1 + |s|) 1-σ+ε 0 ,
recalling the multiple summations range over powers of two.

We turn to Σ 1 in (5.1) which is plainly treated in the same fashion and indeed easier. The inner exponential sum in (5.1) equals

2 e a 2 b δ|2 e a 2 b µ(δ) δ ½ 2 e a 2 b/δ (m).
Noting that a, b are squarefree and (a, b) = 1, we write δ = 2 j f k, a = f g and b = kl where j = 0 or 1. Then the summation over m will be confined to run over the sequence of m = 2 e-j f g 2 lh for positive integers h. Explicitly we have

(5.6) Σ 1 = j=0,1 f,g,k,l,c 2 (e-j)(1-s) µ(2 j f k)µ(2f gklc) f 1+s g 2s k 2 l 1+s c 2 h 1 λ f (2 e-j f lhg 2 ) h s V h 2 j f kT .
Analogously we divide the summation ranges into dyadic intervals and consider the subsum of f,g,k,l,c with (f, g, k, l, c) ∼ (F, G, K, L, C). Repeating the above argument † † , † † For the calculation as in (5.5), there is a little variant since the exponent σ of

|h s | is > 1 2 .
correspondingly we obtain

Σ F,G,K,L,C 1 ≪ ε (T F GK) ε F -σ-1 G 1-2σ K -1 L -σ-1 C -1 max j=0,1,2 (f,l)∼(F,L) h≪(F KT ) 1+ε |λ f (2 j f lh)|h -σ ≪ ε (T F GKL) ε F -1 G 1-2σ K -1 L -1 C -1 m≪(F 2 KLT ) 1+ε |λ f (m)|m -σ ≪ ε (T F GKL) ε T 1-σ F 1-2σ G 1-2σ K -σ L -σ C -1 ,
which assures the uniform convergence and the upper estimate. Our proof is complete by changing ε 0 into 2ε.

Proof of Lemma 4.2

First consider e = 1 or 2, and take the complex conjugate of the left side to simplify a bit the exponential factor. Then by ( 4 We write v = α8b + βa 2 . Note that v runs over a reduced residue class mod 2 e a 2 b when α (mod a 2 ) and β (mod 2 e b) run over the respective reduced residue classes, since a is odd and (a, 2b) = 1. Our substitution choice implies v ≡ β (mod 4) and thus ε v = ε β . Moreover, the extended Jacobi symbol may be written as, cf. [15, p.442 We separate the sum in (6.2) into two subsums, whose summands take the same value of ε β , as follows: * β (mod 2 e b) β≡1(mod 4)

+ i -(2ℓ+1) * β (mod 2 e b) β≡-1(mod 4)
.

With the primitive character χ 4 mod 4 (given by χ 4 (n) = (-1) (n-1)/2 for odd n), we relax the extra conditions with the factors 1 2 (1+χ 4 (β)) and 1 2 (1-χ 4 (β)). Consequently, letting θ ± = 1 2 (i ℓ+1/2 ± i -(ℓ+1/2) ), we rearrange the terms to have 

G ′ e,b (m) = θ + * β (mod 2 e b) ψ 2,b (β)χ b ′ (β) e mβ 2 
* v(mod a 2 b) v b e -4mv a 2 b = a 2 f |a 2 µ(f ) f ½ a 2 /f (m) * β(mod b) χ b ′ (β) e - 4mβ b .
Take G 0,b (m) to be the product of i ℓ+1/2 ε -(2ℓ+1) d

and the character sum (over β). This gives, with (6.3), the desired result in (4.12), completing the proof.

Proof of Lemma 5.1

Let H(z) be an entire function such that H(z) ≪ η,A (1 + |z|) -A for ℜe z = η and any A > 0, H(0) = 1 and H(z) = H(-z). (See [START_REF] Harcos | Uniform approximate functional equation for principal L-functions[END_REF] for its construction.) We infer with the residue theorem that

L f (s, u/d) = 1 2πi (2) 
-

(-2) L f (s + z, u/d)(q d T ) z H(z) dz z =: I 1 + I 2 , (say). 
Changing z to -z and invoking the functional equation, we transform

I 2 into i -(ℓ+1/2) (q d T ) 1-2s 1 2πi (2) L f (1 -s + z, v/d) L ∞ (1 -s + z) T 1-2s+2z L ∞ (s -z) (q d T ) z H(z) dz z • Set V (y) := 1 2πi (2) y -z H(z) dz z , V s,T (y) := 1 2πi (2) L ∞ (1 -s + z) T 1-2s+2z L ∞ (s -z) y -z H(z) dz z •
The formula follows readily after inserting the Dirichlet series of L f (s, u/d) and L f (s, v/d) in (4.2) and (4.8). It remains to check the properties of V (y) and V s,T (y). The case of V (y) is quite obvious, and for V s,T (y), we recall the estimate in [2, Lemma 3.2]: For

α > -σ, Γ(z + σ) Γ(z) ≪ α,σ |z + σ| σ (ℜe z α).
Recalling (4.7), this yields

(7.1) L ∞ (1 -s + z) T 1-2s+2z L ∞ (s -z) ≪ η 1 -s + z + ℓ 2 -1 4 T 1-2σ+2η ≪ 1 + |z| T 1-2σ+2η
.

We shift the line of integration to the right, yielding V s,T (y) ≪ η y -η for any η > 0 and shift to the left to derive

V s,T (y) = L ∞ (1 -s) T 1-2s L ∞ (s) + O η (y η )
for any 0 < η < 1 4 . The main term is O(1) by (7.1). The proof of Lemma 5.1 ends.

Proof of Theorem 2

We start with a lemma which supersedes [10, (14)] with an improvement on the exponent of the O-term from 3 4 + ̺ + ε to 3 4 + ε. Lemma 8.1. Let ℓ 2 be a positive integer and f ∈ S ℓ+1/2 be a complete Hecke eigenform. Then for any ε > 0 and all x 2, we have • trivially w ± (s) ≪ X σ and (8.3) w ± (1) = X + O(Y ).

Obviously we have (8.4)

n |λ f (n)| 2 w -(n) X<n 2X |λ f (n)| 2 n |λ f (n)| 2 w + (n).
Let the Dirichlet series associated with |λ f (n)| 2 be defined as (see e.g. [10, (11)])

D(f ⊗ f, s) = ∞ n=1 |λ f (n)| 2 n -s .
By the Mellin inversion formula ( 1 2 < σ 3), we derive

n |λ f (n)| 2 w ± (n) = D f X + O f,ε Y + X 1+κ Y -1 .
Taking κ = 1 2 + ε and Y = X 3/4 , and combining the obtained estimation with (8.4), we find that

X<n 2X |λ f (n)| 2 = D f X + O f,ε X 3/4+ε ,
which implies (8.1) after a dyadic summation. Now we are ready to prove Theorem 2 along the same line of argument in [START_REF] Lau | Sign of Fourier coefficients of modular forms of half integral weight[END_REF]. Take h = x η where η > 3 4 is specified later. Lemma 8.1 gives (i) Ch and subsequently improve the upper bound O(h 3/4 x ε ) in [10, (21)] to O(h 1/2 x ε ). Ultimately the lower bound in [10, (27)], which relies on [10, (21) and (26)], is sharpened to

x -1-̺ h 2 + O(h 1/2 x ε ). (8.6) The optimal choice of η for the positivity of (8.6) is 2 3 (1 + ̺) + ε. Together with the constraint η > 

  for some scalar c. By (3.16) and U 4 = T(2 2 ), we get c(f|W 4 U 4 W 4 ) -cµ(f|W 4 ) -2µ 2 f = 0.

d|r 2 *L

 2 u(mod d) L f (s, u/d) f (s, u/d). Now each summand L f (s, u/d) extends to an entire function (explained below), so the task is to establish the (uniform) convergence of the series in r. Hence this leads to the estimation of L f (s, u/d) in terms of r. The method of Hulse et al. is to derive the functional equation of L f (s, u/d) and then apply the convexity principle to D r (s). They gave an estimate for D r (s) on the line σ = -ε by bounding L f (s, u/d) individually.

1 2 2 ,

 12 Let q = u/d where (u, d) = 1 and d 1. By [3, Lemma 4.3], Λ(f, u/d, s) satisfies a functional equation in connection with Λ(f, -u/d, 1 -s) and Λ(h, -4u/d, 1 -s) respectively according as 4 | d or 2 ∤ d, where xx ≡ 1 (mod d). For the case 2 d, we revise f to be g, which causes a minor change of Λ(f 1 -u/d, 1 -s) into Λ(g, -u/(4d), 1 -s). We would unite the three functional equations into one. Let us introduce q d = d or 2d according to 4 | d or not, (4.5) and the symbols λ(n; d) and ̟ d (n, v) defined as: (4.6)

(4. 8 ) 1 λ

 81 L f (s, v/d) := n (n; d)̟ d (n, v)n -s . Now we rephrase [3, Lemma 4.3] of Hulse et al. with the above modification for 2 d.

Lemma 4 . 1 .

 41 Let f ∈ S ℓ+1/2 where ℓ 1 be an integer, d ∈ N and (u, d) = 1. Then L f (s, u/d) extends analytically to an entire function and satisfies the functional equation:

Lemma 4 . 2 .

 42 For e ∈ {0, 1, 2}, b an odd squarefree integer and (a, 2b) = 1, we have

( 4 .

 4 12) * v(mod 2 e a 2 b)

  G e,b (m) ≪ √ b with an absolute ≪-constant, and ½ d (n) = 1 if d | n and 0 otherwise. (Recall that we are confined to m ≡ (-1) ℓ (mod 4) in the case of e = 1.) Lemma 4.2's proof is postponed to Section 6. Now we apply (4.11) to give a technically lightweight improvement on the result (4.4) of Hulse et al.

Lemma 5 . 1 . 2 σ 3 2

 5123 Let T 1 be any number and s = σ + iτ . Suppose 1 and |τ | T . We have

  )D 2r (s). Next we separate the sum over d according as 4 | d, 2 d or 2 ∤ d, and hence obtain a decomposition of L

1 2 and T - 1

 1 |τ | T . In view of the condition d | r 2 for squarefree r, we decompose into d = a 2 b and r = abc where a, b, c are pairwise coprime and squarefree. It is equivalent to consider the series a,b,c µ(2abc) (abc) 2 * u(mod 2 e a 2 b)

  .6), * v(mod 2 e a 2 b) ̟ 2 e a 2 b (m, v) = * v(mod 2 e a 2 b) ε -(2ℓ+1)v 2 e a 2 b v e mv 2 4-e a 2 b . (6.1)

(- 1 )

 1 (b-1)/2 b β = ψ 2,b (β)χ b ′ (β), (say), where b ′ = (-1) (b-1)/2 b (is a quadratic discriminant) and χ b ′ (•) is the primitive quadratic character of conductor b. (Note b is odd squarefree.) Thus, we express the right side of (6.1) asG ′ e,b (m) * α (mod a 2 ) e 2 e-1 mα a 2 = G ′ e,b (m)a 2 f |a 2 µ(f ) f ½ a 2 /f (m) (cf. [7, p.44 (3.2)] and recalling a is odd) where(6.2) G ′ e,b (m) = * β (mod 2 e b) ε -(2ℓ+1) β ψ 2,b (β)χ b ′ (β) e mβ24-e b . This gives (4.12) with G e,b (m) = G ′ e,b (m), and thus it remains to show G ′ e,b (m) ≪ √ b so as to finish the proof.

  4-e b + θ - * β (mod 2 e b) ψ ′ 2,b (β)χ b ′ (β) e mβ 2 4-e b where ψ ′ 2,b (β) = χ 4 ψ 2,b . Both ψ 2,b and ψ ′ 2,b are characters (not necessarily primitive) modulo 8. Repeating the argument of writing β = 8β 1 + bβ 2 , we infer that (6.3) G ′ e,b (m) ≪ * β (mod b) χ b ′ (β) e 2 e-1 mβ b ≪ b 1/2 by the primitivity of χ b ′ , see [7, p.47 (3.12) and p.48 (3.14)]. Next we come to the case e = 0. In this case, we set v = bα + a 2 β with α (mod a 2 ), (α, a) = 1 and β (mod b), (β, b) = 1, then

  f (n)| 2 = D f x + O f,ε x 3/4+ε ,where D f is a positive constant depending on f. Proof. We choose two smooth compactly supported functions w ± such that• w -(x) = 1 for x ∈ [X + Y, 2X -Y ], w -(x) = 0 for x 2X and x X; • w + (x) = 1 for x ∈ [X, 2X], w + (x) = 0 for x 2X + Y and x X -Y ; • w(j)± (x) ≪ j Y -j for all j 0; • the Mellin transform of w(x)

  w ± (s)x -s ds, we writen |λ f (n)| 2 w ± (n) = 1 2πi (2) w ± (s)D(f ⊗ f, s) ds.With the help of Cauchy's residue theorem, we obtain that (8.5)n λ f (n) 2 w ± (n) = D f w ± (1) + 1 2πi (κ) w ± (s)D(f ⊗ f, s) ds,where 1 2 < κ < 1 and D f := Res s=1 D(f ⊗ f, s). By (8.3), (8.2) with j = 2 and the convexity bound [10, Proposition 7] D(f ⊗ f, s) ≪ f,ε (1 + |τ |) 2 max(1-σ,0)+ε

√ x+h τ (m) 4 ♭x/m 2 t 4 ♭x/m 2 t

 4242 λ f (n) 2 and (ii) x/m 2 t (x+h)/m 2 λ f (n) 2 ≪ hm -3/2for any m √ x + h, where the positive constant C and the implied ≪-constant depend on f and η only. Combining (i) with the bound λ f (tm 2 ) ≪ λ f (t)τ (m) 2 (cf.[START_REF] Lau | Sign of Fourier coefficients of modular forms of half integral weight[END_REF] Lemma 6]) leads toCh x n x+h λ f (n) 2 C ′ m (x+h)/m 2 λ f (t) 2where C ′ > 0 is a constant depending at most on f. By (ii) and the factm A τ (m) 4 m -3/2 ≫ A -1/2+ε , we conclude that for a large enough constant A, (x+h)/m 2 λ f (t) 2 {C/C ′ + O(A -1/2+ε )}h ≫ hwhich is[10, (23)]. Thus, repeating the same argument (in [10, (24)-(26)]), we obtain[10, (26)] with a smaller admissible h = x η (here only η >3 4 is required instead of η > 3 4 + ̺, which is due to the improved O-term in Lemma 8.1). Next we apply the new bound (2.3) of Theorem 1 to M(f, s) (= L ♭ f (s) here, cf. [10, (12)]) in Equation (20) of [10, Section 4.2]. Then we get ♭ x t x+h λ f (t) min log x

3 4 (

 4 from the new smaller admissible range of h), we set η = max 2 3 (1 + ̺), 3 4 + ε. The proof is complete with the same argument in remaining part of [10, Section 4.2].

  S ′ , by Deligne's bound. Consequently we have the following estimate for f ∈ S ℓ+1/2 . Lemma 3.2. Let Q be a (not necessarily finite) set of primes with 2 ∈ Q. Suppose f is an Hecke eigenform of T(p 2 ) for all p / ∈ Q. Let m 1 be any integer decomposed into m = qr 2 such that p | r implies p / ∈ Q, and p 2 | q implies p ∈ Q. Then we have

  ). Then it follows easily that g|T(2 2 ) = 0, because by(3.14) 

	and (3.2),	
	(3.15)	(g|U 4 )(z) = 2 ℓ-3/2
		ν (mod 4)

§ This commutativity is pointed out in[START_REF] Ono | The web of modularity: arithmetic of the coefficients of modular forms and q-series[END_REF] Corollary 3.16] under the extra condition p ∤ 4tN , which is relaxed to all primes p in[START_REF] Purkait | On Shimura's decomposition[END_REF].

* * Throughout the proof, ε denotes an arbitrarily small positive number whose value may differ, up to our disposal, at each occurrence.
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