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IMPROVING ROTH’S THEOREM IN THE PRIMES

HARALD ANDRÉS HELFGOTT AND ANNE DE ROTON

Abstract. Let A be a subset of the primes. Let

δP (N) =
|{n ∈ A : n ≤ N}|
|{n prime : n ≤ N}| .

We prove that, if

δP (N) ≥ C log log logN

(log logN)1/3

for N ≥ N0, where C and N0 are absolute constants, then A ∩ [1, N ] contains a
non-trivial three-term arithmetic progression.

This improves on Green’s result [Gr], which needs

δP (N) ≥ C′
s

log log log log logN

log log log logN
.

1. Introduction

1.1. History and statement. In 1953, K. Roth [Ro] proved that any subset of
positive integers of positive density contains infinitely many non trivial three-term
arithmetic progressions. More precisely, his result is as follows. Given a set A ⊂ Z+,
we define the density of A ∩ [1, N ] by δ(N) = 1

N |{n ∈ A : n ≤ N}|. (We write |S|
for the number of elements of a set S.) Roth proved that, given any set of integers
A ⊂ Z+ such that δ(N) ≥ C/log logN for some N ≥ N0 (where C and N0 are
absolute constants) there must be at least one non-trivial three-term arithmetic
progression in A∩ [1, N ]. (By a non-trivial arithmetic progression we mean one with
non-zero modulus, i.e., (a, a+ d, a+ 2d) with d 6= 0.)

Much later, Heath-Brown [HB] (1987) and Szemerédi [Sz] (1990) improved this
result by showing that it is enough to require that δ(N) ≥ C(logN)−c for some small
positive c. By considering Bohr sets where previous arguments had used arithmetic
progressions, Bourgain relaxed the condition to δ(N) ≥ C

√
log logN/logN in [Bo2]

(1999) and to δ(N) ≥ C(log logN)2(logN)−2/3 in [Bo3] (2006).
Van der Corput proved [vdC] that the primes contain infinitely many non trivial

3-term arithmetic progressions. The question then arises – is Roth’s theorem true in
the primes? That is – must a subset of primes of positive relative density1 contain
a non-trivial 3-term arithmetic progression?

1Given a subset A of the set P of all primes, we define the relative density δP (N) of A to be
δP (N) = |{n ∈ A : n ≤ N}|/|{n prime : n ≤ N}|. We are asking whether, given A ⊂ P such that
δP (N) > δ0 (δ0 > 0) for some sufficiently large N , the set A contains a non-trivial 3-term arithmetic
progression.
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In [Gr], B. Green showed that the answer is “yes”. He proved that, given
any subset A of the primes such that A ∩ [1, N ] has relative density δP (N) ≥
C(log log log log logN/log log log logN)1/2 for some N ≥ N0, where C and N0 are
absolute constants, there exists a 3-term arithmetic progression in A.

We prove the following result.

Theorem 1.1. Let A be a subset of the primes. Assume that A∩ [1, N ] is of relative
density

δP (N) ≥ C log log logN
(log logN)1/3

for some N ≥ N0, where C and N0 are absolute constants. Then A contains a
non-trivial 3-term arithmetic progression.

In other words, we gain two logs over what was previously known. One of the
two logs gained is ultimately due to an enveloping use of a sieve; this idea is by now
familiar to the specialists, and, indeed, it will come into our proof via a restriction
theorem from [GT] (based partially on work on sieves in [Ra]). The other gain of a
log stems from a more essential change in approach.

Our overall procedure is as follows. The first step is to replace the characteristic
function a of A by a smoothed-out version a1 whose Fourier transform is close to
that a (and thus, as can be easily shown, a1 behaves like a does when it comes to
the number of 3-term progressions). This is much the same as in [Gr, §6]; it is in
accord with the general strategy (the “uniformity strategy”) described in [Ta, §6].
We then show that the `2-norm of a1 is actually small enough that one can find a
set A′ of large density in the integers such that a1 is large on A′. This reduces the
problem over the primes to the problem over the integers.

1.2. Notation. Let N ′ be a positive integer. Let f : Z/N ′Z → C be a function in
l1(Z/N ′Z). We define the Fourier transform of f as the function

f̂ : Z/N ′Z → C
b 7→

∑
n∈Z/N ′Z f(n)e(−nb/N ′),

where we write e(x) for e2πix. We write π for the reduction map π : Z → Z/N ′Z.
Given x ∈ R, we define {x} to be the distance of x to the nearest integer. We define
‖n‖ = {n/N ′}; this works because {x} depends only on x mod 1.

Given a finite or countable set S, a function f : S → C and a parameter 0 < r <

∞, we define the `r-norm |f |r of f by |f |r =
(∑

x∈S |f(x)|r
)1/r.

1.3. Acknowledgements. Travel was funded by PIMS (Pacific Institute for the
Mathematical Sciences) and EPSRC (Engineering and Physical Sciences Research
Council). H. A. Helfgott is supported in part by EPSRC grant EP-E054919/1; A.
de Roton is partially supported by PIMS and CNRS during the 2009–2010 calendar
year. Thanks are due to J. Bourgain, for his prompt reply to some questions, to B.
Green, for inviting both authors to visit him at different times, and to I. Laba and
T. Wooley, for their constant help.
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2. From the primes to the integers

2.1. From the primes to the set {n : b+ nM is prime}. Let us first show that
we can focus on the intersection of the primes with an arithmetic progression of
large modulus, rather than work on all the primes.

Lemma 2.1. Let α, z be positive real numbers and N be a large integer. We define
M =

∏
p≤z p. Let A be a subset of the primes less than N such that |A| ≥ αN/ logN .

Then there exists some arithmetic progression P (b) = {b + nM : 1 ≤ n ≤ N/M}
such that

|P (b) ∩A| � α
log z
logN

N

M
− log z,

where the implied constant is absolute.

Proof. If (b,M) 6= 1, the set {m ∈ P (b) : m prime} is empty. Since the progressions
P (b) with (b,M) = 1 are distinct, we have∑

b:(b,M)=1

|A ∩ P (b)| = |A| − |A ∩ [1,M − 1]| ≥ α N

logN
−M.

But |{b ≤M : (b,M) = 1}| ∼ M/log z ∼ ez/ log z. Therefore there exists some
progression P (b) such that

|A ∩ P (b)| �
(
α

N

logN
−M

)
log z
M
� α

log z
logN

N

M
− log z.

�

The passage to an arithmetic progression b+nM of large modulus is exactly what
Green and Tao [GT2, p. 484] call the “W -trick” (due to Green’s use of the letter W
for M in [Gr]). Green uses the fact that such a passage removes all but the largest
peaks in the Fourier transform of the primes, whereas we simply use in a more direct
way the fact that the elements of {n : b+ nM prime} are not forbidden from having
small divisors. Of course, these are two manifestations of the same idea.

Now, we fix z = 1
3 logN , M =

∏
p≤z p, and let N ′ be the least prime larger

than d2N/Me. (The requirement N ′ > d2N/Me will ensure that no new three-term
arithmetic progressions are created when we apply the reduction map π : Z→ Z/N ′Z
to a set contained in [1, N/M ].) By Bertrand’s postulate, N ′ � N/M . Let A
be a subset of the primes less than N such that |A| ≥ αN/ logN . We assume
α ≥ (logN)N−1/2 (say) and obtain from Lemma 2.1 that there is an arithmetic
progression P (b) such that |P (b) ∩A| � α(log z/logN)N ′. We define A0 to be

(2.1) A0 = π

({
n =

m− b
M

: m ∈ P (b) ∩A
})

.

This is a subset of π({n ∈ [1, N ′] : b+ nM is prime}) satisfying
|A0| � α(log z/logN)N ′. Our task is to show that there is a non-trivial three-term
arithmetic progression in A0 ⊂ Z/N ′Z. It will follow immediately that there is a
non-trivial three-term arithmetic progression in A ⊂ Z.
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2.2. From the set {n : b+ nM is prime} to the set of integers. Let a be
the normalised characteristic function of A0, i.e., a = (logN/(N ′ log z))1A0 . Fixing
δ > 0 and ε ∈ (0, 1/4) to be chosen later, define R := {x ∈ Z/N ′Z : |â(x)| ≥ δ}∪{1}
and the Bohr set

B :=
{
n ∈ Z/N ′Z : ∀x ∈ R, ‖nx‖ ≤ ε

}
.

We also define on Z/N ′Z the functions σ = 1
|B|1B and a1 = a ∗ σ.

To begin with, we remark that |a|1 = (logN/(N ′ log z))|A0| � α and |a1|1 =
|a|1|σ|1 = |a|1. Thus |a1|1 � α, i.e., a1 is large in `1-norm. We will later show that
a1 is small in `2-norm. These bounds on the `1-norm and the `2-norm will enable
us to find a large set of integers on which a1 is � 1

N . This will enable us to reduce
the problem for large subsets of the primes to Roth’s theorem for large subsets of
the integers.

We first have to show that a1 is “close” to a in the sense that we care about,
namely – we must show that a1 is large on all three terms of many three-term
arithmetic progressions if and only if the same is true of a (i.e., if and only if A
contains many three-term arithmetic progressions). More precisely, our aim is to
bound from above the quantity

(2.2) ∆ = N ′ ·

∣∣∣∣∣∣
∑

n1, n2, n3 in AP

a(n1)a(n2)a(n3)−
∑

n1, n2, n3 in AP

a1(n1)a1(n2)a1(n3)

∣∣∣∣∣∣
where the sums

∑
n1, n2, n3 in AP are over all triples (n1, n2, n3) of elements of Z/N ′Z

in arithmetic progression. Since (n1, n2, n3) is an arithmetic progression if and only
if n1 + n3 = 2n2,

∆ =

∣∣∣∣∣∑
m

â(−2m)(â(m))2 −
∑
m

â1(−2m)(â1(m))2

∣∣∣∣∣ ,
as we can see simply by replacing all Fourier transforms by their definitions and
using the fact that

∑
m e((n1 + n3 − 2n2)m/N ′) = 0 when n1 + n3 − 2n2 6= 0.

We will show that ∆ is small, namely, ∆� ε+ δ. First note that, since a1 = a∗σ
and so â1 = âσ̂,

∆ ≤
∑
m

|â(−2m)− (â(m))2||1− σ̂(−2m)(σ̂(m))2|.

For x ∈ R, since σ is supported on B and
∑

n σ(n) = 1, we have

|σ̂(x)− 1| =

∣∣∣∣∣∣
∑

n∈Z/N ′Z

σ(n)e(nx/N ′)− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

n∈Z/N ′Z

σ(n)− 1 +
∑

n∈Z/N ′Z

σ(n)(e(nx/N ′)− 1)

∣∣∣∣∣∣
≤
∑
n∈B

σ(n)|e(nx/N ′)− 1| �
∑
n∈B

σ(n)‖nx‖ � ε.
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Similarly, for x ∈ R,

|σ̂(−2x)− 1| �
∑
n∈B

σ(n)‖ − 2nx‖ �
∑
n∈B

σ(n)ε = ε

and so

(2.3) |1− σ̂(−2x)σ̂(x)2| � ε

for x ∈ R, i.e., when |â(x)| ≥ δ.
Before we proceed further, we need to bound â in an average sense.

Lemma 2.2. For p > 2,

(2.4)
∑

m∈Z/N ′Z

|â(m)|p �p 1.

This is the same as [Gr, Lemma 6.6]; the only difference is that our function a
was defined with a much larger modulus M than in [Gr], and thus we must use a
restriction theorem for an upper-bound sieve, rather than a restriction theorem for
the primes (such as [Bo, (4.39)]).

Proof. Applying [GT, Prop. 4.2] with F (n) = b + nM and R = N ′1/10, we obtain
that, for p > 2 and any complex sequence (bn)n,

(2.5)
∑

m∈Z/N ′Z

∣∣∣∣∣ 1
N ′

N ′∑
n=1

bnβ(n)e(−mn/N ′)

∣∣∣∣∣
p

�p

(
1
N ′

N ′∑
n=1

|bn|2β(n)

)p/2
,

where β is an enveloping sieve function with R = N ′1/10. This means that, according
to [GT, Prop. 3.1], β : Z+ → R is a non-negative function satisfying the majorant
property

β(n)� S−1
F · logR · 1XR!

(n)
with

SF =
∏
p

γ(p)
1− 1/p

,

γ(p) =
1
p
|{n ∈ Z/pZ, (p, b+ nM) = 1}| =

{
(1− 1/p) if p > z

1 if p ≤ z
and

XR! = {n ∈ Z : ∀d ≤ R (b+ nM, d) = 1}.
In particular, for any integer n ∈ A0, we have n ∈ XR! and

β(n)� (logR)
∏
p≤z

(1− 1/p)−1 � logN
log z

.

We apply (2.5) to the sequence (bn)n defined by

bn =

{
1

β(n)a(n) if n ∈ A0

0 otherwise
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and get

∑
m∈Z/N ′Z

|â(m)|p = (N ′)p
∑

m∈Z/N ′Z

∣∣∣∣∣∣ 1
N ′

∑
n∈Z/N ′Z

a(n)e(−mn/N)

∣∣∣∣∣∣
p

�p (N ′)p/2

 ∑
n∈Z/N ′Z

1
β(n)

a(n)2

p/2

�p (N ′)p/2

 ∑
n∈Z/N ′Z

log z
logN

(
logN
N ′ log z

)
a(n)

p/2

�p

 ∑
n∈Z/N ′Z

a(n)

p/2

�p 1,

since a(n) was normalised so that
∑

n a(n)� 1. �

By Hölder’s inequality and Lemma 2.2, we have

∑
m∈Z/N ′Z

∣∣â(−2m)â(m)2
∣∣ ≤

 ∑
m∈Z/N ′Z

|â(m)|5/2
2/5 ∑

m∈Z/N ′Z

|â(m)|10/3

3/5

� 1.

Hence, by (2.3), ∑
m:|â(m)|≥δ

∣∣â(−2m)â(m)2
∣∣ ∣∣1− σ̂(−2m)σ̂(m)2

∣∣� ε.

On the other hand (again by Hölder, and again by Lemma 2.2),∑
m:|â(m)|<δ

∣∣â(−2m)â(m)2
∣∣ ∣∣1− σ̂(−2m)σ̂(m)2

∣∣ ≤ 2
∑

m:|â(m)|<δ

∣∣â(−2m)â(m)2
∣∣

≤ 2

 ∑
m:|â(m)|<δ

|â(m)|5/2
2/5 ∑

m:|â(m)|<δ

|â(m)|10/3

3/5

≤ 2

 ∑
m∈Z/N ′Z

|â(m)|5/2
2/5δ5/3

∑
m∈Z/N ′Z

|â(m)|5/3
3/5

� δ.

Thus

(2.6) ∆� (ε+ δ).

2.3. An upper bound for the `2-norm of a1. Our aim in this subsection is to
bound from above the `2-norm of of the function a1 = a ∗ σ. (This will later enable
us to show that a1 is in some sense close to the characteristic function of a set of
large density in the integers.) We will prove that |a1|2 � 1/

√
N ′, where the implied

constant is absolute.
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Recall that we write π for the reduction map π : Z → Z/N ′Z. Given a function
f : Z/N ′Z→ C, we can lift it to a function f̃ : Z→ C supported on
[−(N ′ − 1)/2, (N ′ − 1)/2]:

f̃(n) =

{
f(n modN ′) if n ∈ [−N ′−1

2 , N
′−1
2 ],

0 otherwise.

By the definition of A0 and a, we see that A0 ⊂ π ([1, (N ′ − 1)/2]), and thus a is
supported on π ([1, (N ′ − 1)/2]). By the definition of R, B and σ and the assumption
ε < 1/4, we see that σ is supported on π ([−N ′/4, N ′/4]). Thus |a ∗ σ|2 = |ã ∗ σ̃|2.

By the definition of a, we have 0 ≤ ã(n) ≤ λ(n), where λ : Z→ R is defined by

(2.7) λ(n) =

{
logN
N ′ log z if 1 ≤ n ≤ N ′ and b+ nM is prime
0 otherwise.

Recall that σ is non-negative, and thus σ̃ is non-negative. Hence |ã ∗ σ̃|2 ≤ |λ ∗ σ̃|2.
We conclude that

|a1|2 = |a ∗ σ|2 = |ã ∗ σ̃|2 ≤ |λ ∗ σ̃|2.
It is thus our task to prove that |λ ∗ σ̃|2 � 1/

√
N ′.

We proceed as follows:

(2.8)

∑
n

|σ̃ ∗ λ(n)|2 =
∑
n

∣∣∣∣∣∑
m

σ̃(m)λ(n−m)

∣∣∣∣∣
2

=
∑
m1

∑
m2

σ̃(m1)σ̃(m2)
∑
n

λ(n+m1)λ(n+m2),

where we recall that σ(m) = σ(−m) (by the definition of B and σ).

Lemma 2.3. Let λ be as in (2.7). Then, for any integers m1, m2,

(2.9)
∑
n

λ(n+m1)λ(n+m2)�
{

logN/(N ′ log z) if m1 = m2,
1
N ′
∏
p|(m1−m2), p>z

p
p−1 if m1 6= m2,

where the implied constant is absolute.

Proof. The case m1 = m2 follows from Brun-Titchmarsh:∑
n

λ2(n+m) =
(

logN
N ′ log z

)2 ∣∣{m ≤ n ≤ N ′ +m : b+ (n−m)M is prime }
∣∣

�
(

logN
N ′ log z

)2 N ′M

ϕ(M) logN ′

�
(

logN
N ′ log z

)2 N ′

logN ′
∏
p|M

(1− 1/p)−1

� logN
N ′ log z

.

To obtain the case m1 6= m2, we will use a result based on Selberg’s sieve. (This
is a familiar type of application of upper-bound sieves, similar to the proof that the
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number of twin primes up to N is at most a constant times its conjectured value.)
It is clear that

∑
n λ(n+m1)λ(n+m2) equals (logN/(N ′ log z))2 times

(2.10)
∣∣{1 ≤ n ≤ N ′ : b+ nM and b+ (n+m2 −m1)M are primes}

∣∣ .
By [HR, Thm. 5.7],

(2.10)�
∏
p

(
1− ρ(p)− 1

p− 1

)(
1− 1

p

)−1 N ′

(logN ′)2
,

where the implied constant is absolute. (We are implicitly using the fact that
logM � logN ′, and thus the term in the third line of [HR, (8.3)] is = 1 + o(1).)
Here ρ(p) is the number of solutions x ∈ Z/pZ to

(b+ xM)(b+ (x+m2 −m1)M) ≡ 0 mod p

for p prime. It is easy to see that ρ(p) = 0 if p|M (i.e., if p ≤ z), ρ(p) = 1 if p > z
and p|(m2 −m1), and ρ(p) = 2 if p > z and p - (m2 −m1). Hence

(2.10)�
∏
p≤z

(
1− 1

p

)−2 ∏
p>z

p|m1−m2

(
1− 1

p

)−1 N ′

(logN ′)2

�
∏
p>z

p|m1−m2

p

p− 1
N ′(log z)2

(logN ′)2
.

The statement follows. �

Let us now evaluate the last line of (2.8), with Lemma 2.3 in hand. The con-
tribution of the diagonal terms (m1 = m2) in (2.8) is � logN/(|B|N ′ log z). The
contribution of the non-diagonal terms (m1 6= m2) is

(2.11)
� 1

N ′

∑
m1

∑
m2

m2 6=m1

σ̃(m1)σ̃(m2)
∏
p>z

p|m1−m2

p

p− 1
.

Recall that σ̃ is supported on [−N ′/4, N ′/4], and thus |m2 − m1| ≤ N ′/2 < N ′

whenever σ̃(m1)σ̃(m2) 6= 0.
Now, a non-zero integer m with |m| ≤ N ′ cannot have more than logN ′/log z

prime factors p > z. Since x/(x− 1) is decreasing on x, this means that∏
p>z

p|m

p

p− 1
≤
(

z

z − 1

)(logN ′)/(log z)

.

Now (z/(z − 1))z � 1 (because limn(1 + 1/n)n = e) and

logN ′

log z
� logN

log logN
< logN � z.
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Hence ∏
p>z

p|m

p

p− 1
� 1

for any m 6= 0 with |m| ≤ N ′. Thus

(2.11)� 1
N ′

∑
m1

∑
m2

m2 6=m1

σ̃(m1)σ̃(m2)� 1
N ′
.

Putting everything together, we conclude that∑
n

|σ̃ ∗ λ(n)|2 � 1
N ′

(
logN
|B| log z

+ 1
)
.

The right side is � 1/N ′ as long as |B| � logN/ log z.
Now, as is well-known (see, e.g., [TV, Lem. 4.20]),

|B| � εrN ′,

where r = |R|. (The proof of this is a simple pigeonhole argument.) Since by (2.4)
we have

∑
m |â(m)|5/2 � 1, we know that that the set of x ∈ Z/N ′Z with |â(x)| ≥ δ

has at most � δ−5/2 elements. Thus, r � δ−5/2.
Hence all that we need for |B| ≥ logN/ log z to hold is that εδ

−5/2 ≥ N−1/2 (say).
In other words, we need | log ε| · δ−5/2 ≤ 1

2 logN . We will recall that we need to
satisfy this condition at the end.

2.4. Extracting a dense set from a1. We now have a function a1 : Z/N ′Z→ R+
0

of `2 norm � 1/
√
N ′. Its `1 norm is � α, where α is the density of our original set

A on the primes. We must show that there is a large set on which a1 is large.

Lemma 2.4. Let S be a set with N ′ elements. Let a : S → R+
0 and 0 < α < 1 be

such that
(a) ‖a‖1 ≥ α;
(b) ‖a‖22 ≤ c/N ′.

Then there exists a subset A′ of S such that
(a) |A′| ≥ α2N ′/(4c);
(b) ∀n ∈ A′, a(n) ≥ α/2N ′.

Proof. If A′ = {n : a(n) ≥ α/(2N ′)}, then

α ≤
∑
n

a(n) ≤ α

2N ′
(N ′ − |A′|) +

∑
n∈A′

a(n)

≤ α

2N ′
(N ′ − |A′|) +

√
|A′|
√

c

N ′
,

by ‖a‖2 ≤ c/N ′ and Cauchy’s inequality. In other words, f(
√
|A′|) ≤ 0, where

f(x) = α
2N ′

(
x2 − 2

√
cN ′

α x+N ′
)

. Completing the square, we see that f(x) ≤ 0
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implies x ≥
√
cN ′

α −
√(

c
α2 − 1

)
N ′. Hence

|A′| ≥ N ′ ·
(√

c

α
−
√

c

α2
− 1
)2

≥ α2N ′

4c
.

�

We apply Lemma 2 to a1 with the bound ‖a1‖22 ≤ c/N ′ being provided by our
work in §2.3. We get a subset A′ of Z/N ′Z such that |A′| ≥ α2N ′/(4c)� α2N ′ and
a1(n) ≥ α/(2N ′) for every n ∈ A′. Hence

(2.12)
∑
m,d

a1(m)a1(m+ d)a1(m+ 2d) ≥ α3Z

8N ′3
,

where Z is the number of 3-term arithmetic progressions in A′.

Lemma 2.5. Let A′ ⊂ Z/N ′Z, where N ′ is a prime. Assume |A′| ≥ ηN ′, η > 0.
The number of 3-term arithmetic progressions in A′ is then at least

ηN ′2

c0 exp
(
c1η−3/2(log(1/η))3

) ,
where c0 and c1 are absolute constants.

Proof. We will proceed much as in [Gr, Lem. 6.8]; the basic argument goes back to
Varnavides [Va]. Bourgain’s best result on three-term arithmetic progressions in the
integers [Bo3, Thm. 1] states that, for given L and η � (log logL)2(logL)−2/3, every
subset of {1, 2, . . . , L} with ≥ ηL elements contains at least one non-trivial three-
term arithmetic progression. This can be rephrased as follows: there are constants c0

and c1 such that, if L ≥ c0 exp
(
c1η
−3/2(log(1/η))3

)
, then any subset of {1, · · · , L} of

density at least η/2 contains a non-trivial three-term arithmetic progression. (Here
we are simply expressing L in terms of the density, rather than the density in terms
of L.)

It follows that, given an arithmetic progression Sa,d = {a+d, a+2d, a+3d, . . . , a+
Ld} in Z/N ′Z (a, d ∈ Z/N ′Z, d 6= 0, L ≤ N ′) whose intersection with A′ has at least
(η/2)L elements, there is at least one non-trivial three-term arithmetic progression in
A′∩S ⊂ Z/N ′Z. (Note that there is no need for the progression S to be the reduction
mod N ′ of a progression in the integers {1, 2, . . . , N ′}; the argument works regardless
of this.) If we consider all arithmetic progressions of length L and given modulus
d 6= 0 in Z/N ′Z, we see that each element of A′ is contained in exactly L of them.
Hence,

∑
a |Sa,d ∩A′| = L|A′| ≥ ηN ′L, and so (for d 6= 0 fixed) |Sa,d ∩A′| ≥ (η/2)L

for at least (η/2)N ′ values of a. Varying d, we get that |Sa,d∩A′| ≥ (η/2)L for at least
(η/2)N ′(N ′ − 1) arithmetic progressions Sa,d. By the above, each such intersection
Sa,d ∩A′ contains at least one non-trivial three-term arithmetic progression.

Each non-trivial three-term arithmetic progression a1, a2, a3 in Z/N ′Z can be con-
tained in at most L(L−1) arithmetic progressions {a+d, a+2d, . . . , a+Ld} of length
L (the indices of a1 and a2 in the progression of length L determine the progres-
sion). Hence, when we count the three-term arithmetic progressions coming from
the intersections Sa,d ∩A′, we are counting each such progression at most L(L− 1)
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times. Thus we have shown that A′ contains at least
(η/2)(N ′(N ′ − 1))/(L(L− 1)) ≥ (η/2)(N ′/L)2 distinct non-trivial three-term arith-
metic progressions for L =

⌈
c0 exp

(
c1η
−3/2(log(1/δ))3

)⌉
, provided that L ≤ N ′. If

L > N ′, the bound in the statement of the lemma is trivially true (as there is always
at least one trivial three-term arithmetic progression in A′.) �

From (2.12) and Lemma 2.5, we conclude that
(2.13)∑

m,d

a1(m)a1(m+ d)a1(m+ 2d) ≥ α3

8N ′3
α2

8c
(N ′)2

c0 exp(c1

(
α2/4c)−3/2(log(4c/α2))3

)
≥ 1
N ′

1
c2 exp (c3α−3(log(1/α))3)

,

where c2, c3 > 0 are absolute constants.

3. Conclusion

Assume that A contains no non-trivial three-term arithmetic progressions. Then
A0 (defined in (2.1)) contains no non-trivial three term arithmetic progressions, and
so ∑

m,d

a(m)a(m+ d)a(m+ 2d) =
∑
m,d

a(m)3 �
(

logN
N ′ log z

)2

.

We also have

∆ = N ′

∣∣∣∣∣∣
∑
m,d

a(m)a(m+ d)a(m+ 2d)−
∑
m,d

a1(m)a1(m+ d)1(m+ 2d)

∣∣∣∣∣∣� (ε+ δ),

by the definition (2.2) and (2.6). Lastly, we have just shown that∑
m,d

a1(m)a1(m+ d)a1(m+ 2d) ≥ 1
N ′

1
c2 exp (c3α−3(log(1/α))3)

(see (2.13)). We conclude that

(3.1)
1

c2 exp (c3α−3(log(1/α))3)
� ε+ δ +

1
N ′

(
logN
log z

)2

.

Recall that z = (logN)/3. There are constants c4, c5 such that, for

δ = ε =
1
c4

exp
(
−c5α

−3 log3(1/α)
)
,

we get a contradiction with (3.1), provided that N is larger than an absolute constant
and α ≥ (logN)−1/4, say. These values of δ and ε satisfy | log ε|δ−2.5 ≤ (logN)/2 as
long as (

log(c4) + c5α
−3 log3(1/α)

)
· c2.5

4 exp
(
2.5c5α

−3 log3(1/α)
)
≤ 1

2
logN.
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Therefore we have a contradiction if α ≥ Clog log logN (log logN)−1/3, where C is
a large enough constant and N is larger than an absolute constant. Theorem 1.1 is
thereby proven.
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[vdC] van der Corput, J. G., Über Summen von Primzahlen und Primzahlquadraten, Math. Ann.
116 (1939), 1-50.

[Va] Varnavides, P., On certain sets of positive density, J. London Math. Soc. 34 (1959) 358–360.

H. A. Helfgott, Department of Mathematics, University of Bristol, Bristol BS8
1TW, United Kingdom

E-mail address: h.andres.helfgott@bristol.ac.uk

A. de Roton, Institut Elie Cartan, UMR 7502, Nancy-Université, CNRS, INRIA,
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