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Abstract 
Magic-angle spinning solid-state NMR spectroscopy is an important technique to study mo-

lecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecu-

lar sciences. Here we provide an overview of experimental approaches to study molecular dy-

namics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts 

and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical 

foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin re-

laxation in solid samples under magic-angle spinning. We discuss the range of validity of 

Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Ex-

perimental challenges for measuring relaxation parameters in MAS solid-state NMR and a 

few recently proposed relaxation approaches are discussed, which provide information about 

time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also 

discuss the theoretical basis and experimental measurements of anisotropic interactions 

(chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct infor-

mation about the amplitude of motions. The potential of combining relaxation data with such 

measurements of dynamically-averaged anisotropic interactions is discussed. Although the 

focus of this review is on the theoretical foundations of dynamics studies rather than their ap-

plication, we close by discussing a small number of recent dynamics studies, where the dy-

namic properties of proteins in crystals are compared to those in solution.  
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1  Introduction 

Among the unique strengths of nuclear magnetic resonance (NMR) spectroscopy is its ability 

to probe molecular motion with atomic resolution in solution, solids and in the gas phase. In 

structural biology, solution-state NMR plays a central role in elucidating not only three-

dimensional structures of proteins, nucleic acids and their complexes, but also in 

characterizing how these molecules fluctuate around their equilibrium positions, and how they 

change over time under non-equilibrium conditions. Over the last decades a wide array of 

techniques have been developed to study (bio-)molecular dynamics by solution-state NMR 

spectroscopy. Nowadays, a range of different aspects of dynamics can be probed routinely by 

solution-state NMR, such as the amplitude of fast (picosecond-to-nanosecond) internal 

motion, properties of overall rotational tumbling as well as exchange processes occurring on 

millisecond time scales, often involving a small number of distinct states [1-5]. In addition to 

these equilibrium experiments, kinetic off-equilibrium approaches are available to study 

processes such as slow folding/unfolding and binding [6-8]. 

Even though solution-state NMR has proven to be a very powerful tool for studying 

various aspects of biomolecular structure, dynamics and function, it has several inherent 

limitations. (i) Solution-state NMR studies get more challenging as the molecules become 

larger. The slower overall tumbling leads to a rapid decay of the signal, leading to decreased 

resolution and sensitivity. (ii) Molecules to be studied by solution-state NMR need to be 

soluble at sufficient concentration. For many molecular systems of biological interest these 

two points cannot easily be met: many interesting biological processes involve large 

assemblies of molecules or molecules in lipid bilayers, which are hardly amenable to solution-

state preparations. (iii) Internal dynamics that is slower than the overall tumbling cannot be 

detected by relaxation measurements, which hinders the study of nanosecond-microsecond 

motions.  

Magic-angle spinning (MAS) solid-state NMR does not have these inherent limitations 

of increasing line width with increasing molecular size, and is sensitive to all time scales 

without “blind spots”. However, MAS solid-state NMR spectra tend to have broader lines due 

to incomplete averaging of anisotropic interactions and distribution of chemical shifts. This 
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leads to a crowding in multi-dimensional spectra especially for larger molecules with a large 

number of resonances. Advances in NMR hardware, sample preparation and isotope-labeling 

schemes, as well as development of new spectroscopic approaches have led to significant 

improvements in resolution and sensitivity allowing the determination of atomic-resolution 

structures of proteins and nucleic acids of increasing size and complexity [9-14]. This is 

particularly interesting since MAS solid-state NMR can study proteins, which are either non-

crystalline, and thus not accessible to X-ray-diffraction methods, and/or insoluble or too large 

to be studied by solution-state NMR. Solid-state NMR has, therefore, opened new fields of 

applications to structural biology, providing atomic-resolution insight into fibrils, membrane 

proteins, complexes of biomolecules in the context of their native environment, such as bound 

to cell walls, membranes or cell organelles [15-17]. In addition to studying structure, solid-

state NMR spectroscopy has also been used for over 30 years to gain information about 

dynamical aspects of biomolecules [18,19]. However, many questions can only now be 

addressed, due to the increased capabilities of MAS solid-state NMR to provide atomic 

resolution at sufficient sensitivity for larger molecules. Examples of such questions are: What 

can we learn about the dynamics-function relationship in membrane proteins or large 

molecular assemblies? Which molecular rearrangements do membrane transporters undergo 

in their native lipid-bilayer environment? How do molecules interact with entire cell 

organelles or cell walls? In addition to these biological questions, there are also more 

fundamental biophysical questions that solid-state NMR could help resolving, e.g.: How do 

proteins move in crystalline lattices? Does the crystalline packing impact their internal 

motion, compared to the solution state? How do proteins move at very low temperatures? 

Triggered by these perspectives and possibilities of MAS solid-state NMR, interesting 

methodological developments and applications have been reported over the last decade. The 

present article aims at outlining the theoretical basis for dynamics measurements, and 

illustrating some recent applications. 

This review is organized as follows. Following a basic and more qualitative overview 

aimed at readers who are not yet familiar with the field (Section 1.1), Section 2 revisits the 

theoretical foundation of nuclear spin relaxation (Redfield theory), with a particular emphasis 

on relaxation in rotating solids. We briefly show the derivation of the master equation of 

Redfield relaxation theory and highlight the parts of the derivation where solid-state NMR is 
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distinct from the solution-state case. Section 3 focuses on ways to measure different 

longitudinal and transverse relaxation parameters and motional-averaged anisotropic 

interactions, as well as the information one can obtain by combining different experimental 

observables. We also investigate the validity of Redfield theory in solid-state NMR. Section 4 

discusses some recent applications of biomolecular dynamics studies by solid-state NMR. 

Given the space limitations, we deliberately focus only on one question, namely the dynamics 

in crystalline proteins, and how crystal packing possibly impacts dynamics. Many of the other 

exciting applications of dynamics studies cannot be treated in this review. In this review we 

focus on spin-1/2 nuclei, and deliberately omit methods that use quadrupolar couplings, such 

as deuterium relaxation and line shape analysis. These approaches, (for biomolecules in 

particular deuterium-based experiments), have been reviewed elsewhere [19-23]. For 

additional complementary views of (bio-)molecular dynamics studied by solution- or solid-

state NMR spectroscopy, we refer the reader to existing reviews [3,5,23-30].  

1.1  General Overview of Observables Reporting on Dynamics in Solid-

State NMR  

Determining structure and dynamics of molecules using NMR methods relies on the sensitivi-

ty of NMR parameters to their local environment. Therefore, we would first like to review the 

relevant NMR interactions in diamagnetic (bio-)molecules which are listed in Figure 1a, sort-

ed roughly according to their typical interaction strengths. The NMR interactions can be di-

vided into spin-field interactions (Zeeman, magnetic susceptibility, chemical shift, and radio-

frequency fields) and spin-spin interactions (isotropic J coupling, dipolar coupling, quadrupo-

lar coupling).  

The strongest interaction in high-field NMR is almost always the Zeeman interaction, 

i.e. the interaction of the spin with the applied external static magnetic field B0. It gives rise to 

a precession of nuclear spins about the external magnetic field at the Larmor frequency ν0 = 

ω0/(2π) = -γB0/(2π) and is typically in the range of tens of MHz to about 1 GHz. The Zeeman 

interaction is the same for all nuclei of a given type and does not provide any direct 

information about structure or dynamics. The electrons around a nucleus lead to a shielding or 

de-shielding of the effective field experienced by the nucleus relative to a reference substance 
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and, therefore, modify the precession frequency of the spins. The interaction between the 

nucleus and the induced fields are typically divided into a part that is homogeneous over the 

material (susceptibility) and a part that is varying on an atomic length scale which is called 

chemical shielding or chemical shift. The electronic environment around a nucleus has in 

general a low symmetry and the chemical shift is an anisotropic interaction, i.e., it depends on 

the orientation of the molecule with the external field. The chemical shift can be described in 

Cartesian coordinates by a general 3x3 matrix which can be decomposed into its isotropic part 

corresponding to the trace of the matrix, the first-rank tensor part corresponding to the anti-

symmetric part of the matrix and the second-rank tensor part corresponding to the traceless 

symmetric part of the matrix. The anisotropic orientation-dependent first-rank tensor part is 

almost always neglected since it is not directly visible in NMR spectra. Both the isotropic part 

and the anisotropic orientation-dependent second-rank tensor part can provide information 

about structure and dynamics. 

Spin-1/2 nuclei experience two types of spin-spin interactions. The scalar coupling is a 

through-bond coupling that is mediated by the electrons in the bond(s) that connect the 

involved nuclear spins. The scalar coupling can be described in Cartesian coordinates like the 

chemical shift by a general 3x3 matrix and has isotropic and anisotropic components. The 

anisotropic parts are almost always neglected and it is assumed that the scalar coupling is an 

isotropic quantity. The second-rank anisotropic part of the J coupling has the same functional 

form as the dipolar coupling. Since it is typically much smaller than the dipolar coupling, it is 

often absorbed into the dipolar coupling leading to a small error in the distance derived from 

the dipolar coupling [31]. Scalar J couplings depend on the local geometry and can provide 

information about structure and dynamics. The dipolar coupling is the direct through-space 

interaction between two nuclear spins. The dipolar coupling has no isotropic but only a 

second-rank tensor component and is, therefore, also orientation dependent, i.e., the coupling 

between two spins depends on the angle between the inter-atomic vector and the magnetic 

field B0. Its magnitude depends on the inverse third power of the distance between the two 

nuclei. Dipolar couplings are the most direct source of structural and dynamic information 

available in NMR spectroscopy. In quadrupolar nuclei, i.e., nuclei with a spin-quantum 

number of I > 1/2 (2H (I = 1), 14N (I = 1), 17O (I = 5/2), there is an additional interaction of the 

quadrupolar moment with the electric-field gradient. Similar to the dipolar coupling, the 
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quadrupolar interaction has no isotropic component and is purely described by an anisotropic 

second-rank tensor.  

The relative strengths of these interactions are shown in Figure 1: quadrupolar couplings are 

often large, and for the nucleus that is of primary relevance in biomolecular systems, deuteri-

um (2H), it has a strength (i.e., an anisotropy of the tensor, see Section 3.4 for definitions) of 

about 200 kHz. The dipolar coupling has an anisotropy in the range of a few kHz to tens of 

kHz for directly bound nuclei, while typical CSA anisotropies are on the order of several kHz 

for biomolecules. The range of isotropic chemical shifts for a given category of nucleus (e.g. 

amide-1H or carbonyl-13C or amide-15N) is of the order of several ppm for 1H and 13C spins, 

and about 20-30 ppm for 15N; this range typically corresponds to a range of hundreds of Hz to 

several kHz on the frequency scale. Scalar-coupling constants are typically on the order of 

less than 200 Hz. 

Dynamic processes in molecules lead to a modulation of NMR parameters as a 

function of time since they depend on the local environment. Any nucleus samples different 

states with different local environments, distances between atoms, relative orientations, or 

bond geometries – and thus different isotropic and anisotropic chemical shifts, quadrupolar 

couplings, dipolar couplings, and scalar couplings. All these different time-dependent 

quantities can be used to gain information about the magnitude and time scale and in 

favorable cases also about the type of motion. There are several ways how this information 

can be obtained from NMR spectra. 

The first class of experiments to measure dynamics applies to cases where the motion 

is slow compared to the interaction strength under consideration (Figure 1c). The most 

prominent example here is the case of exchange between states with different isotropic 

chemical shifts. If the exchange is slow, i.e., if the rate of exchange is much slower than the 

chemical-shift difference (in angular frequencies) between the states, then one observes 

distinct resonance frequencies corresponding to the individual states. Exchange spectroscopy 

(EXSY) [32] or chemical-exchange saturation transfer (CEST) [33,34] experiments allow 

elucidating the dynamic processes between the different states. As isotropic chemical-shift 

averaging in solids is identical to solution-state NMR, we will not treat such experiments in 

this review, and refer the reader to literature on this topic [35]. In the solid state, it is possible 
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to extend the concept of exchange spectroscopy also to anisotropic interactions, i.e., to 

dipolar-coupling and anisotropic chemical-shift interactions. The so-called CODEX 

experiments [36-39] probe the slow exchange of states with different CSA or dipolar 

couplings. These techniques are not within the scope of this review, and have been treated 

elsewhere [27]. 

If the dynamic process becomes faster and is on a time scale comparable to the 

interaction strength, a situation often called "intermediate exchange" regime, one can observe 

line broadening (see Figure 1d). This is well known and exploited for the case of isotropic 

chemical-shift exchange. If an exchange process occurs at a rate that is comparable to the 

chemical-shift difference between the involved states, i.e. kex ≈ |ΔΩ|, the exchange process 

leads to broadening of the peaks. In the slow-to-intermediate regime (kex ≲ |ΔΩ|) one may 

observe separate lines for each state, each broadened by the exchange, while if the exchange 

occurs on the fast-to-intermediate time scale, a single frequency (the population-weighted 

averaged between the two conformations) is observed, but it is broadened due to exchange. 

By quantitatively measuring the line broadening, one can obtain detailed information about 

the underlying process, even if one of the exchanging states has only a small population of 

few percent and cannot be observed directly in the spectrum. In solution-state NMR, so-called 

relaxation-dispersion experiments (CPMG or R1ρ relaxation dispersion) have been developed 

and applied very successfully to biomolecules, being used over the last two decades to gain 

insight into low-populated states, such as folding intermediates or marginally populated 

alternative conformers of proteins [1,40-43]. Recent studies that probe conformational 

exchange in the solid state, based on isotropic chemical-shift fluctuations, are discussed in 

Sections 3.3.3 and 3.3.4 [44,45]. Unlike in solution, where anisotropic interactions are 

averaged out by fast molecular tumbling, exchange in the solid state can also occur in the 

“intermediate regime” with respect to dipolar couplings or CSA interactions. In Section 3.4 

we show using simulations that the dipolar powder patterns are broadened if the exchange 

occurs on a time scale of microseconds similar to the exchange broadening of isotropic lines 

in liquids. In this exchange regime, one can observe interference between the various time-

dependent processes present in a MAS solid-state NMR experiment: magic-angle spinning (at 

frequencies of tens of kilohertz), radio-frequency irradiation (at up to ~100 kHz nutation 
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frequencies) and dynamic processes on the time scale of microseconds. Examples for such 

interference effects are found in R1ρ experiments (discussed in Section 3.3.4). 

For even faster processes where the dynamics are fast relative to the strength of a 

given interaction, the interaction is averaged, i.e., the NMR parameter one can observe is the 

average over all the sampled states. The best-known example in this context is the averaging 

of the isotropic chemical shift in the fast-exchange regime. If a spin exchanges between states 

in which it has different isotropic chemical shifts, the observable chemical shift is the 

population-weighted averaged over these states. The criterion for this averaging is that the 

rate of dynamic exchange (in s-1) is much faster than the isotropic chemical-shift difference 

between the involved states (in angular frequencies). The same principles apply also to the 

anisotropic interactions. The anisotropic interactions considered here (dipolar couplings and 

the anisotropy of the chemical shift) have typical interaction strengths of several kilohertz, 

and are thus averaged by motion occurring on time scales shorter than tens of microseconds 

(see Figure 1b). For quadrupolar couplings, which are often significantly larger, the time scale 

over which averaging occurs is, accordingly, shorter. Purely second-rank interactions like the 

dipolar coupling, quadrupolar coupling and (the anisotropic part of the) chemical-shift tensors 

have an isotropic average of zero. As a consequence of this, in isotropic solution the 

anisotropic interactions are all averaged to zero by the overall molecular tumbling. 

Consequently, one cannot obtain any information about internal motion from the averaged 

anisotropic interactions, as they are averaged to zero even without internal motion. In 

contrast, in the solid state the overall tumbling is absent. In solid-state NMR, the anisotropic 

interactions are averaged out by MAS, which is a continuous and deterministic rotation at 

constant frequency. We use the term deterministic here and throughout this review to 

distinguish such processes (e.g., sample rotation) from stochastic processes (e.g., Brownian 

motion in liquids or methyl rotation). While the former show a predictable and uniform 

behavior, the latter are random and vary over the ensemble of spins. Through the use of 

recoupling sequences MAS averaging can be (partially) cancelled, such that one can measure 

the anisotropic interactions in MAS solid-state NMR (see Section 3.4). Comparing the 

observed interaction strength to the expected one for the rigid-limit case provides direct 

access to the amplitude of the motion underlying the averaging. This works best for dipolar 

couplings where the rigid-limit value can easily be calculated from the distance of the two 
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nuclei. For CSA tensors and quadrupolar couplings, quantum-chemical calculations have to 

be used to obtain a good estimate of the rigid-limit value. In Section 3.4 we discuss in detail 

the information that can be obtained from partially averaged anisotropic interactions and ways 

to measure them. We also show the transition from the fast regime through an intermediate 

regime to the slow regime on the dipolar-coupling time scale. 

In the fast motion limit, one can use second-order perturbation theory to calculate the 

line broadening induced by the time-dependent modulation of the interactions (see Figure 1e). 

The most common form used in NMR is Redfield relaxation theory (see Section 2) [46-48]. 

Nuclear spin relaxation is induced by the presence of a fluctuating magnetic field at the 

location of the nucleus. Many processes can generate fluctuating local magnetic fields. In our 

context, reorientation of orientation-dependent interactions, i.e., dipolar couplings, chemical-

shift anisotropies, or quadrupolar couplings are the most important source. Nuclear spin 

relaxation drives the spin system back to thermal equilibrium where the density operator can 

be described by Boltzmann distribution of the diagonal elements. The rate of these relaxation 

processes depends on the amplitude of the magnetic-field fluctuation, i.e., the amplitude of 

motion and the magnitude of the interaction. Furthermore, the efficiency of the relaxation 

process depends on the time scale of the dynamic process. The rate constants of nuclear spin 

relaxation contain, therefore, information not only about the amplitude but also about the time 

scale of the motional process. For longitudinal relaxation, i.e., the relaxation that re-

establishes the Boltzmann equilibrium of the diagonal elements of the density operator 

(populations), the relevant frequencies correspond to the Larmor frequencies of the involved 

nuclei (picosecond-to-nanosecond time scales). Transverse relaxation, i.e., the decay of off-

diagonal elements of the density operator (coherence), is also sensitive to slower motion, i.e. 

motions on time scales of nanoseconds to milliseconds. The theory of relaxation and use of 

relaxation parameters are discussed in detail in Sections 2 and 3. 

It is instructive to consider the differences between dynamics measurements in 

solution and in the solid state. In solution, molecules tumble rapidly and isotropically on time 

scales of picoseconds to nanoseconds. As a consequence, all anisotropic interactions are 

averaged to zero, leading to high-resolution spectra. In the solid state, molecules are static and 

in a solid sample dipolar-coupling and chemical-shift interactions lead to very broad spectral 
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features, generally tens of kilohertz large. This broadening is usually larger than the isotropic 

chemical-shift range, which makes it impossible to obtain any atomic-resolution information. 

Magic-angle spinning (MAS) is the method of choice to average the anisotropic interactions 

in order to get back spectral resolution. In a first-order average-Hamiltonian treatment, MAS 

completely averages these interactions to zero, leading to high-resolution spectra. However, in 

many cases the averaging by MAS is incomplete since higher-order terms lead to a residual 

line broadening (see Section 3.1). Thus, the way anisotropic interactions are averaged in 

solution and in solids is fundamentally different: while it is stochastic and fast (nanoseconds) 

in solution, it is due to a periodic deterministic process of sample rotation on a microsecond 

time scale in MAS solid-state NMR. These differences have important consequences for the 

measurement of dynamic properties. First, in solution the anisotropic interactions are 

averaged to zero by overall molecular motion, and they do, therefore, not lead to any 

observable splitting in NMR spectra. Consequently, the averaging of these interactions by 

restricted internal motion is not visible, as they are already fully averaged by overall motion. 

In contrast, in MAS solid-state NMR these interactions are only rendered time-dependent in a 

deterministic manner, and by use of appropriate recoupling sequences the anisotropic 

interactions can be measured. The amount of averaging seen in such measurements provides 

rich information about motion (see Figure 1b and Section 3.4). Furthermore, in solution the 

isotropic overall molecular tumbling leads to a decay of all correlation functions to zero on a 

time scale of nanoseconds. Consequently, internal motion that occurs on time scales slower 

than the overall tumbling (i.e., on nanosecond-to-microsecond time scales) becomes invisible 

to solution-state NMR relaxation studies. This is in contrast to MAS solid-state NMR where 

overall motion is absent, and where relaxation parameters are sensitive to motions from 

picoseconds to milliseconds. The fact that the averaging process – MAS – is controlled by the 

spectroscopist, rather than by random Brownian motion also offers opportunities that are not 

accessible in solution: there may be interference effects between the dynamic process, MAS 

and possibly also an applied RF field, and this interference can be exploited to obtain 

information about the dynamic process (see e.g. Section 3.3.3).  

We note, thus, that solid-state NMR provides more ways to obtain information about 

dynamics than solution-state NMR, in the sense that it has more observables, e.g., partially 

averaged anisotropic interactions, and that internal molecular motions occurring on a wider 
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range of time scales can be probed by relaxation measurements. There are, however, also a 

number of challenges in the measurement and interpretation of dynamics data from MAS 

solid-state NMR. In particular, as we will discuss in Section 3.1, the time evolution of the 

density operator in solids is generally due to (i) relaxation (which is due to dynamic properties 

of the molecule) and (ii) coherent interactions, which are not perfectly averaged by MAS, 

such as so-called dipolar dephasing and spin diffusion (see Figure 1f). The latter is unrelated 

to molecular motion, and it may lead to faster evolution of elements in the density operator 

than the actual relaxation process, such that evolution due to the dynamic process is masked. 

Measuring relaxation in MAS solid-state NMR is, therefore, challenging, and the obtained 

rate constants are prone to systematic errors, as contributions not related to dynamics may 

dominate the measured rate constants and line widths. Another point requires attention when 

interpreting relaxation data in solids: in the derivation of Redfield theory, which is used 

generally for quantitative analysis of relaxation, the assumption is made that the process 

causing relaxation is fast (see Section 2 for details). In solution state this is almost always 

true, due to the fast overall tumbling. As the tumbling is absent in solids, and the motional 

process slow, one needs to question the validity of this theory. We investigate this question in 

Section 2, and in more detail in 3.3.5. 

2  Relaxation Theory 

2.1  Summary of Redfield Relaxation Theory 

2.1.1  Semi-Classical Derivation of the Master Equation 

In this section we give a short summary of the derivation of semi-classical relaxation 

theory as formulated by Wangsness, Bloch, and Redfield (WBR theory) [46-48]. For a 

detailed derivation and discussion and more details we refer the interested reader to the 

secondary literature about spin relaxation [25,49-53]. The full system Hamiltonian in the 

laboratory frame is written as  
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  H (t) = H 0 (t)+H 1(t)   (1) 

where the deterministic Hamiltonian  H 0 (t)  in the laboratory frame usually consists of a 

static part (Zeeman interaction and isotropic interactions) and a time-dependent part that 
represents the radio-frequency irradiation of the spins. The stochastic Hamiltonian  H 1(t)  

contains the time-dependent interactions due to the stochastic processes, which can in addition 

be modulated by magic-angle spinning (MAS). The modulation of the Hamiltonian by 

stochastic processes are the source of relaxation phenomena. In the following we will neglect 

the time-dependent part of the deterministic Hamiltonian for the derivation of the master 

equation and discuss the influence of magic-angle spinning and radio-frequency terms at a 

later stage without detailed derivation. 

The Liouville-von-Neumann equation  

 
 

d
dt
σ (t) = −i H(t),σ (t)[ ]   (2) 

describes the time-evolution of the density operator σ (t)  in the laboratory frame. To isolate 

the effect of the stochastic part of the Hamiltonian on the density operator, we transform the 

Hamiltonian into an interaction-frame representation, which eliminates the deterministic 
Hamiltonian  H 0 (t) . An operator Q in the laboratory frame is transformed into the interaction 

frame according to 

   
!Q(t) = eiH 0tQe− iH 0t   (3) 

Here, the notation '~' over an operator indicates that it is in the interaction frame. The 

modified Liouville-von-Neumann equation in the interaction frame is given by 

 
  

d
dt
!σ (t) = −i !H 1(t), !σ (t)⎡⎣ ⎤⎦   (4) 

and no longer contains the deterministic part of the Hamiltonian  H 0  explicitly. 

A formal integration of the Liouville-von-Neumann equation leads to 

 
  
!σ (t) = !σ (0)− i !H 1( ′t ), !σ ( ′t )⎡⎣ ⎤⎦d ′t

0

t

∫  . (5) 

We can now insert Eq. (5) into the right-hand side of Eq. (4) and obtain 
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d
dt
!σ (t) = −i !H 1(t), !σ (0)⎡⎣ ⎤⎦ −

!H 1(t),
!H 1( ′t ), !σ ( ′t )⎡⎣ ⎤⎦⎡⎣ ⎤⎦d ′t

0

t

∫  . (6) 

After a variable substitution using ′t = t −τ , d ′t = −dτ  and adjusting the integration 

boundaries we obtain 

 
  

d
dt
!σ (t) = −i !H 1(t), !σ (0)⎡⎣ ⎤⎦ −

!H 1(t),
!H 1(t - τ ), !σ (t −τ )⎡⎣ ⎤⎦⎡⎣ ⎤⎦dτ

0

t

∫  . (7) 

At this point, we have to introduce two modifications into Eq. (7):  

(i) We take an ensemble average over all terms. This is necessary despite the fact that the 

density operator represents already an ensemble average because the stochastic Hamiltonian 

 H 1(t)  is a random function of time and space and different parts of the system will evolve 

differently under the stochastic Hamiltonian leading to differences in the time evolutions of 
the density operator. We require that  H 1(t)  describes a bias-free perturbation, i.e., the 

ensemble average  H 1(t) = 0 . As a consequence of this the first term of Eq. (7) becomes zero 

under the ensemble average and can be dropped.  
(ii) We replace  !σ (t −τ )  by  

!σ (t −τ )−σ eq  where σ eq  describes the thermal equilibrium of the 

spin system. This modification is needed because the lattice has a finite temperature while we 

have assumed no temperature in our model and identical absorption and emission 

probabilities. We end up with 

 
  

d
dt
!σ (t) = − !H 1(t),

!H 1(t - τ ), !σ (t −τ )−σ eq
⎡⎣ ⎤⎦

⎡
⎣

⎤
⎦dτ

0

t

∫   (8) 

where the overbar represents the ensemble average. So far the derivation of the master 

equation is rigorous except for the ad-hoc introduction of the thermal-equilibrium density 

operator. 

At this point we have to make an assumption about the time scale of the stochastic 

process that leads to random fluctuations of the local fields. We assume that the time scale of 

the random fluctuations described by τ is much shorter than the variation in  !σ  which is on the 

time scale of t. This assumption is sometimes referred to as the “weak collision” limit or 

Redfield limit since we assume that each event that leads to relaxation will change the state of 

the system only weakly and many events are required before a change in the density operator 

can be observed. An alternative, related formulation of the weak collision limit is that the 
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characteristic frequency of the relevant interaction is small compared to the time scale of the 

motion that modulates this interaction [52]. It is important to keep this weak-collision limit in 

mind, in particular when dealing with relaxation in solids. In solution state NMR, this 

assumption is typically fulfilled because the molecular tumbling is generally on a much 

shorter time scale than the relaxation process since slow tumbling leads to broad lines that are 

unobservable. In solids, where molecular tumbling is absent, the validity of Redfield theory 

has to be evaluated carefully in each case especially for transverse relaxation rates that are 

sensitive to slow motions. We will address this question further in section 3.3.5.  

Under this assumption we can replace  !σ (t −τ )  by  !σ (t)  in the right-hand side of Eq. 

(8) and drop the overbar on the left-hand side of Eq. (8). We can then also replace the upper 

integration boundary by infinity since τ « t. This leads to the master equation for relaxation in 

the interaction-frame representation given by 

 
  

d
dt
!σ (t) = − !H 1(t),

!H 1(t - τ ), !σ (t)−σ eq
⎡⎣ ⎤⎦

⎡
⎣

⎤
⎦dτ

0

∞

∫  . (9) 

We transform now the Eq. (9) back into the laboratory frame leading to the master 

equation for relaxation in the laboratory frame 

 

 

d
dt
σ (t) = −i H 0(t),σ (t)⎡⎣ ⎤⎦ − H 1(t), e

− iH 0τH 1(t - τ )eiH 0τ ,σ (t)−σ eq⎡⎣ ⎤⎦⎡⎣ ⎤⎦dτ
0

∞

∫
= −i H 0(t),σ (t)⎡⎣ ⎤⎦ − Γ̂ σ (t)−σ eq{ }

  (10) 

where the relaxation super operator Γ̂  is defined by 

 
 
Γ̂ Q{ } = H 1(t), e

− iH 0τH 1(t - τ )eiH 0τ ,Q⎡⎣ ⎤⎦⎡⎣ ⎤⎦dτ
0

∞

∫  . (11) 

Using the commutator super operator  Ĥ 0 (t)  leads to the equivalent formulation 

 
 

d
dt
σ (t) = −iĤ 0(t)σ (t)− Γ̂ σ (t)−σ eq{ } = L̂σ (t)+ Γ̂σ eq  . (12)  

2.1.2  Operator Formulation of Relaxation Theory 

Many relaxation processes are induced by the random rotation (rotational diffusion) or 

the internal mobility of the molecules. Treating rotations is facilitated by choosing an adapted 
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basis for expressing the interactions. While the Cartesian basis would make the treatment of 

rotations mathematically complicated, the spherical-tensor basis [54,55] is ideally suited for 
describing rotations. We, thus, write the Hamiltonian  H 1(t)  in spherical-tensor notation as 

 
  
H 1(t) = −1( )m Aℓ,−m

µ( ) t( )Tℓ,m
µ( )

m=−ℓ

ℓ

∑
ℓ
∑

µ
∑   (13) 

where the  Aℓ,−m
µ( ) t( )  are the space-tensor components and the  Tℓ,m

µ( )  are the spin-tensor 

components of the interaction (μ) with rank ℓ [55]. The parameter m is the magnetic quantum 

number characterizing the component of the tensor. After some transformations, one obtains 
the final form of the relaxation super operator, Γ̂ Q{ }which describes the transformation of a 

spin operator Q under the action of the relaxation super operator 

 
 
Γ̂ Q{ } = 1

2
−1( )m+ ′m

m, ′m
∑

ℓ, ′ℓ
∑

µ , ′µ
∑ Jℓ, ′ℓ ,−m,− ′m

µ , ′µ( ) ω ′p( )
′p
∑ Tℓ,m

µ( ), V ′p
′µ( ),Q⎡⎣ ⎤⎦⎡⎣ ⎤⎦  . (14) 

Here, the operators V ′p
′µ( )  are an expansion of the spherical-tensor operators  T ′ℓ , ′m

′µ( )  in terms of 

eigenoperators of the Hamiltonian commutator super operator  Ĥ 0 , i.e., 

  Ĥ 0V ′p
′µ( ) =ω ′p V ′p

′µ( )   (15) 

and 
 
T ′ℓ , ′m

′µ( ) = V ′p
′µ( )

′p
∑ . The double commutator of the spin part selects the relaxation pathways 

that are allowed by the interactions (μ) and (μ') and the operator V ′p
′µ( )  determines the 

frequency ω ′p . The spectral-density functions 
 
Jℓ, ′ℓ ,−m,− ′m

µ , ′µ( ) ω ′p( )  are the Fourier transform of the 

correlation functions and are defined as 

 
 
Jℓ, ′ℓ ,−m,− ′m

µ , ′µ( ) ω( ) = Cℓ, ′ℓ ,−m,− ′m
µ , ′µ( ) τ( )eiωτ dτ =

−∞

∞

∫ Aℓ,−m
µ( ) t( ) A ′ℓ ,− ′m

′µ( ) t −τ( )( )*eiωτ dτ
−∞

∞

∫   (16) 

The spatial part characterizes the stochastic process and determines the strength of the 

relaxation pathway. Since the auto- and cross-relaxation processes of different operators Q are 

sensitive to the spectral-density function at different frequencies, the different relaxation-rate 

constants are sensitive to motions on different time scales. Because the integration in Eq. (11) 

extends only from zero to infinity, there can also be an imaginary component to the spectral-

density function that causes (small) dynamic-frequency shifts [24,25,52,56,57]. For simplicity 

we have neglected this part in the discussion here. 
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Note that the indices μ and μ' in Eqs. (14) to (16) can, in principle, represent two 

different interactions. In this case the relaxation process is referred to as cross-correlated 

relaxation; we will deal with cross-correlated relaxation between a dipolar coupling and a 

CSA tensor, as well as two different CSA tensors in Section 3.3. If the relaxation is due to a 

correlation of an interaction with itself (i.e., μ = μ'), the relaxation process is referred to as 

auto-correlated relaxation. The notions of auto-correlated and cross-correlated relaxation are 

different from auto relaxation and cross relaxation. Auto relaxation describes a diagonal 

element of the relaxation super operator Γ̂ , i.e., the relaxation of an operator Q towards its 
equilibrium value. Typical auto-relaxation rate constants are R1I, i.e., Γ Iz ,Iz  and R2I, i.e., Γ I + ,I + . 

An example of cross-relaxation is the nuclear Overhauser effect, i.e., σ NOE = Γ Iz ,Sz , which we 

will briefly discuss in Section 3.2 for the heteronuclear case. 

Equation (14) describes the general action of the relaxation super operator on any 

operator Q. In order to calculate relaxation-rate constants, one needs to (i) obtain the spectral 
density function  Jℓ, ′ℓ ,−m,− ′m

µ , ′µ( ) ω( )  which describes a particular motion that leads to relaxation. 

Furthermore, (ii), we need to evaluate the double commutators in Eq. (14), and thus identify 
the spherical tensors Tℓ,m

µ( ) , which depends on the particular relaxation mechanism we consider 

(CSA, dipolar coupling). Determining these double commutators will tell us which 

frequencies ω of the spectral-density function are relevant for a particular relaxation 

mechanism. The approach of calculating these two quantities, double commutators and 

spectral densities, is the same whether one treats solution or solid-state relaxation theory. 

However, as we will show in the following section the presence of MAS leads to slight 

modifications of the frequencies. 
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2.2  Relaxation in Solids 

2.2.1  Correlation Functions in Solids 

Key to the calculation of relaxation in solids is the correlation function defined in Eq. 

(16) which is orientation dependent. Under MAS we have to transform the spatial tensor 

components from the principal-axis system to a molecule-fixed frame, to the rotor-frame and 

finally to the laboratory frame. We can write these transformations as a series of Euler 

rotations (Figure 2) as 

 

 

 

Aℓ,−m
µ( ) t( ) = Dn,−m

ℓ −ω rt,−θm,0( )
n,p,q
∑ Dp,n

ℓ αMR,βMR,0( )×

Dq,p
ℓ αPM

(µ ) t( ),βPM
(µ ) t( ),γ PM

(µ ) t( )( )ρℓ,q(µ )
  (17) 

The transformation is time dependent for two reasons: (i) the stochastic process will modulate 

the transformation from the principal-axis system to the molecule-fixed frame and (ii) magic-

angle spinning will lead to a time dependence of the spherical-tensor components in the 

laboratory frame. Typically, the MAS time dependence is much slower than the stochastic 

process that can be described by Redfield relaxation theory and we can assume that the MAS 

is quasi-static on the time scale of the correlation time. If the stochastic process and the MAS 

rotation are on the same time scale, interference effects are observed and the averaging by 

MAS becomes inefficient. This is mostly an issue for "slow" stochastic processes and will be 

discussed in more detail in Section 3.3. The transformations from the molecule-fixed frame to 

the rotor-fixed frame (powder average) and the transformation from the rotor-fixed frame to 

the laboratory frame will be identical for both spatial-tensor components that constitute the 

correlation function if we assume that the stochastic process happens on a much shorter time 

scale than the MAS rotation (τc ≪ τr). The difference occurs only in the angles for the 

transformation from the principal-axis system into the molecule fixed frame which can be 

different due to the fact that we consider two different interactions (μ) and (μ'), i.e., cross-

correlated relaxation or due to the fact that the stochastic process induces motion of the 

interaction. The correlation function is then defined as 
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Cℓ, ′ℓ ,−m,− ′m
µ , ′µ( ) τ( ) = Aℓ,−m

µ( ) t( ) A ′ℓ ,− ′m
′µ( ) t −τ( )( )*

= Dn,−m
ℓ −ω rt,−θm,0( )Dp,n

ℓ αMR,βMR,γ MR( )ρℓ,q(µ ) ×
n,p,q
∑

D ′n ,− ′m
′ℓ * −ω rt,−θm,0( )D ′p , ′n

′ℓ * αMR,βMR,γ MR( )ρ ′ℓ , ′q
( ′µ )* ×

′n , ′p , ′q
∑

Dq,p
ℓ αPM

(µ ) t( ),βPM
(µ ) t( ),γ PM

(µ ) t( )( )D ′q , ′p
′ℓ * αPM

( ′µ ) t −τ( ),βPM( ′µ ) t −τ( ),γ PM( ′µ ) t −τ( )( )

 (18) 

One can show that only correlation functions with ℓ = ℓ' and m = m' do not vanish. For 

simplicity we will assume auto-correlated relaxation (μ = μ') and a simple model where we 

can describe the stochastic process by a rotation about a single angle γPM. Under these 

conditions, the correlation function simplifies to  

 

 

Cℓ,ℓ,−m,−m
µ ,µ( ) τ( ) =

′n , ′p , ′q
∑ ei(n− ′n )ω rtdn,−m

ℓ (−θm )d ′n ,−m
ℓ (−θm )e− i( p− ′p )αMRdp,n

ℓ (βMR )d ′p , ′n
ℓ (βMR )×

n,p,q
∑

              e− i(n− ′n )γ MRe− i(q− ′q )αPMdq,p
ℓ (βPM )d ′q , ′p

ℓ (βPM )ρℓ,q
(µ )ρℓ, ′q

( ′µ )*e− ipγ PM t( )ei ′p γ PM t−τ( )
 (19) 

where the first factor describes the time dependence by MAS, the last factor the stochastic 

process and all other terms are just geometrical factors that characterize the linear 

combinations of the various angular correlation functions 

 Cp, ′p
(γ ) τ( ) = e− ipγ PM t( )ei ′p γ PM t−τ( )  . (20) 

Note that in contrast to liquid-state NMR off-diagonal contributions (p ≠ p') to the angular 

correlation functions are also important and have to be taken into account. For simple jump 

models or restricted or unrestricted rotational diffusion on a cone the angular correlation 

function can be calculated analytically. 

For a two-site jump model with populations p1 and p2 (not to be confused with the 

summation variables p and p' used in the transformation of the spatial-tensor components 

from the PAS to the laboratory frame!) with angular positions of 0 and γ0, jump rate constants 

k12 and k21, where p1 = k21/(k12+k21) and p2 = k12/(k12+k21), and a correlation time of τc = 

1/(k12+k21) we obtain a correlation function of the form [58,59] 

 Cp, ′p
(γ ) τ( ) = p1

2 + p2
2ei( p− ′p )γ 0 + p1p2e

−τ /τ c 1+ ei p− ′p( )γ 0( ) + p1p2 1− e−τ /τ c( ) eipγ 0 + e− i ′p γ 0( )   (21) 

which corresponds to a spectral density function of the form 

 Jp, ′p ω( ) = 8p1p2 sin pγ 0 / 2( )sin ′p γ 0 / 2( )ei( p− ′p )γ 0 /2 τ c
1+ ωτ c( )2

 . (22) 



  21 

   

For the restricted rotational diffusion in a cone model, the calculation of the correlation 

function cannot be done analytically in a closed form but only using approximations. The 

expressions are more complex and can be found in the literature [60]. 

In the model-free approach [61,62] we assume that the correlation function can be 

expressed by a mono-exponential decay with the functional form 

 C τ( ) = S2 + 1− S2( )e−τ /τ c   (23) 

which leads to a spectral density function given by 

 J ω( ) = 1− S2( ) 2
5

τ c
1+ ωτ c( )2

 . (24) 

In this approach there are two parameters, namely the correlation time τc which characterizes 

the time scale of the motion and the order parameter S2 which characterizes the spatial 

restriction of the motion. In this case the total spectral-density function is independent of the 

parameters m and m' and we obtain for an two interactions μ and μ' which are both axially 

symmetric 

 
 
Jℓ,ℓ,−m,−m

µ , ′µ( ) ω( ) = ρℓ,0
(µ )ρℓ,0

( ′µ )P2 cosθ
µ ,µ '( )( ) 1− S2( ) 2

5
τ c

1+ ωτ c( )2
 . (25) 

Because of the orientation dependence of relaxation-rate constants in solids, we would 

like to discuss some general properties of spin relaxation in MAS NMR, which are illustrated 

by Figure 3. The top left panel shows the T1 relaxation-rate constants, as induced by a dipolar 

coupling, in a static sample (i.e. without MAS). The upper right panel shows this rate constant 

as a function of the two relevant Euler angles βMA and αRL that characterize the orientation of 

a crystallite in the rotor-fixed frame (see Figure 2). The magnitude of the relaxation-rate 

constant induced by an interaction oriented at a given orientation is indicated by a color code. 

For example, if the dipolar interaction has a mean orientation parallel to B0 (and dynamics 

around this axis), the relaxation rate constant is at a maximum, while if it is oriented along the 

magic angle it is at a minimum. Magic-angle spinning corresponds to a time dependence of 

the relaxation-rate constant along the αRL axis, i.e., the considered dipolar interaction will 

sample all possible values of αRL during sample rotation (horizontal lines in the top right 

panel). Consequently, the instantaneous relaxation rate varies in the course of the sample 

rotation. If the relaxation rate constant is small compared to the frequency of the sample 
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rotation, which is almost always the case, we can neglect this fluctuation as only the average 

rate constant is relevant. However, the rate constants for spin pairs oriented along different 

angles βMR are not averaged by MAS. This is illustrated for three different angles in Figure 3, 

corresponding to spin pairs on different “carousels”. Spin pairs oriented on one of these 

carousels are not converted to another carousel by MAS, and spin pairs at a given βMR will 

thus have a MAS-averaged (i.e. αRL-averaged) relaxation-rate constant that is different from 

spin pairs at other angles βMR. An important consequence of this is the inherent multi-

exponential character of relaxation in solid-state NMR. 

These considerations lead to the following simplifications of the correlation function. 

The analytical averaging over the MAS rotation (which is usually allowed because the 

relaxation time is much longer than the rotor period) leads to a simplified correlation function 

of the form 

 

 

Cℓ,ℓ,−m,−m
µ ,µ( ) τ( ) =

′p , ′q
∑ dn,−m

ℓ (−θm )( )2
e− i( p− ′p )αMRdp,n

ℓ (βMR )d ′p ,n
ℓ (βMR )×

n,p,q
∑

              e− i(q− ′q )αPMdq,p
ℓ (βPM )d ′q , ′p

ℓ (βPM )ρℓ,q
(µ )ρℓ, ′q

( ′µ )*e− ipγ PM t( )ei ′p γ PM t−τ( )
 . (26) 

If the correlation function of the internal motion is diagonal, i.e., if the correlation function is 

zero for p ≠ p' then the total correlation function and, therefore, also the relaxation-rate 

constant is independent of the αMR angle of the powder average and it is sufficient to average 

over the angle βMR. Therefore, the correlation function becomes even simpler in this case and 

we end up with 

 

 

Cℓ,ℓ,−m,−m
µ ,µ( ) τ( ) =

′q
∑ dn,−m

ℓ (−θm )( )2
dp,n
ℓ (βMR )( )2

×
n,p,q
∑

              e− i(q− ′q )αPMdq,p
ℓ (βPM )d ′q ,p

ℓ (βPM )ρℓ,q
(µ )ρℓ, ′q

( ′µ )*e− ipγ PM t( )eipγ PM t−τ( )
 . (27) 

Based on the derivation of the master equation of relaxation (see Eq. (14), every 

relaxation rate constant can be written in the general form 

 
 
RA,B = zmJℓ,ℓ,−m,−m

(µ , ′µ ) ωm( )
m
∑  . (28) 

Here,   Jℓ,ℓ,−m,−m
(µ , ′µ ) ωm( )  is the spectral-density function of the interactions μ and μ' (e.g., dipolar 

coupling, CSA tensor, or quadrupolar coupling) and zm is the weight of the spectral density 

sampled at frequency ωm. The weights with which the various frequencies are sampled depend 
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on the interactions involved, e.g., T1 relaxation caused by the CSA tensor will have different 

weights than the T1 relaxation caused by dipolar couplings. Possible frequencies ωm are sums 

and differences of the Larmor frequencies of the involved spins. In isotropic liquids, the 

spectral density functions J(ω) are independent of the values of m but they can differ in solids. 

Magic-angle spinning leads to a modification of the sampling of the spectral-density functions 

[63]. In principle, all frequencies are sampled at ωi±nωr where n can take the values 1 and 2 

since most anisotropic interactions in NMR are second-rank tensors. Note that the n = 1 
sideband has twice the weight of the n = 2 sideband. Therefore, a term niJzi ω i( )  has to be 

replaced by ni 3 m( )Jzi ω i +mω r( )m=−2

2∑  under MAS. Since the MAS frequency is typically 

much smaller than the Larmor frequencies of the spins, the changes in the sampling frequency 

are neglected for all frequencies except for ωi = 0. In a similar way, rotating-frame relaxation 

leads to a modification of the sampling frequencies to ωi±nω1 where n can be 0, 1, or 2 [64]. 

Since also ω1 is typically much smaller than the Larmor frequencies, these changes are 

usually also neglected except for ωi = 0. If MAS and spin-lock fields are present at the same 

time, both modifications have to be combined usually also only for the zero-frequency term 

[65-67]. 

2.2.2  Powder Distribution of Relaxation-Rate Constants 

As pointed out above, relaxation-rate constants in solids are always orientation 

dependent [59] and, therefore, one does not expect a mono-exponential decay or mono-

exponential magnetization-transfer kinetics. The relaxation-rate constant R1 = 1/T1 of spin S in 

a heteronuclear two-spin system is given by  

 1
T1

= R1 = ΓSz ,Sz
= 1
24

J2,2,0,0
(D,D) ω I −ω S( ) + 1

8
J2,2,1,1
(D,D) ω S( ) + 1

4
J2,2,2,2
(D,D) ω I +ω S( ) + 1

2
J2,2,1,1
(C,C) ω S( )  (29) 

where we have included dipolar (D) and CSA (C) relaxation. We will exemplify the 

properties of the T1 relaxation of the 15N in a N-H spin system for two different motional 

models. The first model describes restricted rotational diffusion in a cone (sometimes referred 

to as "wobbling in a cone") which is characterized by two parameters, namely the diffusion 

constant Dw and the opening angle θ. The second model is a two-site jump model with jump-
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rate constants k12 = k21 or a correlation time τc = 1/(2 k12) and an angle γ0 between the two 

orientations.  

Figure 4a shows the powder-orientation dependence of the longitudinal relaxation-rate 

constant for a two-site jump model with a correlation time of τc = 1 ns and a jump angle of γ0 

= 30°. The relaxation-rate constants range in value from 0.244 to 0.543 s-1, which is roughly a 

factor of 2.2 between the minimum and the maximum value. One can clearly see the 

dependence of R1 on both Euler angles αMR and βMR since the plane where the exchange 

process takes place requires two angles to orient in the rotor frame. The dependence of R1 on 

the crystallite orientation for a restricted rotational diffusion in a cone model with a diffusion 

constant of Dw = 2·106 s-1 and an opening angle θ = 30° is shown in Figure 4b. In this case the 

relaxation-rate constant depends only on the powder angle βMR and is independent of αMR 

since the cone where the diffusion takes place is axially symmetric and requires only a single 

angle to orient in the rotor frame. The relaxation rate constants cover a range from 0.10 to 

0.14 s-1, which is roughly a factor of 1.4. Therefore, relaxation in solids is always 

characterized by a multi-exponential decay but the distribution of relaxation-rate constants 

covers usually only a range of a factor of about two. Due to the limited signal-to-noise ratio of 

experimental data, such a multi-exponential decay is difficult to characterize precisely and 

almost always mono-exponential fits of experimental data are used. There are several 

possibilities to characterize the distribution of relaxation-rate constants obtained from 

Redfield calculations by a single mono-exponential decay time. One can either use the 

powder average of the rate constants, i.e., 

 R1 =
1
4π

dα R1 α ,β( )sinβ dβ
0

π

∫
0

2π

∫   (30) 

or one can calculate a powder average of the magnetization decays and carry out a mono-

exponential fit of the decay of the powder, which corresponds to a common evaluation 

procedure of experimental data. Note that averaging the rate constants is not rigorous and only 

works because of the narrow distribution of relaxation times as a function of the crystallite 

orientations. 

Figure 5 show the decays obtained from the true powder-averaged decays as well as the one 

characterized by the averaged rate constants and the one obtained from a mono-exponential fit 
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of the powder-averaged decay with a cut off value of 5% of the initial intensity for the two 

models shown above. Significant differences between the three curves are only visible for 

very long times when the signal has decayed to less than 1% of its initial value indicating that 

the mono-exponential approximation is reasonable for data with limited signal-to-noise ratio. 

A more detailed comparison of the relaxation-rate constants obtained by the two methods can 

be found below. 

If we characterize the relaxation-rate constant by a single mono-exponential decay constant, 

we can also think about using a model-free approach where we have no dependence on the 

crystallite orientation since the correlation function is a single exponential decay. For many 

physical motional models, the model parameters can be recalculated in terms of the model-

free parameters τc and S2. For the two-site jump model with equal populations p1 = p2 = 0.5, 
the correlation time is given by τc = 1/(2 k12) and the order parameter by S2 = 1

4 3cos2θ +1( )  

where θ is the angle between the main tensor axis at the two positions. For the restricted 

rotational diffusion in a cone model, the correlation time is a complex function of the opening 

angle θ of the cone and the diffusion constant Dw [60,68] while the order parameter is given 

by S2 = 1
2 cosθ 1+ cosθ( )( )2 . Using these relations, we can compare the relaxation-rate 

constants obtained from the physical models with the equivalent rate constants obtained by a 

model-free approach. This allows us to compare the two approaches and see whether a model-

free approach in solids is appropriate or not. For this comparison we use a simplified model 

where we consider only dipolar coupling and no CSA tensor. For the two-site jump model we 

vary the correlation time τc between 1 μs and 1 ps and the jump angle θ between 0° and 90° 

corresponding to an order parameter S2 between 0.25 and 1. 

Figure 6 shows that there are only small differences of less than 5% between the 

averaged rate constants or the mono-exponential fit and the rate constants obtained from the 

model-free approach. Taking into account the experimental inaccuracies due to limited signal-

to-noise ratio of typical solid-state NMR experiments for larger systems, data evaluation 

using the model-free approach seems perfectly legitimate. The situation is slightly different 

for the restricted rotational diffusion in a cone model (Figure 7) where differences up to 25% 

can be observed between the rate constants obtained by the model-free approach and the 

averaged rate constants or the mono-exponential fit. However, the biggest errors are observed 

in the range of relatively long correlation times in the order of 10 ns to μs. For shorter 
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correlation times, the differences are on the order of 5-10%, which makes the characterization 

of relaxation-rate constants using the model-free approach reasonable even for a motional 

model like restricted rotational diffusion in a cone. 

3  Determination of Motional Parameters 

3.1  Challenges for Measuring Relaxation Parameters in Solids 

Relaxation-rate constants are very widely used in solution-state NMR to characterize 

dynamics [24,25], but less in solid-state NMR. Compared to solution-state NMR, both the 

measurement and the analysis of longitudinal and especially transverse relaxation parameters 

in solid-state NMR under MAS are challenging for a number of theoretical and experimental 

reasons:  

(i) The decay of polarization and coherences in solids comprises two parts, a part that is due 

to coherent time evolution under an orientation- and MAS time-dependent Hamiltonian, i.e., 

induced by the presence of non-averaged anisotropic interactions, in particular dipolar 

couplings, and a part that is incoherent, i.e., induced by dynamic processes. Measuring 

selectively the latter, incoherent part – which reflects dynamics – is complicated by the 

presence of the former, coherent decay. This represents a major experimental obstacle to 

measuring transverse relaxation rates but is to a lesser extent also an issue when measuring 

longitudinal relaxation-rate constants, where coherent mechanisms lead to spin diffusion (see 

Section 3.2). In this manuscript we reserve the term relaxation for the incoherent part of the 

decay that is due to dynamics characterized by stochastic processes. Section 3.3.1 discusses 

experimental difficulties of measuring transverse relaxation rates. 

(ii) The validity of Redfield theory is not a priori granted for transverse relaxation parameters. 

This is due to the fact that in the derivation of Redfield theory (see Section 2.1.1) one makes 

the explicit assumption that the change in the density operator is negligible on the time scale 

of the stochastic process, which is equivalent to assuming that the relaxation-rate constant is 

much smaller than the rate of the dynamic process. In the absence of fast overall tumbling, 

this assumption may not hold, as we will show below. In Section 3.3.5 we explore how well 
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Redfield theory is justified for a number of selected examples using numerical simulations 

based on the stochastic Liouville equation approach [69-71]. 

(iii) Relaxation of a spin can be due to stochastic fluctuations of dipolar couplings and CSA 

tensors, and in addition also due to isotropic chemical-shift fluctuations (often referred to as 

“chemical exchange”). In solution-state NMR, the overall tumbling (on a nanosecond time 

scale) averages dipolar couplings and CSA tensors, such that fluctuations of the anisotropic 

interactions on time scales of microseconds to milliseconds do not have any impact on 

relaxation. Therefore, in solution state one can make a clear distinction between (a) 

“relaxation” in the sense of Redfield, that is due to fluctuations of anisotropic interactions by 

Brownian tumbling and (fast) local motions since local motions on time scales slower than the 

overall tumbling are unobservable, and (b) (slow) chemical exchange in the sense of isotropic 

chemical-shift fluctuations. In contrast to that, slow motions on time scales of micro-to-

milliseconds average isotropic interactions as well as anisotropic interactions in solid-state 

NMR and need to be taken into account when discussing line broadening and coherence 

decay. 

(iv) As a further complication, we need to consider interference effects between different 

time-dependent processes. In MAS solid-state NMR the sample rotation leads to a periodic 

deterministic modulation of anisotropic interactions (dipolar couplings, CSA tensor, 

quadrupolar couplings). In a first-order average Hamiltonian approximation [55,72], MAS 

averages out the effects of these interactions in the spectrum. A dynamic process can be seen 

as an additional time-dependent process, which is stochastic in nature. As a third time-

dependent process, RF irradiation during relaxation periods, such as in T1ρ or CPMG [73,74] 

experiments needs also to be considered. If the dynamic process occurs on a time scale that is 

close to the time scale of the MAS rotation or the nutation frequency of the RF field or the 

modulation frequency, interference effects may arise. Both the MAS frequency and the RF-

field amplitudes are typically on time scales of several tens of kilohertz. Therefore, we expect 

to see such interference effects if we are dealing with dynamic processes on microsecond time 

scales that are mostly relevant for transverse relaxation. For example the averaging of 

anisotropic interactions by MAS can partly be cancelled by dynamic processes [75,76]. 

Interference between MAS and RF irradiation is extensively used in solid-state NMR to 

generate effective Hamiltonians during selected time periods of experiments [77-80]. Such 
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recoupling processes may be altered by a stochastic dynamics on the same time scale [81,82]. 

We will highlight the effects of such interference effects in Sections 3.3.3 and 3.3.5. 

As pointed out above, line width (i.e., decay of coherence) in liquid-state NMR is very 

well understood and measurements of transverse relaxation data are straightforward. The 

main source of line broadening besides relaxation processes are B0-field inhomogeneities or 

susceptibility effects that can be averaged by a simple Hahn-echo sequence [83] if we neglect 

transport processes like diffusion. In solid-state NMR the situation is more complex since 

there are additional factors that induce a decay of both polarizations and coherences that is not 

always easy to distinguish from relaxation-induced decays. In a static solid samples, the large 

anisotropic interactions lead to powder patterns that are tens of kilohertz large. Under MAS, 

the Hamiltonian describing these interactions becomes time dependent with integer multiples 

of the rotation frequency. Under rotor-synchronized detection conditions, we can use average 

Hamiltonian theory [55,72] to characterize the effective Hamiltonian under MAS through a 

series of time-independent average Hamiltonians of increasing order: 

 

 

H (1) = 1
τ r

dt1H (t1)
0

τ r

∫

H (2) = −i
2τ r

dt2 dt1 H (t2 ),H (t1)⎡⎣ ⎤⎦
0

t2

∫
0

τ r

∫

H (3) = −1
6τ r

dt3 dt2 dt1 H (t3), H (t2 ),H (t1)⎡⎣ ⎤⎦⎡⎣ ⎤⎦ + H (t3),H (t2 )⎡⎣ ⎤⎦,H (t1)⎡⎣ ⎤⎦( )
0

t2

∫
0

t3

∫
0

τ r

∫

  (31) 

To understand the behavior of NMR spectra under MAS, we can use the classification 

of Hamiltonians introduced by Maricq and Waugh [75] into "inhomogeneous" and 

"homogeneous". Inhomogeneous Hamiltonians are characterized by the fact that all terms in 

the Hamiltonian commute (e.g., only anisotropic chemical shifts and heteronuclear dipolar 

couplings or a single homonuclear dipolar coupling) leading to sharp spectra even at moderate 

spinning frequencies since the spectrum is fully characterized by the first-order average 

Hamiltonian. This is a consequence of the fact that all commutators are zero and, therefore, all 

higher orders of the average Hamiltonian expansion are also zero. If we release the restriction 

of rotor-synchronized detection, we observe a side-band manifold but for MAS frequencies 

approaching the magnitude of the interactions, we obtain almost perfect averaging represented 

by solution-state like spectra. In the case of a homogeneous Hamiltonian (e.g., a homonuclear 
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dipolar coupling and a heteronuclear dipolar coupling or a CSA tensor or multiple 

homonuclear dipolar couplings), the higher-order terms are not zero leading to a residual line 

broadening under MAS. Assuming that the second-order average Hamiltonian is the 

dominating term, the residual line width scales with 1/νr and even at the fastest MAS 

frequencies available today (νr = 130 kHz) there is still significant line broadening observable 

(see Figure 8).  

Particularly in protonated systems where one has multiple strong homonuclear dipolar 

couplings, proton as well as 13C/15N coherences will decay due to the evolution under the 

terms of the second-order average Hamiltonian. Therefore, the apparent decay rates of spin 

coherences are not only reflecting relaxation, but they contain also a large contribution from 

coherent dephasing under the second-order average Hamiltonian term. These terms cannot be 

refocused easily, which makes it in practice difficult to obtain quantitative information about 

dynamics from the measurement of coherence decay rates. The same Hamiltonian will lead 

also to a polarization-transfer process between 1H or 13C/15N spins which is called spin 

diffusion [84-86] that can lead to changes in apparent T1 times. 

The above considerations point to two possible ways of reducing the effect of coherent 

contributions and thus providing access to quantitative relaxation-rate constants. The first one 

is the chemical dilution of the strong 1H-1H dipolar network by using deuterated samples. The 

deuterium spin (2H) has a roughly six-fold lower gyromagnetic ratio compared to protons, 

thus significantly reducing dipolar dephasing. Deuteration and partial re-protonation is, 

therefore, an important approach for dynamics studies but also for studies of structure and 

interaction [87-93]. The second route to quantitative relaxation measurements comes from the 

realization that the second-order average Hamiltonian term scales with the inverse of the 

MAS frequency. Thus, the use of the highest possible MAS frequencies (currently 130 kHz) 

reduces coherent contributions to longitudinal or transverse decays. In practice, fast MAS is 

not sufficient to eliminate coherent contributions in all situations and the two approaches, 

deuteration and fast MAS, need to be combined to obtain quantitative data. We will discuss 

the requirements in more detail in the next two Sections that deal with longitudinal and 

transverse relaxation. 
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3.2 Longitudinal Relaxation Parameters in Solid-State NMR 

Longitudinal relaxation times of low-γ nuclei are relatively easy to measure and 

evaluate compared to transverse relaxation times. This is due to the fact that only a single 

coherent mechanism, namely spin diffusion, can lead to a coherent time evolution of the Sz 

operator under MAS. Spin diffusion under MAS is mediated by second-order cross terms 

between two homonuclear dipolar couplings or a cross term between a homonuclear and a 

heteronuclear dipolar coupling [85] (for more details see Section 3.1). Spin diffusion leads to 

polarization transfer that can often be described by a kinetic rate equation [84] which leads to 

a coupling of the relaxation decays of different spins [94]. We can exemplify this with a 

simple example of two spins i and j that relax with different rate constants R1i and R1j. Without 

spin diffusion, the two spins will relax with their respective longitudinal relaxation-rate 

constants. If we include spin diffusion, we have to add a spin-diffusion rate constant kij and 

the decays of the two spins become coupled and are now described by a system of coupled 

differential equations 

 d
dt

Iiz
I jz

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= −

R1i + kij −kij
−kij R1 j + kij

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Iiz
I jz

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  (32) 

The general solution is always a bi-exponential decay with the effective relaxation-rate 

constants 

 R1eff =
R1i + R1 j
2

+ kij ± kij
2 +

R1i − R1 j
2

⎛
⎝⎜

⎞
⎠⎟
2

  (33) 

If the spin-diffusion rate constant kij is small compared to the difference of the relaxation-rate 

constants, the two spins will relax with R1i+kij and R1j+kij, respectively. If the spin-diffusion 

process is fast compared to the difference of the longitudinal relaxation-rate constants, we will 

observe the same effective relaxation for both spins which is described by a bi-exponential 

decay with rate constants (R1i+R1j)/2 and (R1i+R1j)/2+2kij. In the intermediate regime, the 

behavior is more complex. These results for a model two-spin system can be generalized to 

multi-spin systems and show that it is important for measuring accurate longitudinal 

relaxation-rate constants to have spin-diffusion rate constants that are small compared to the 

relaxation-rate constants and also to the differences of the relaxation rate constants that one 
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wants to observe. Figure 9 shows numerical simulations of the difference of the effective  
relaxation rate constant  (obtained from a mono-exponential fit of the bi-exponential 

decay) and the correct rate constant R1i as a function of the difference of the two relaxation-

rate constants R1i and R1j and the spin-diffusion rate constant kij (see Eqs. (32) and (33)). 

The role of spin diffusion in the measurement of 15N R1 rate constants has been addressed 

experimentally and through simulations [94-96]. The 15N-15N proton-driven spin diffusion 

rate constant has been estimated in a protonated protein at 10 kHz MAS to approximately 

0.025 s‑1. At ambient temperature, backbone 15N sites have typical R1 rate constants of the 

order of 0.01 to 0.5 s-1 [96-100]; rate constants for side chain NH2 groups (Asn, Gln) and Trp 

NHε have been reported of the order of 0.15 to 1 s-1 [101]; NH3
+ groups may have 

significantly higher rate constants. As the spin-diffusion rate constants are only slightly 

smaller than backbone R1 rate constants, one may thus expect that spin diffusion has a 

noticeable effect on the measured rate constants. Indeed, Chevelkov et al have reported a 

significant difference between R1 rate constants measured at 13-24 kHz MAS frequency in a 

sample of protonated SH3, and a highly deuterated sample in which spin diffusion is strongly 

suppressed. These finding suggest that for protonated protein samples, MAS frequencies on 

the order of 20 kHz are not sufficient to quench the effect of spin diffusion to below detection 

levels. MAS frequencies in excess of 40-50 kHz in protonated systems, or deuteration 

(allowing for lower MAS frequencies) seem to provide accurate values.  

It is noteworthy that the importance of spin diffusion depends, of course, on the 

absolute numbers of the relaxation-rate constants, and these change with temperature. For 

example, at very low temperatures, R1 rate constants may become very small, such that at low 

temperature the spin diffusion may be the dominant factor governing the apparent relaxation 

rate constants. At high temperature, where R1 rate constants are higher, spin diffusion may 

have a small or negligible effect, i.e. the actual relaxation-rate constant may be measured 

accurately. In contrast to relaxation, the spin-diffusion rates are not expected to vary much 

with temperature. This is important to keep in mind when measuring R1 relaxation over a wide 

range of temperatures: in such a case one may go through a “transition” between a regime 

where spin diffusion is dominant (at low temperature) to a regime where it is negligible. The 

apparent relaxation rate would thus show some discontinuity, which one may erroneously 

interpret as distinct motional modes with different activation energies. 

R1i
eff
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For 13C the situation is more challenging than for 15N, as spin-diffusion rate constants 

are higher. For example, for protonated alanine spinning below 20 kHz MAS, the 13C 

relaxation rate constants of carbonyl, Cα and methyl-13C are essentially the same (about 1.5 to 

2.5 s‑1) [102]. When increasing the MAS frequency to 60 kHz the respective rates differ 

between each other by almost a factor 50, showing that spin diffusion is strongly reduced 

(although the rates still may not necessarily reflect the actual relaxation rate constants). It was 

proposed that ~60 kHz MAS frequency may suffice to provide site-specific R1 relaxation rate 

constants [102]. However, a recent study challenged this view, and showed that for 13Cα sites 

fast MAS alone is insufficient, and even deuteration and >50 kHz MAS (in a fully 13C-labeled 

protein) is insufficient to suppress the effect of spin diffusion on 13Cα R1 relaxation-rate 

constants. Only the combination of partial deuteration, sparse 13C labeling and > 55 kHz MAS 

provided relaxation-rate constants that are bona fide without significant contributions from 

spin-diffusion effects [87]. 

The second questions related to experimental measurements of longitudinal relaxation-

rate constants, is the inability to saturate the protons efficiently during the relaxation delay 

[52,103]. Such saturation is commonly used in liquid-state NMR to simplify the system of 

coupled differential equations in order to measure the real T1 time. All longitudinal normal 

modes are coupled by cross relaxation [103] and for a heteronuclear I-S (e.g., 1H-15N) two-

spin system we find the following system of coupled differential equations that describe the 

time evolution of the polarization: 
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  (34) 

In principle, the time evolution of any of the coupled operators will be described by a tri-

exponential function where the effective time constants and the weights of the three 

exponentials depend on all six relaxation-rate constants. By saturating the I spins (protons) by 
continuous on-resonance radio-frequency fields, we ensure that Iz t( ) = 2IzSz t( ) = 0  and 

the differential equation simplifies to  

 d
dt
Sz = Γ Iz ,Sz

Iz
eq − ΓSz ,Sz

Sz − Sz
eq   (35) 
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and the decay of the magnetization becomes mono-exponential with the decay time 
ΓSz ,Sz

= 1/T1S . Since typical longitudinal relaxation-rate constants of 15N and 13C are in the 

order of seconds, high-power proton irradiation of several seconds would be required in order 

to saturate the protons in solids. This is experimentally impossible with current probe designs 

and to our knowledge all measurements of longitudinal relaxation-rate constants in solid 

proteins have been done without proton saturation during the relaxation delay [96,98,99,104-

106]. This is justified by the action of proton spin diffusion in solids that leads to an effect 

that is very similar to proton saturation. If the proton spin diffusion is fast, the apparent T1 of 

the proton (and of the two-spin term) become very short (see above) and we can assume that 

the proton polarization and the two-spin polarization is always very close to the equilibrium 

value. Under these conditions we can make similar assumptions as in the case of the 

saturation of the protons and obtain 

 d
dt
Sz = −ΓSz ,Sz

Sz − Sz
eq  (36) 

which describes a mono-exponential decay towards the equilibrium value for the Sz 

magnetization. This is also illustrated in Figure 10 where we have plotted the analytical 

solutions for an inversion-recovery experiment on the S spin as a function of the I-spin 

relaxation-rate constant. In these simulations we have neglected the cross-correlated cross 

relaxation to the two-spin term. One can clearly see that for sufficiently large spin-diffusion 

rate constants on the protons, the mono-exponential decay of the 15N spin is recovered without 

the need to apply proton saturation during the relaxation delay. 

3.2.1  T1 Relaxation 

We have already seen in Section 2.2.2 that T1 relaxation is most sensitive to motions 

with correlation times in the ns region since the spectral-density functions are sampled at 

sums and differences of the Larmor frequency which is typically in the 50-1000 MHz region. 

In a heteronuclear two-spin system the functional form of T1 relaxation times are given by Eq. 

(29) which simplifies under the assumption of a simple single-time scale model-free approach 

to 
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 1
T1

= R1 = ΓSz ,Sz
= δD

4
⎛
⎝

⎞
⎠

2

J ω I −ω S( ) + 3J ω S( ) + 6J ω I +ω S( )( ) +δCSA
2 3
4
J ω S( )  (37) 

where the spectral-density function is given by 

 J ω( ) = 2
5
1− S2( ) τ c

1+ ωτ c( )2
  (38) 

and the anisotropy of the dipolar coupling is defined by 
 
δD = −2 µ0

4π
γ Iγ S!
rIS
3  while the 

anisotropy of the chemical-shielding tensor is δCSA = −γ B0 σ zz −σ iso( ) . Here, we assume an 

axially-symmetric CSA tensor, e.g., the asymmetry is η = 0. 

Figure 11 clearly shows that the T1 auto-relaxation rate constant shows a maximum for 

a correlation time around 1 ns, which comes from the dependence of T1 on the spectral-

density function at the Larmor frequency. Unless the time scale of motion is close to this 

maximum, T1 rate constants depend only weakly on S2. Since the overall shape of the 

dependence on τc and S2 does not change as a function of the static magnetic field, even 

measurements at multiple B0 fields will lead to a high correlation between the two parameters. 

The solution to this problem is the independent measurement of transverse relaxation 

parameters, which depend on the spectral density at different frequencies than T1 (see Section 

3.3) and/or the direct measurement of motionally averaged dipolar couplings, which directly 

provide information about the order parameters (see Section 3.4). As discussed in Section 3.5, 

the inclusion of dipolar-coupling measurements greatly improves the accuracy of such fits. 

3.2.2  Heteronuclear Cross Relaxation (NOE) 

The heteronuclear cross relaxation-rate constant Γ Iz ,Sz , i.e. the transfer of polarization 

from 1H to 15N or 13C is, in the form of the steady-state NOE, a commonly measured 

parameter in liquid-state NMR. Saturating the I spins before the start of the experiment will 

lead to a change in the steady-state value of the S spins which is given by 

 Sz
SS = Sz

eq 1+
Γ Iz ,Sz

Iz
eq

ΓSz ,Sz
Sz
eq

⎛

⎝
⎜

⎞

⎠
⎟ = Sz

eq 1+η( )   (39) 

with the cross-relaxation rate constant given by 
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 Γ Iz ,Sz
= δD

4
⎛
⎝

⎞
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2

−J ω I −ω S( ) + 6J ω I +ω S( )( )  . (40) 

If the T1 times of the S-spin are known, the cross-relaxation rate constant can be back 

calculated from the steady state NOE value η.  

Figure 12a) and b) shows a plot of the steady state NOE η as a function of the order 

parameter and the correlation time which shows that the NOE does not give any additional 

information about the order parameter compared to the T1 time. For the case of methyl groups, 

this correlation of longitudinal 13C relaxation and heteronuclear NOE has been experimentally 

reported recently [107]. This correlation is a consequence of the fact that the dependence on 

the order parameter in the model-free approach is the same for all relaxation parameters. 

Measuring the longitudinal heteronuclear cross-relaxation rate constant in the form of 

a steady-state NOE is straightforward but often impractical because of the low sensitivity and 

long relaxation times of 13C/15N coherences in the absence of cross polarization as an initial 

step of the pulse sequence. A different way to measure the NOE is in the form of a transient 

NOE by inverting the protons before the acquisition of the 13C/15N spectra [97,107]. A direct 

measurement of the cross-relaxation rate constant as a polarization-transfer step is difficult 

due to the proton spin diffusion which is in many cases much faster than the heteronuclear 

transfer step (see Figure 12c) and d)). 

3.2.3  Longitudinal Cross-Correlated Cross Relaxation 

In principle, one can also measure the longitudinal dipolar/CSA cross-correlated cross-

relaxation rate constant  

 ΓSz ,2 IzSz
= 3
4
δDδCSAJ

IS ,S( ) ω S( )  (41) 

where the spectral density function is now a cross-correlated spectral density function defined 

as 

 J IS ,S( ) ω( ) = P2 cosθ( ) 2
5
1− S2( ) τ c

1+ ωτ c( )2
 . (42) 
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Here the θ describes the angle between the main axes of the CSA tensor and the dipolar-

coupling tensor and P2 is the second-order Legendre polynomial. Measuring the cross-

correlated cross-relaxation rate constant requires the measurement of polarization transfer 

from the one-spin Sz term to the two-spin 2IzSz term (Figure 13). Such a transfer step can only 

be measured quantitatively if the proton spin-diffusion process is much slower than the 

transfer process. This condition is generally not fulfilled, and, to the best of our knowledge,  

such measurements have not yet been reported on the literature. 
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3.3  Transverse Relaxation Parameters in Solid-State NMR 

We have analyzed in the previous section how longitudinal relaxation parameters 

depend on amplitudes and time scales of motions. Longitudinal relaxation parameters are 

proportional to the spectral density at integer multiples of the Larmor frequency of the 

involved nuclei (see Eq. (29)), i.e., they probe motions occurring on the time scale of 

nanoseconds, but they are hardly sensitive to motions on longer time scales (see Figure 11 to 

Figure 13). In this section we consider transverse relaxation-rate constants. We investigate the 

dependence of different transverse relaxation parameters on the time scale and amplitude of 

motion, and discuss the challenges of measuring such relaxation rates quantitatively. We 

show that the primary experimental challenge is to disentangle decay of coherences due to 

relaxation from coherence decay that is due to incompletely averaged anisotropic interactions 

(in particular dipolar dephasing). We also need to review the validity of Redfield theory for 

transverse relaxation-rate constants, as the “weak-collision” assumption underlying the 

derivation of this theory, i.e. the assumption that the motion is very fast compared to the 

change of the density operator (see Section 3.3.5) may not be valid in the regime of time 

scales that transverse relaxation parameters are sensitive to. In addition, we have assumed in 

Eq. (26) that we can average over the sample rotation if the stochastic motion is much faster 

than the sample rotation. For slow motions and fast MAS, this approximation might not be 

valid and has to be discussed in more detail. 

3.3.1 T2 Relaxation in Solids 

Transverse relaxation, i.e. the decay of single-quantum coherence (S+) under free precession 

in the absence of decoupling or spin lock, due to dipolar couplings and CSA tensors in static 

solids is characterized by 

 

1
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S+ ,S+

= 1
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J2,2,0,0
(D,D) 0( ) + 1

48
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J2,2,1,1
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1
8
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(D,D) ω I +ω S( ) + 1

4
J2,2,0,0
(C,C) 0( ) + 1

4
J2,2,1,1
(C,C) ω S( )

  (43) 

It is sensitive to the J(0) term of the spectral-density function, and, therefore, it provides 

access to slow motions. It is interesting to note here also the limits of Redfield theory. 
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Equation (43) predicts that due to the dependence on the J(0) term the T2 rate constant 

increases monotonously as the time scale of the motion becomes slower. This leads to the 

unphysical situation that infinitely slow motion leads to infinitely fast relaxation. This 

contradiction can be understood remembering the assumption that was made in Redfield’s 

derivation, which is that the time scale of the motion is much faster than the change of the 

density operator. Therefore, any "slow" motions in static solids lead to a breakdown of the 

Redfield treatment for transverse relaxation and other treatments to describe relaxation have 

to be used [108]. As shown below, in a rotating sample the J(0) terms are replaced by terms at 

the MAS frequency, which at least in part resolves this situation. We will address the validity 

of Redfield theory under MAS in Section 3.3.5. This is much less of a problem in liquid-state 

NMR where fast rotational tumbling masks slow motions that modulate the anisotropic 

interactions. However, even in liquid-state NMR, the Redfield treatment has to be amended if 

slow motions lead to line broadening due to a modulation of the isotropic chemical shift 

("chemical-exchange" broadening) [24]. 

As pointed already out in Section 2.2.1, magic-angle spinning leads to an additional 

modulation of the correlation function that leads to a sampling of the spectral-density function 

at frequencies that are offset by one or two times the spinning frequency Since the Larmor 

frequency is typically at least three orders of magnitude larger than the spinning frequency, 

these offsets are ignored for all terms except for the J(0) term. Therefore, under MAS the 

usual form of Eq. (43) is given by [63]  
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.  (44) 

Assuming again a single time-scale model-free spectral-density function of the form 

 J ω( ) = 2
5
1− S2( ) τ c

1+ ωτ c( )2
 , (45) 

we obtain a transverse relaxation-rate constant of the form 



  39 

   

 

1
T2

= R2 = Γ
S+ ,S+

= δD

4
⎛
⎝

⎞
⎠

2 4
3
J ω r( ) + 2

3
J 2ω r( ) + 1

2
J ω I −ω S( ) + 3J ω I( ) +⎛

⎝

                                          3
2
J ω S( ) + 3J ω I +ω S( )⎞⎠ +

                                  δCSA
2 1

4
J ω r( ) + 1

8
J 2ω r( ) + 3

8
J ω S( )⎛

⎝
⎞
⎠

  (46) 

Equations for T2 relaxation in the presence of a 1H decoupling rf field have also been reported. 

In the presence of a continuous-wave decoupling RF field, the ωr terms are then replaced by 

terms containing the difference between the rf-field strength and multiples of ωr [109]. 

Figure 14 shows the calculated transverse relaxation-rate constant R2 for a 15N spin due 

to the dipolar interaction to a directly-bonded proton spin, and the 15N CSA tensor, as derived 

from Eq. 46. These data show that transverse relaxation is sensitive to motion occurring on 

time scales of nanoseconds to milliseconds, and has a maximum in the microsecond time 

scale, depending on the MAS frequency. There is some qualitative similarity with 

longitudinal relaxation rate constants, which, however, have their maximum on a nanosecond 

time scale. The reason for this difference is the dependence on the spectral density at the MAS 

frequency in the case for R2, or on the spectral density at the Larmor frequencies, in the case 

of R1. Although both R1 and R2 are in principle modulated by the MAS frequency, the change 

of R1 with MAS frequency can be safely neglected, because the relevant frequencies for R1 

(Larmor frequencies) are very large compared to the MAS frequency.  

Accessing the R2 relaxation-rate constant experimentally is a challenge. This is 

because the decay of spin coherence in solids can be due to stochastic processes (dynamics), 

but it can also arise from coherent dephasing arising from the presence of additional spins (in 

particular 1H due to their large gyromagnetic ratio), as described in detail in Section 3.1. As 

shown in Figure 8, the line width, or (equivalently) the transverse relaxation-rate constant in 

the presence of multiple dipolar couplings contains a large contribution from coherent 

dephasing from the second-order average-Hamiltonian term. This makes it in practice difficult 

to interpret experimentally observed coherence decay rate constants, which contain both the 

actual relaxation and the effect of dipolar dephasing (the observed decay time constant in the 

FID is often referred to as T2
*, to distinguish it from the actual transverse relaxation time 

constant T2 = 1/R2). Another important quantity in this context is the T2' decay-time constant 
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which is the decay of transverse magnetization under a spin-echo sequence (τ - 180° - τ). The 

spin-echo sequence will refocus isotropic chemical shifts, heteronuclear J couplings and also 

partially the second-order coherent contributions to the transverse decay rate. As discussed in 

Section 3.1, the coherent contribution to dephasing depends on the strength of the dipolar 

interactions, as well as the MAS frequency, suggesting that dipolar dephasing is potentially 

less problematic for 15N than for 1H or 13C, and that deuteration and high MAS frequencies 

may help reducing this contribution. 

It is instructive to examine whether fast MAS combined with deuteration is sufficient 

to obtain 15N T2' time constants that are free from dipolar dephasing. We investigate this 

question by analyzing experimental 15N relaxation data from the microcrystalline protein 

ubiquitin. The 15N nucleus is particularly attractive for such studies because its relaxation 

properties can be described to a good approximation by considering only the H-N dipole and 

the 15N CSA tensor, and the dipolar dephasing contribution is smaller than for 1H or 13C. For 

the case of ubiquitin, dynamics have been studied extensively [44,98,110,111], such that it is 

known relatively well what the actual transverse relaxation rate constants (i.e. without 

coherent contributions) are. Figure 15 shows different 15N relaxation-rate constants: data 

shown in black denote the predicted R1ρ rate constants, which are calculated based on 

dynamical amplitudes and time scales that have been determined from an extensive set of 

experimental data (dipolar order parameters, T1 times, cross-correlated relaxation) [110]. They 

agree quite well with the experimental R1ρ rate constants shown in red. These rate constants 

serve thus as a proxy for the "true" transverse relaxation-rate constants expected for each 

residue assuming that the dynamics are characterized well by the model. They were 

determined using Eq. (52) based on a correlation function using the extended model-free 

approach. As a comparison, experimental R2' data obtained with a highly deuterated sample 

are shown in blue and green, where the blue data set was collected without proton decoupling, 

and the green data set employs 3.1 kHz WALTZ decoupling. In the sample all non-

exchangeable sites are deuterated at >97%, and exchangeable sites (amides, NH2, OH) are 

deuterated at 80%. This labeling leaves 1H spins overall only in ~5% of all hydrogen sites in 

the protein. Interestingly, even in this very highly-deuterated sample, and at high MAS 

frequency (57 kHz), the measured R2' rate constants are much higher than the predicted ones 

(black and red lines). The most likely explanation for this observation is that even under these 
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favorable experimental conditions, R2' rate constants do not properly reflect the dynamics of 
15N sites, but that a significant fraction of the observed rate is due to dipolar dephasing. 

Interestingly, the experimental R2' relaxation-rate constants certainly contain some dynamic 

information. For example, increased R2' for residues 23, 27 and 55 are, at least in part, due to 

conformational exchange [44]. However, the data in Figure 15 clearly show the large 

“background” from coherent contributions, hampering quantitative analysis. 

Several routes have been proposed to circumvent this inherent difficulty to obtain quantitative 

measures of transverse relaxation. One approach is to measure the difference between two 

transverse relaxation-rate constants. As long as both rate constants are equally impacted by 

dipolar dephasing, their difference can be quantitatively analyzed in terms of dynamics. A 

first example is the measurement of the transverse relaxation of the two multiplet components 

of a 15N[1H] doublet (i.e., measuring the relaxation decay of 2NxHα and 2NxHβ). These two 

components decay with rates of R2'+ΓCSA/D and R2'-ΓCSA/D, i.e., their difference corresponds to 

the CSA-dipole cross-correlated cross relaxation rate constant (CCR) [112]. This CCR rate is 

proportional to the spectral density at J(n ωr), where n = ±1,2 (see below) and, therefore, 

provides insights into dynamics on time scales longer than nanoseconds. A second example is 

the measurement of the decay of zero- and double-quantum coherences [44]. We will discuss 

these cross-correlated relaxation rate constants in more detail in Section 3.3.2. 

A second approach is to identify relaxation-rate constants, which do not suffer from 

dipolar dephasing. It has been shown previously that under suitable experimental conditions 

(partial deuteration and fast MAS) the 15N R1ρ relaxation-rate constant can be quantitatively 

analyzed in this context [113],[114]. The data set shown in red in Figure 15 shows 

experimentally determined R1ρ relaxation-rate constants. The close match between these 

experimental R1ρ rate constants (red) and the predicted ones (black) suggests that one can 

indeed measure 15N R1ρ rate constants without significant contributions from dipolar 

dephasing. T1ρ relaxation will be discussed in more detail in Section 3.3.3.  

In principle, a third possible route is to employ even higher MAS frequencies, possibly 

combined with deuteration, to suppress coherent contributions, such that R'2 (i.e. the decay in 

a spin-echo sequence) would be accessible. However, currently available MAS frequencies 
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(on the order of 100 kHz) and deuteration do not suffice to suppress coherent contributions to 

the transverse decay of 15N spins. 

3.3.2  CSA/D and CSA/CSA Cross-Correlated Cross Relaxation 

Cross-correlated cross relaxation, i.e., relaxation that arises from interference between 

two different interactions is one possibility towards obtaining quantitative transverse 

relaxation data. In this section we review two recently proposed approaches, namely 

relaxation due to correlation of a dipolar and a CSA interaction, and cross-correlated 

relaxation due to interference of two chemical-shift tensors. In principle, additional cross-

correlated relaxation rates could be exploited to study dynamics, such as dipole-dipole cross-

correlated relaxation, which have been used in solution state [115-119] but, to our knowledge, 

this has not yet been implemented experimentally. 

CSA/dipole interference 

The two components of a J-coupled doublet, for example the 2NxHα and 2NxHβ 

components in a scalar-coupled 1H-15N spin pair, may show different line widths. The 

physical origin of this apparent asymmetry of the doublet is the interference between two 

anisotropic interactions, namely the H-N dipolar coupling and the 15N CSA tensor. We can 

distinguish different mechanisms that lead to the observed asymmetry, namely (i) a coherent 

mechanism that does not depend on dynamics, and (ii) an incoherent mechanism, which is 

due to dynamics, i.e. it depends on the amplitude and time scale of a motional process that 

reorients the two involved interactions.  

Let us first discuss the coherent mechanisms leading to doublet asymmetry. Consider 

the case of a static sample (no MAS) and a rigid heteronuclear I-S spin pair and assume we 

observe coherences of the S spin. The local field at the location of the S spin that is due to the 

dipolar interaction of the I spin will have the same or opposite sign as the local field due to the 

S spin CSA depending on the spin state of the I spin. In the case that the I spin is in the α state 

(spin up) the two fields add up, while the two fields partially cancel if the I spin is in the β 

state (spin down). In the case of a non-spinning sample, the multiplet component belonging to 

the I-spin α state would, therefore, show a broad powder pattern, while the other multiplet 
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component would show a narrower powder pattern (Figure 16). Under MAS the different line 

width of the two components is retained as an asymmetry of the intensity of the two 

respective center bands. For spinning frequencies exceeding the typical strength of the 

heteronuclear dipolar coupling, the two lines will show the same intensity.  

In addition to this coherent interference between the S spin CSA tensor and the 

heteronuclear dipolar coupling, there is also a coherent interference effect between the 

homonuclear dipolar coupling between two S spins with the S spin CSA tensor. Since the two 

contributions to the Hamiltonian (CSA, homonuclear dipolar coupling) do not commute, the 

second-order average Hamiltonian (see Section 3.1) will be non-zero and lead to a line 

broadening that is different for the two multiplet lines. This coherent mechanism of 

differential line broadening has long been recognized [120-123]. It is reduced with increasing 

MAS frequency, because it is coherent in nature and the result of a second-order average 

Hamiltonian term. This effect is only important for systems with homonuclear J couplings 

(e.g., samples which are fully 13C labeled) and does not affect 15N measurements. Since 13C-
13C homonuclear dipolar couplings are typically small (δCC/(2π) ≈ 4.5 kHz) this effect can be 

neglected at spinning frequencies above 20 kHz even in fully-labeled samples. In the further 

discussion we will neglect these two coherent mechanisms of doublet asymmetry, and focus 

on the incoherent part. 

To discuss the incoherent contributions to the line widths, we consider the situation where a 

H-N spin pair undergoes re-orientational dynamics. In this case, interference of the 15N CSA 

and H-N dipolar coupling induces differential relaxation of the N-[Hα] and N-[Hβ] doublet 

components [115,116]. The differential relaxation of the two components arises because the 

relaxation of one component is given by the sum of the two relaxation contributions, i.e. the 
15N CSA and the 1H-15N dipolar coupling, whereas the relaxation of the other component is 

given by their difference. This effect, which is known in solution-state NMR as “transverse-

relaxation optimized spectroscopy” (TROSY) [124] effect has first been reported in solids by 

Chevelkov and Reif [112,125]. For solution-state NMR, these cross-correlated relaxation 

effects can be fully described within the framework of Redfield theory, and they have been 

extensively reviewed [115,116,126]. Due to the absence of overall tumbling, the dependence 

of the CSA/D CCR on the motional parameters in MAS solid-state NMR is different from 
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what is observed in solution, and we investigate the properties of the differential relaxation in 

the following briefly. The reader is also referred to a comprehensive computational study of 

these effects [127]. 

The CSA/dipolar cross-correlated relaxation-rate constant within the framework of Redfield 

theory is given by: 

 Γ
I + ,I +Sz

= δDδCSA
3
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where the cross-correlated spectral-density function J IS ,S( )(ω )  is defined as in Eq. (42) and 

P2 (cosθ )  is the second-order Legendre polynomial of the angle between the principal axes of 

the dipolar-coupling tensor and the S-spin CSA tensor, and δD and δCSA are the anisotropies of 

the two tensors. Here we have assumed that the CSA tensor is axially symmetric. Note that in 

previous studies the two terms depending on J(ωr) have been replaced by J(0) [98,128]. This 

way of neglecting the MAS frequency is not rigorous, as discussed in section 2.2.1, but as 

long as the motion is much faster than the MAS frequency the resulting errors are negligible. 

In Figure 17 we investigate the CSA/dipole cross-correlated relaxation using 

numerical simulations of a jump model with two discrete states (Figure 17a). The 15N spectra 

reveal differential line broadening of the two doublet components, and this line broadening is 

dependent on the time scale (and amplitude) of the exchange process (Figure 17b). In Figure 
17c we show the cross-correlated relaxation rate constant Γ

I + ,I +Sz
 , which for simplicity we 

will call here ΓCSA/D , as a function of the time constant of motion, for different MAS 

frequencies, while Figure 17d shows additionally the dependence on the amplitude of motion. 

This relaxation-rate constant can be determined from the difference of the spin-echo 

coherence-decay rate constants of the two doublet components R2'(NxIα)= R2'+ΓCSA/D  and 

R2'(NxIβ)= R2'-ΓCSA/D , where R2' denotes the spin-echo decay time constant of the decoupled 

line due to incoherent as well as coherent contributions. For typical experimental signal-to-

noise ratios, the differential relaxation can be detected if it exceeds approximately 1 s‑1; 

dashed lines in Figure 17 indicate that this implies that motions on a time scale from several 

nanoseconds to about 1 ms can be detected.  
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The experimental measurement of this cross-correlation effect typically involves measuring 

the spin-echo decay-rate constant of the two components of the scalar-coupled doublet. 

Experimentally it may be difficult to resolve the two components, because it requires that the 
15N doublet can be measured in the absence of 1H decoupling. Only the use of deuteration 

schemes have allowed resolving 15N-[1Hα]/15N-[1Hβ] doublets [112]. Fast MAS helps in 

addition to increase resolution, and the longer coherence life times (smaller R2') that result 

from fast MAS and deuteration increase sensitivity and facilitate spin-state selective transfers 

that allow separating the two components in two sub spectra. Experimentally, CSA/D cross-

correlated relaxation-rate constants have been measured in SH3 [112,129] and later in 

ubiquitin [98], and these rate constants have been used for quantifying backbone dynamics 

[98,110,128]. The TROSY effect in solids can also be exploited for increasing sensitivity in 

NMR spectra for residues undergoing slow motion. It has been shown that several residues in 

the protein SH3 show greatly improved signal-to-noise ratio in spin-state selective 

polarization-transfer experiments (based on selection of the slowly-relaxing doublet 

component) as compared to CP transfer and scalar decoupling [130]. This idea is the same as 

the TROSY-type correlation experiments applied in solution state to study slowly tumbling 

(i.e., large) molecules. 

Differential relaxation due to interference of two chemical-shift tensors 

As a second example of differential relaxation we investigate the differential decay of zero-

quantum (I+S- and I-S+) and double-quantum (I+S+ and I-S-) coherences. We first consider the 

relaxation of double- and zero-quantum terms due to the dipolar coupling between the two 

spins and the two CSA tensors. This leads to relaxation-rate constants given by: 
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and 
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where the cross-correlated spectral-density function J I ,S( )(ω )  is defined in analogy to Eq. (42)

. The difference between zero-quantum and double-quantum relaxation due to dipolar and 

CSA interactions is obtained from these equations as
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Here the first term is a heteronuclear NOE term (see Eq. (40)), which turns out to be very 

small (below about 0.3 s-1 for H-N, see Figure 12) and can safely be neglected. The second 

term is a cross-correlated cross-relaxation term between the two CSA tensors.  

In addition to the CSA and dipolar-coupling contribution, we also need to consider the 

effect of isotropic chemical-shift fluctuations on the zero- and double-quantum relaxation-rate 

constants. In the presence of conformational exchange that modulates the isotropic chemical 

shift of the two nuclei by ΔωI and ΔωS, the chemical-shift modulation of the zero-quantum 
coherence is Δω ZQ = Δω I − ΔωS and the corresponding chemical-shift difference for the 

double-quantum term is ΔωDQ = Δω I + ΔωS . The differential MQ relaxation rate constant in 

the case of a two-site exchange is given by [131]:
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Here, pA and pB are the relative populations of the two states, and kex is the exchange rate 

constant defined by (kex = kAB+kBA = kBA(1+pB/pA)), where kAB and kBA are forward and 

backward rate constants. 

In the above discussion we have considered only the two isotropic chemical shifts, the 

two CSA tensors and the dipolar interaction between the two spins involved in the MQ 

coherence, but neglected the relaxation of any of the two spins due to dipolar interactions to 

remote spins. This contribution can also lead to differential MQ relaxation [132]. 

Experimentally, the remote-spin contribution is best suppressed by extensive deuteration of 

the sample [44]. 

Summing up, differential relaxation of zero- and double-quantum coherences can arise 

from four contributions: (i) correlated fluctuation of two CSA tensors via the cross-correlated 

relaxation term in Eq. (50), (ii) correlated fluctuation of the two isotropic chemical shifts 

shown in Eq. (51), (iii) fluctuation of the dipolar coupling, via the heteronuclear NOE term in 

Eq. (50) which is often negligibly small, and (iv) dipolar relaxation by external spins which 

we will not consider further.  

In Figure 18, we investigate differential relaxation of 1H-15N ZQ and DQ coherences 

by means of numerical simulations. The conformational exchange in our model occurs 

between two distinct states, similar to the model shown in Figure 17a. For this simulation, we 

assume that the CSA tensors of 1H and 15N have different orientations in the two exchanging 

states but each tensor retains its anisotropy δCSA in the two states. (Note that for these 

calculations one could of course also use the Redfield-theory Eq. (50) for the CSA/CSA 

contribution, and Eq. (51) for the isotropic CS interference. Indeed Eq. (51) is exactly 

identical to the result of numerical simulations [44]; however, in principle the Redfield 

approach is not strictly valid in the slow motional regime and we will compare numerical and 

Redfield-theory results for the CSA/CSA term in section 3.3.5.) Figure 18a investigates the 

case where the two states have identical isotropic chemical shifts, but the CSA tensors both 

change in the exchange process. In this case, differential relaxation is found (ΔRMQ ≠ 0) 

whenever the dynamic process is on a time scale from nanoseconds to about 1 millisecond. 

Largest ΔRMQ values are found for microsecond motions while motions occurring on 

picosecond time scales, or slower than milliseconds do not lead to significant cross-correlated 
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relaxation. This dependence is similar to the CSA/D cross-correlated relaxation described 

above. One can show that differential relaxation is only found if both CSA tensors are 

modulated, as expected for a cross-correlated relaxation (see also the JI,S terms in Eq. (50)). 

Furthermore, the sign of ΔRMQ depends on the relative angle of the fluctuations of the two 

tensors, reflected by the product δCSA,HδCSA,N [44,131]. Figure 18b shows that, just like for the 

CSA/D cross-correlated relaxation, the relaxation rate constant on the “slow branch” is MAS 

dependent, i.e. the maximum depends also on the MAS frequency. This is expected because 

of the dependence on the spectral-density terms at the MAS frequency, and qualitatively, it 

can be understood by the fact that a MAS frequency that is high compared to the motion leads 

to efficient averaging of the anisotropic interactions. 

In these simulations we have assumed that the two states have identical 1H and 15N 

chemical shifts in the two exchanging states. In panel (c) we consider the differential ZQ/DQ 

relaxation induced by correlated fluctuations of the two isotropic chemical shifts. Chemical-

shift fluctuations induce differential relaxation whenever the exchange-rate constant is in the 

range of microseconds to a few milliseconds, depending on the chemical-shift differences, the 

exchange rate constant, and the populations of the involved states. Of note, only fluctuation of 

both chemical shifts lead to differential relaxation (i.e. fluctuation of only one chemical shift 

does not lead to differential relaxation). The sign of ΔRMQ depends on the relative signs of the 

chemical-shift fluctuations of the two nuclei. This can be readily seen from Eq. (51). Finally, 

panel (d) shows the general case, in which a dynamic process alters both the isotropic and 

anisotropic chemical shifts. 

In summary, correlated fluctuation of isotropic and anisotropic chemical shifts can be detected 

through the different relaxation behavior of ZQ and DQ coherences. A MAS dependence of 

ΔRMQ arises if the differential relaxation is due to CSA fluctuations, and if the motion is on 

the “slow branch”, i.e., in the microsecond to millisecond time scale. The quantitative 

measurement of differential relaxation relies on the assumption that coherent contributions 

impact both the ZQ and DQ relaxation to similar extent. Differential ZQ/DQ relaxation has 

been studied recently using highly deuterated ubiquitin in the solid state [44]. 
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3.3.3  Relaxation in the Presence of a Spin-Lock Field: T1ρ Measurements 

As outlined above, the challenge of accessing quantitative transverse relaxation 

parameters is separation of incoherent relaxation effects due to stochastic processes from 

signal decay that arises from coherent evolution under incompletely averaged anisotropic 

interactions. The observables introduced in the previous sections circumvent this problem by 

measuring the difference between two decay parameters assuming that the coherent dephasing 

contributes similarly to both quantities.  

Alternatively, one may identify conditions where the coherent contributions to a 

particular transverse relaxation-rate constant are sufficiently suppressed, such that they 

become negligible compared to the incoherent part. As coherent dephasing is due to 

incomplete averaging of anisotropic interactions, in the sense of second- or higher-order terms 

in the average-Hamiltonian expansion (see Section 3.1), this contribution is reduced by (i) 

eliminating some of the interactions (e.g., by deuteration) and/or (ii) by increasing the MAS 

frequency. As discussed in Section 3.3.1 (Figure 14) even combining high levels of 

deuteration and the fastest MAS frequencies available today is insufficient to suppress 

coherent contributions to R2' rate constants. However, this may not be the case for relaxation 

under a spin-lock, i.e., R1ρ. 

Lewandowski et al have shown that the coherent contributions are strongly reduced 

when measuring 15N T1ρ time constants, i.e., the decay of 15N coherence in the presence of a 

spin-lock field at MAS frequencies of 40 kHz or higher [114]. It was estimated that the 

coherent dephasing contribution to 15N R1ρ rate constants are smaller than approximately 

0.27 s-1 in protonated proteins at MAS frequencies exceeding 40 kHz. Thus, it becomes 

negligible compared to the actual 15N R1ρ relaxation-rate constants, which are typically in the 

order of >2 s-1 for the backbone amides of proteins. The coherent dephasing is reduced 

significantly by the presence of a spin-lock field, compared to free evolution and proton 

decoupling. This effect is not yet fully understood or explained.  

Prior to the study of Lewandowski et al mentioned above, there have also been reports 

of measurements of 15N R1ρ relaxation-rate constants in highly-deuterated proteins at lower 

MAS frequency of about 10-20 kHz [113], and over the last years several other studies of R1ρ 
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rate constants have been reported under different conditions of sample deuteration, MAS 

frequency, and RF-field strengths [45,100,110,133,134]. The conditions under which coherent 

dephasing is sufficiently suppressed depends on the choice of the labeling scheme (in 

particular deuteration), the MAS frequency, and the RF field strength. The precise ranges of 

these three parameters that allow one to neglect coherent dephasing are not yet entirely clear, 

and need further experimental investigation. 

For a quantitative description of the T1ρ experiment we need to consider three time-

dependent processes, (i) MAS, (ii) the RF-field amplitude of the spin lock and (iii) the 

stochastic process, which modulates the anisotropic interactions and leads to relaxation. In 

addition, we also need to consider that the dynamic process is sensitive to differences in the 

isotropic chemical shifts. We defer the latter effect to a paragraph later in this section. 

The analytical equation describing T1ρ relaxation of a spin due to the CSA and the 

heteronuclear dipolar coupling are given by 

 1
T1ρ Ω( ) = R1ρ Ω( ) = cos2 θeff( ) 1

T1
+ sin2 θeff( ) 1

T1ρ 0( )   (52) 

where the magnitude of the effective field ω eff = ω1
2 +Ω2( )1/2  and the direction of the 

effective field are given by θeff = arccos Ω /ω eff( ) . The analytical expression for T1 can be 
found in Eq. (37) while the analytical expression for the on-resonance T1ρ (T1ρ 0( ) ) is 

equivalent to the T2 expression of Eq. (46) with the zero frequency replaced by the effective 

field strength. It is important to remember (see Section 2.2.1) that the frequencies sampled by 

the spectral-density functions have to be adjusted and corrected for the RF-field amplitude. 

These expressions can be written in a more compact way following Ref. [135]: 
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Here, we have already made the assumption that the Larmor frequencies are much 

larger than the effective field and the MAS frequency, and that both are only considered for 
their contributions to the J(0) term of T2 relaxation. The term R1Δ  is sensitive to the spectral-

density function at frequencies corresponding to sums and differences of the RF-field strength 

and MAS frequency. Thus, R1ρ relaxation-rate constants depend on the MAS frequency and 

the rf-field amplitude. Note that such a MAS dependence is not seen for longitudinal 

relaxation-rate constants, because the relevant spectral densities are the sums and differences 

of the MAS frequency (tens of kilohertz) and the Larmor frequency (hundreds of megahertz). 

As the Larmor frequency is much larger than the MAS frequency, these terms are essentially 

independent of the MAS frequency. It should also be noted here, that the T1ρ relaxation for 

homonuclear dipolar couplings has a different form and samples the spectral-density function 

at different frequencies. An alternative formulation of the expression for T1ρ under MAS has 

been reported [136]. 

Figure 19 shows calculated R1ρ rate constants for a fixed MAS frequency and three 

different spin-lock RF field strengths. These simulations indicate that for RF-field amplitudes 

approaching the MAS frequency, the R1ρ rate constant increases if the motion is in the 

microsecond regime, while for correlation times in the nanosecond time scale R1ρ rate 

constants are unaltered. This dependence on the MAS frequency and RF-field strength comes 

from the spectral density terms sampling sums and differences of MAS frequency and rf-field 

amplitude (see Eq. (54)). It is similar to the MAS dependence of the cross-correlated 

relaxation rate constants discussed above (see Figure 17 and Figure 18). The dependence of 

the R1ρ rate constant on MAS frequency and RF field strength has been exploited previously 

to study microsecond motion [45,133,137]. 

It is noteworthy that the three transverse relaxation parameters we have considered so 

far (CSA/D cross-correlated relaxation, CSA/CSA cross-correlated relaxation and R1ρ 

relaxation) are all sensitive to similar frequencies of the spectral density, although there are 

some differences. This becomes evident when comparing Figure 17 and Figure 19. It is 

interesting to compare how for a given sample the measured relaxation-rate constants 

compare, given that they should in principle have some similarity. Figure 20 shows a 

comparison between two different rate constants measured on ubiquitin. Although there are 
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differences, which might be due to the somewhat different sensitivity to the spectral density 

function, it is evident that the two measurements provide a similar picture of the motion in 

this protein. 

We have so far only considered R1ρ relaxation due to stochastic modulation of 

anisotropic interactions. In this last paragraph we consider the effect of isotropic chemical-

shift fluctuations on R1ρ relaxation-rate constants. The isotropic chemical-shift modulation is 

the basis of solution-state experiments that address conformational exchange processes on 

microsecond-to-millisecond time scales. In (isotropic) solution, the isotropic chemical-shift 

fluctuation is the only way of accessing dynamics on time scales longer than the overall 

tumbling correlation time (typically tens of nanoseconds). The effects of chemical-shift 

modulation in solution-state NMR are well described by the Bloch-McConnell formalism 

[138]. We use here numerical simulations to investigate common features as well as 

differences between the well-known solution-state case and the situation under MAS. Figure 

21 shows the R1ρ relaxation rate constant of a 15N spin bound to a 1H spin, which undergoes 

exchange between two states. In these simulations we assume that the two states differ by the 

orientations of the 1H-15N dipolar coupling and the 15N CSA tensor, or by the isotropic 15N 

chemical shift, or both. We first consider the case where the two states differ only by the 

isotropic chemical shift, while all anisotropic interactions remain unchanged by the dynamic 

process (Figure 21, solid black curve). In this case the heteronuclear dipolar coupling and 

CSA are perfectly averaged by MAS, and the situation is identical to the one in solution-state 

NMR. We observe an amplitude-dependent R1ρ relaxation-rate constant (relaxation 

dispersion) in the low rf-field range that is due to the isotropic chemical-shift modulation fully 

described by the Bloch-McConnell formalism. The relaxation-dispersion profile depends on 

(i) the relative populations of the involved states, (ii) the exchange kinetics, and (iii) the 

isotropic chemical-shift difference.  

In the case where the two exchanging states differ also in the orientations of dipolar-

coupling and CSA tensors, the situation becomes more complex: as the RF-field amplitude 

approaches the rotary-resonance conditions [139,140] (ν1 = n νr where n = 1,2), we observe an 

increased R1ρ decay-rate constant [45,133,134]. This is expected, as the spectral density at the 

difference between MAS frequency and the RF-field amplitude is relevant for R1ρ (see Eq. 
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(54)). In the context of our exchange model, the shape of this relaxation-dispersion profile 

depends on (i) the populations of the involved states, (ii) the exchange kinetics and (iii) the 

strength of the involved interactions and the angle by which they are modulated along the 

exchange process. Note that in solution-state NMR overall tumbling averages anisotropic 

interactions to zero on a nanosecond time scale. Thus, microsecond fluctuations of bond 

orientations in isotropic solution are undetectable by solution-state NMR. This is not the case 

for liquid-crystalline solution and it has been shown that bond-vector orientation changes can 

be detected in such systems [141]. In the general case, both isotropic chemical-shift changes 

as well as bond-vector orientation changes are expected to occur in any motional process. The 

expected evolution of R1ρ with the RF-field amplitude is thus the sum of the two limiting 

cases, a Bloch-McConnell-type of dispersion, and a dispersion in the vicinity of the rotary-

resonance conditions. Solid-state R1ρ relaxation-dispersion experiments have been shown to 

probe isotropic chemical-shift changes and bond-vector changes in proteins [45]. 

T1ρ experiments in proteins have so far primarily been used with 15N spins. The reasons 

for focusing on this nucleus is that its relaxation is well described by taking into account only 

the 15N CSA tensor and the heteronuclear dipolar interaction to the directly-bonded proton. 

The case of 13C T1ρ relaxation in fully 13C labeled proteins is more complicated. The evolution 

of homonuclear dipolar and scalar couplings during the spin-lock period renders quantitative 

analyses more difficult. Similar challenges have been addressed in solution-state NMR 

[2,142]. The solutions primarily involve selective labeling schemes or a restriction to the 

carbonyl 13C nucleus. Since it is well-separated from other 13C spins in terms of resonance 

frequency, the application of selective RF irradiation is straightforward. The stronger 1H-13C 

dipolar coupling also means that the second-order AHT term (Eq. (31)) is larger. Thus, it is 

more difficult to suppress coherent dephasing for the case of 13C transverse relaxation, as 

compared to 15N relaxation. 

3.3.4  Carr-Purcell-Meiboom-Gill (CPMG) Relaxation Dispersion 

We have seen in the previous section that fluctuation of the isotropic chemical shift 

leads to increased R1ρ rate constants. Likewise, such fluctuations also lead to increased R2' 

relaxation, i.e., enhanced coherence decay in a spin-echo experiment. This can be seen by 
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considering the evolution of a spin in a spin-echo sequence. In the absence of conformational 

exchange, the spin accumulates a phase during the first delay τ, according to its chemical 

shift; the refocusing pulse and subsequent delay refocus this accumulated phase, resulting in 

full echo formation. In the presence of stochastic exchange of the molecule between two (or 

more) conformations, the phase that a spin accumulates depends on the time the molecule 

spends in each of the states, and their respective chemical shifts. As the exchange process is 

stochastic, the trajectory that the molecule undergoes during each of the two delays differ, and 

therefore the phase accumulated during the first delay differs from the one in the second 

delay, such that the echo formed at the end of the second delay is incomplete. When 

considering the ensemble of molecules we study, each undergoing different stochastic 

exchange, the result is an increased apparent R2' rate constant. This exchange-broadening can 

be reduced if the delays are reduced (such that the accumulated phase is smaller, which can be 

done by applying a train of closely-spaced refocusing pulses instead of a single refocusing 

pulse. This idea is at the basis of what is known as Carr-Purcell-Meiboom-Gill relaxation 

dispersion (RD) experiments [73,74]. Figure 22a shows the principle of such experiments; the 

coherence decay is measured in different experiments, where the repetition rate of the 

refocusing pulses is changed. In the presence of exchange the effective relaxation-rate 
constant varies with the CPMG frequency (Figure 22c), (νCPMG = 1/ (4τ ) ) in a manner that 

depends on (i) the isotropic chemical-shift difference of the considered nucleus in the 

exchanging states, (ii) the exchange-rate constant and (iii) the relative populations of the 

exchanging states. Therefore, fitting CPMG RD profiles allows us to obtain these parameters, 

similarly to R1ρ relaxation dispersion experiments [2,40,42]. 

In order to allow a quantitative analysis of the exchange process, one needs to assure 

that the dependence of the relaxation-rate constant on the CPMG frequency is solely due to 

exchange. This is not always the case, and eliminating or quantifying other contributions is 

one of the main challenges in CPMG experiments. For example, during the free-evolution 

delays, an initial in-phase operator Nx evolves under the scalar coupling to anti-phase 2HzNy; 

although the subsequent π pulse and the delay will refocus this term, the effective relaxation 

rate is the weighted average of the relaxation rates of Nx and 2HzNy, and the relative weight of 

these two coherences depends on the length of the delay. The relaxation of in-phase and anti-

phase magnetization is generally different, and consequently, in experiments with different 
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delays (i.e., CPMG frequencies) the relaxation rate is expected to differ even without the 

presence of conformational exchange. This hampers quantitative analysis of CPMG 

dispersion data. In solution-state NMR this issue has been solved either by ensuring that the 

time during which Nx and 2HzNy are present is constant and independent of the CPMG 

frequency [143], or by preventing the buildup of the anti-phase term by scalar decoupling. 

Using either implementation leads to CPMG RD measurements that are robust and reliable. In 

practice, such experiments are most often performed using a constant-time delay, while 

applying an increasing number of refocusing pulses (see Figure 22a). The CPMG frequency is 
then , where n is the number of applied pulses and T is the total relaxation delay. 

In the solid state, the coherence decay in a spin-echo experiment (R2') contains also 

contributions from dipolar dephasing, and the decay rate constant itself is not amenable to 

quantitative interpretation. However, in the context of studies of conformational exchange the 

absolute values of the R2' rate constants are not relevant, and in solution-state NMR the 

“plateau” value of R2' (at infinite νCPMG) is independent of conformational exchange and is 

usually not further interpreted. Thus, CPMG RD experiments may be applied to MAS NMR 

even though the R2' rate constants contain coherent dephasing. However, in order to apply and 

quantitatively interpret CPMG RD data in MAS NMR a number of conditions need to be 

verified. (i) It must be assured that the coherent contributions to R2' are independent of νCPMG 

or that the dependence is precisely known. This basically means that the dipolar dephasing 

should be independent of νCPMG and that recoupling of anisotropic interactions by the train of 

π pulses can be excluded. (ii) From a practical perspective, the relaxation-rate constant should 

be sufficiently small such that a long total relaxation delay can be chosen. This is because the 
minimum CPMG frequency depends on the relaxation delay as νmin = 1/ (2T ) . Note that the 

duration of the pulses is generally short compared to the inter-pulse delay, and the relaxation 

during the pulses is generally neglected. 

Figure 22(c)-(f) investigates the properties of 15N CPMG RD experiments under MAS, 

using the pulse-sequence element in panel (b). In the first case we investigate an exchange 

process in a H-N two-spin system with two states that differ only by the isotropic 15N 

chemical shift, while the orientations and anisotropies of the CSA and dipolar-coupling 

tensors are fixed. In this case MAS perfectly averages the static anisotropic interactions and 

ν = n / (2T )
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the RD profile can be predicted using the Bloch-McConnell formalism (Figure 22c). In the 

case where the exchange process also alters the anisotropic interactions, the R2' rate constants 

are increased (Figure 22d, e). This is expected, as fluctuation of CSA and dipolar-coupling 

tensors leads to relaxation (see Figure 14).  

Additional protons render the situation somewhat more complex, as shown in panels 

(d) to (f). The presence of an additional proton spin increases the apparent R2' relaxation rate 

constant. If this increase is uniform, i.e. independent of the CPMG frequency, such an 

increase does not have any effect of fitted exchange parameters. The increase is indeed only 

slightly νCPMG-dependent in the simulations, although the remaining coherent contributions 

may generally lead to inaccuracies. Numerical simulations (such as those shown in panel (f)) 

can be used to quantitatively investigate the impact of these contributions to the fitted 

parameters [44]. 

CPMG relaxation-dispersion MAS NMR has been used only recently, in an 

application to microcrystalline ubiquitin [44]. In this study, a highly deuterated protein sample 

was used, in order to reduce the effects of remote proton spins and increase 15N coherence life 

times. Data were obtained at two different static magnetic field strengths, and fit using the 

Bloch-McConnell formalism as usually applied in solution-state NMR. By comparison with 

relaxation-dispersion measurements in solution state, it was found that the motions are slowed 

down by the crystalline environment (see Section 4). 

3.3.5  The Validity of Redfield Theory in Solids 

The discussion so far has mostly been based on the Redfield treatment of relaxation. 

As outlined in Section 2.1, an important assumption in the derivation of Redfield theory is 

that the motional process is very fast compared to the change of the density operator. For the 

motion on a microsecond time scale that we study with transverse relaxation-rate constants, 

this assumption is not a priori granted. It is, therefore, important to compare numerical 

simulations based on the stochastic Liouville approach [69-71] for the transverse relaxation-

rate constants discussed (cross-correlated relaxation and T1ρ relaxation), with their analytical 

results based on Redfield theory. 
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Figure 23 compares 15N R1ρ rate constants calculated with the analytical Redfield 

treatment (Figure 23a) and rate constants obtained by stochastic numerical simulations in the 

rotating frame (Figure 23b). For both simulations we assumed an identical two-site exchange 

model, similar to the simulations shown in Section 2.2.2. The comparison shows that on the 

“fast branch”, i.e. when the correlation time is 10-8 to 10-6 s, the two approaches result in 

essentially identical 15N R1ρ rate constants. For faster motions, there are significant differences 

that are due to the fact that the stochastic simulations are carried out in the rotating frame. As 

soon as the correlation times approach the magnitude of the inverse of the Larmor 

frequencies, this approach is no longer correct. Essentially, the spectral densities at multiples 

of the Larmor frequencies are not sampled by the stochastic Liouville simulation in the 

rotating frame. For slower motion (10-6 to 10-2.5 s), there is a clear difference between the two 

approaches with the Redfield method based data being larger. The source of this discrepancy 

is an interference between the stochastic time-dependent process and the MAS rotation, which 

are on the same time scale. For even longer correlation times, the agreement gets better again 

since the time scales of the deterministic and stochastic time dependence get separated again. 

Although the deviation is small, quantitative analyses of dynamics in this time regime need to 

take this into account. 

Similar differences are found in comparisons of the CSA/D (Figure 24) and CSA/CSA 

(Figure 25) cross-correlated relaxation rate constants. Figure 26 shows a comparison of two 

slices for order parameters of 0.982 and 0.95, which illustrates again the differences between 

the Redfield and the stochastic Liouville approach. 

These illustrations show that the relaxation-rate constants predicted by Redfield theory 

are generally incorrect in the microsecond to millisecond regime. This is expected from the 

assumptions made in the derivation of Redfield theory. We have not considered here 

relaxation in the presence of heteronuclear decoupling, which are sometimes used in 

protonated proteins. Approximate solutions to such experiments have been proposed [76,109].  

Taken together, in this section we have presented transverse relaxation parameters and 

their dependence on dynamics, and also their sensitivity to factors that are unrelated to 

dynamics (in particular dipolar dephasing). Under experimental conditions reported so far, 

free-evolution decay rate constants (R2) cannot be quantitatively analyzed, as the coherent 
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contribution to decay is often dominant. We have presented three experimental parameters 

that are sensitive to dipolar and/or CSA fluctuations, and which can be quantitatively 

measured, namely CSA/D cross-correlated relaxation, CSA/CSA cross-correlated relaxation 

and R1ρ relaxation. These relaxation rate constants are sensitive to the spectral density 

function at the MAS frequency (and, for R1ρ, the RF field strength). In the “slow end” of the 

sensitivity range of these parameters (microseconds), these relaxation rate constants are thus 

sensitive to the MAS frequency, and MAS-dependent measurements, or RF-field dependent 

measurements of R1ρ can provide direct evidence for such slow motions. We also showed that 

isotropic chemical-shift fluctuations can be probed by R1ρ- or CPMG relaxation dispersion, or 

via the differential relaxation of ZQ and DQ coherences. Section 3.5 will investigate how 

transverse and longitudinal relaxation rate constants, together with the amplitudes of motion 

obtained from dipolar-coupling derived order parameters (Section 3.4) can inform about 

physical parameters of the dynamics. 
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3.4  Direct Measurement of Motional Amplitudes from Incompletely-

Averaged Anisotropic Interactions 

Fluctuation of NMR interactions, in particular dipolar couplings, chemical-shift 

anisotropies, and quadrupolar couplings (only for spins with quantum numbers I > 1/2) lead to 

nuclear spin relaxation. The induced relaxation-rate constants depend on the strengths of the 

interactions, the amplitude of motion, and the time scale at which the fluctuation occurs, as 

discussed in the previous sections. In addition, the incomplete averaging of these interactions 

due to dynamics in solids provides another, complementary probe of molecular dynamics. 

Unlike relaxation, the averaged values of the anisotropic interactions do not explicitly depend 

on the time scale of motion. In this section we will discuss how motional processes lead to 

incomplete averaging of anisotropic interactions, and how information about the motional 

amplitude and their symmetry can be obtained from measurements of scaled anisotropic 

interactions. 

The NMR interactions can be described by a Hamiltonian, which in the case of an 

interaction between two spins (k ≠ n) has the following form in Cartesian notation: 

 

  

Ĥ = Î k
!"!
⋅A(k ,n) ⋅ În
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Such a Hamiltonian describes the interaction between two (nuclear or electron) spins, such as 

the scalar, the dipolar, or the hyperfine coupling. The quadrupolar coupling is described by 

the same type of Hamiltonian with k = n. The interaction of a spin with a classical magnetic 

field (Zeeman interaction, radio-frequency fields, chemical shift, or magnetic susceptibility) is 

described by a Hamiltonian, which has a similar form 
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In all cases of NMR interactions, the matrix A describes the strength and orientation-

dependence of the interaction. It is often convenient to decompose the general 3x3 matrix in 

three components, 

 A = A(0) + A(1) + A(2)  (57) 

where 
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0 0 a
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with 

 a = 1
3
Tr(A) =

axx + ayy + azz
3

 (59) 

This component is invariant under rotation, i.e., isotropic, and is referred to as rank-0 

component of A. In the case of the chemical-shift interaction, this component is referred to as 

the isotropic chemical shift while in the case of the J coupling, it is referred to as the scalar 

coupling. For dipolar and quadrupolar coupling this component does not exist. 

The traceless and symmetrized part of A, the component A(2), is given by 
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and has the rotation properties of a rank-2 tensor. In the present section we focus on this 

component of the interaction tensors in particular for the cases of the chemical-shift, the 

dipolar and the quadrupolar interactions. The remaining component, A(1), is traceless and 

antisymmetric. It has rank-1 tensor properties, and it is usually not discussed in NMR since it 

is not visible in high-field NMR spectra. However, it can contribute to relaxation phenomena 

and while it has been measured in selected cases [144], its magnitude is often not known and 

it is difficult to quantify its contribution.  

The Cartesian rank-2 tensor is diagonal in the principal-axis system of the interaction: 
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Here, Axx, Ayy and Azz are the diagonal elements of the tensor A in the principal axis system and 
δA is the anisotropy and ηA = Ayy − Axx( ) / Azz  is the asymmetry of the interaction. The 

asymmetry assumes values 0 ≤ηA ≤1 , implying that Ayy ≤ Axx ≤ Azz . These definitions 

follow the conventions proposed by Mehring [55]. 

In the case of a dipolar coupling, i.e. the direct through-space interaction between two 

spins n and k, the magnitude of the anisotropy is determined by the nature of the involved 

nuclei and their relative distance, i.e., 

 
 
δD = −2 µ0

4π
γ kγ n!
rnk
3 .  (62) 

The magnitude of the dipolar coupling depends only on the distance between the two spins 

and is axially symmetric, i.e., ηD = 0. The dipolar coupling is, therefore, described by an 

axially-symmetric tensor and is traceless, i.e., it is averaged to zero in isotropic solution. The 

anisotropy of the dipolar coupling tensor, δD, is unambiguously defined by Eq. (62), and we 

will use this definition throughout. For a 1H-15N spin pair separated by 1.02 Å, the tensor 

anisotropy is δD/2π = 22.954 kHz. Sometimes the term dipolar-coupling constant is used, 

which corresponds to the splitting observed in a static powder spectrum, which is for a 

heteronuclear spin pair δD/4π.  

As already discussed in the Introduction, the J coupling has, in principle, all three 

components (rank-0, rank-1 and rank-2 tensor components). However, the rank-2 part of the 

dipolar coupling is typically small for light elements and for practical purposes absorbed into 

the dipolar coupling. There is not much information available about the antisymmetric part of 

the J coupling and usually only the isotropic part of the J coupling is considered in the form 

of the scalar coupling. 

The quadrupolar coupling exists only for spins with I > 1/2, such as deuterium. It 

arises from the interaction of the quadrupole moment of the spin (Q) with the electric field 

gradient. The source of the electric field gradient is the non-spherical distribution of the 

electron density around the nucleus. The anisotropy of the quadrupolar-coupling tensor is 
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δQ = e2qQ

2I(2I −1)!
 (63).  

Unlike the dipolar-coupling tensor, quadrupolar-coupling tensors are generally not axially 

symmetric, i.e. η ≠ 0. The electric-field gradient tensor is traceless, implying that in solution 

the nuclear quadrupole interaction has an average of zero and, therefore, no isotropic 

component.  

The chemical shift is due to the magnetic field induced by the electrons surrounding a 

nucleus. Unlike the dipolar and quadrupolar coupling interactions, the rank-0 component of 

the chemical-shift tensor does not vanish, i.e. the chemical-shift tensor has a non-zero 

isotropic average. Fluctuation of this isotropic component is not the focus of this section; we 

recall here that we have discussed in Section 1 the cases of fast/slow exchange with respect to 

the isotropic chemical shift, and in Section 3.3 we investigated how isotropic chemical-shift 

fluctuation on a time scale commensurate with the magnitude (in Hertz) of the fluctuation 

leads to line broadening, and how it can be measured by CPMG relaxation dispersion, R1ρ 

relaxation dispersion, or differential ZQ/DQ relaxation.  

The rank-2 component is referred to as chemical-shift anisotropy (CSA). It is generally 
asymmetric, i.e. ηCSA ≠ 0 . For certain sites, such as the backbone 15N spin, it can be 

approximated well by an axially-symmetric tensor, i.e., ηCSA = 0. Determining CSA tensors 

from ab initio quantum-chemical calculations currently remains challenging [145]. This 

means that the rigid-limit CSA tensors are generally not known to high precision, making it 

difficult to interpret measured CSA parameters in terms of dynamics. 

It is instructive to visualize the rank-2 tensors in terms of graphical representations, to 

get an intuitive understanding for the motional averaging of anisotropic interactions. Figure 

27a shows such representations for a symmetric second-rank tensor (i.e. η = 0), such as a 

dipolar-coupling tensor or an axially symmetric CSA tensor. The anisotropic nature of this 

interaction is readily visible because the function along different spatial directions takes 

different values. This space-dependence is described by the second-order Legendre 
polynomial P2 cosθ( ) = (3cos2θ −1) / 2 , where θ is the angle between the z axis of the tensor 

(i.e., the internuclear vector for a dipolar interaction) and the static magnetic field B0. In the 

representation of Figure 27, cyan portions correspond to orientations in which the value of the 
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interaction (e.g. the dipolar coupling) is positive, whereas red portions correspond to 

orientations with a negative values of the interaction. In Figure 27a the internuclear vector 

would thus point along the vertical axis. If we assume that the B0 field is along the same axis, 

the spin pair would have a large and positive dipolar coupling. 

When motion is present, different states are inter-converting, and these states generally 

differ in terms of the orientation of the interaction and possibly the magnitude of the tensor 

anisotropy δD, but we neglect this here for simplicity. For example, consider the dipolar 

coupling between two spins, which would only change in terms of its orientation. If the inter-

conversion between these states is fast compared to the interaction strength – we will illustrate 

the time scale considerations further below – the resulting measurable interaction tensor 

corresponds to the average over all sampled orientations. Figure 27B shows this averaging 

process for the case of the dipolar-coupling tensor of a system undergoing a two-site 

exchange process. The plot shows the resulting tensor of the averaging process for a range of 

different relative populations between the two states which differ by an angle of 90°. Figure 

27C shows the tensors resulting from dynamic averaging in a three-site exchange process. 

One can see in this example that if only one state is populated, i.e., in the absence of motion 

(the tensors in the corners of the triangle), the dipolar-coupling tensor is axially symmetric 

and corresponds to the rigid-limit value. Whenever there is dynamic averaging between 

different conformers, the anisotropy of the averaged tensor will be smaller than the static 

value. Furthermore, in the general case the averaged tensor will become asymmetric, even 

though each of the rigid-limit tensors is axially symmetric. 

Such a simple graphical representation of the dynamic averaging process indicates that 

the averaged interaction tensors directly report on the amplitude of the underlying motion. 

Thus, if one can measure experimentally the averaged tensor, and if one knows the anisotropy 

and asymmetry of the tensors in the static case, one can get direct insight into the amplitude of 

the motion underlying the averaging process. Often only the anisotropy of the interaction is 

quantified, as it is generally easier to measure, and the reduction of the tensor anisotropy is 

reported as the order parameter S, 

 S = δ exp /δ rigid . (64) 
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Note that the order parameter S is obtained here, not S2, which is obtained from relaxation 

measurements; this is because a product of interactions enters in the relaxation equations, and 

the scaling of the interactions thus enters as a product (see Eq. (23)). Measuring motional 

amplitudes through motionally-averaged anisotropic interactions, therefore, requires (i) that 

the interaction tensor can be measured with a high accuracy and precision and (ii) that the 

rigid-limit values of the tensors are known. In this context, the dipolar coupling between 

directly bonded nuclei is particularly attractive, because the rigid-limit dipolar-coupling tensor 

can be readily computed from the vibrationally-averaged bond length, and the gyromagnetic 

ratios of the involved nuclei. However, also CSA and quadrupolar tensors can provide rich 

information about motional amplitudes. 

Measurements of anisotropic interactions under MAS can be done with different 

approaches. If the magic-angle spinning frequency is small compared to the magnitude of the 

anisotropy of the interaction, the spinning side-band manifold can be used to characterize the 

anisotropic interaction tensor directly. This is mainly the case for quadrupolar couplings 

which are often much larger than typical spinning frequencies. For dipolar-coupling and CSA 

interactions, measuring anisotropic interactions under MAS often requires a recoupling 

sequence [77-80], which reintroduces the interaction that is otherwise averaged by MAS in 

first order on the time scale of τr. The recoupling can be seen as an interference between two 

time-dependent processes, the sample rotation and the pulse sequence. If molecular motion is 

present, this stochastic dynamic process is a third time dependence; it leads to an averaging of 

the anisotropic interactions (which is the desired information), and it may also interfere with 

the MAS averaging and the recoupling sequences. We investigate in the following the effect 

of dynamics on the apparent recoupling behavior one can observe. This is best done using 

numerical simulations (performed here with GAMMA [146]), which take into account (i) 

magic-angle sample spinning, (ii) a recoupling sequence, and (iii) a dynamic process, here 

modeled as a jump between discrete sites. Interferences between these three different 

processes are used to illustrate the time scales over which dynamic averaging occurs. For 

these simulations, a widely used heteronuclear dipolar-recoupling technique, the Rotational 

Echo DOuble Resonance (REDOR) recoupling sequence is used [147]. In REDOR, a train of 

rotor-synchronized π pulses is applied twice per rotor period, in order to counteract the 

averaging of the dipolar coupling by MAS. The outcome of this experiment is a (normalized) 
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signal amplitude which is modulated over the course of a recoupling period with a frequency 

that reflects the tensor anisotropy and to some extent also the tensor asymmetry, as shown 

further below. In our simulations, the MAS and the inversion pulses, as well as the dynamic 

process are explicitly taken into account; the dynamics are modeled using an explicit two- and 

three-site jump model, similar to the numerical simulations in the previous sections about 

relaxation. 

Figure 28 shows REDOR curves for a system undergoing a symmetric three-site 

exchange process, occurring on a range of time scales from 10 ns to 1 s. In the case that the 

exchange process is very slow (top left panel) the REDOR oscillation is fast, reflecting a large 

tensor anisotropy (i.e. a strong dipolar coupling). This large and non-averaged dipolar 

coupling is expected for slow dynamics, because in the limiting case of infinitely slow motion 

the system behaves like a fully rigid system with the full (symmetric) dipolar coupling. On the 

other end of the time scale, if the motion is very fast, the resulting REDOR oscillation is slow. 

As the motional model used here is a symmetric three-site jump model (θ = 70.5°, φ = 120°) 
with equal populations, the scaling of the dipolar coupling is a factor P2 cosθ( )  = -1/3 in the 

fast-exchange limit, and the time evolution is thus simply scaled by a factor of 1/3 as 

compared to the rigid-limit case. In between these two limiting cases, fast and slow motion, 

one can see a transition area. Figure 28 shows that this “coalescence” regime occurs when the 

rate of the dynamic process is about k = 100 s‑1 to 5000 s‑1. In this “transition” regime, the 

REDOR curve appears “damped”. The range of rate constants at which this intermediate 

regime is reached directly depends on the interaction strength, as well as some pulse-sequence 

related factors that translate into a “scaling factor” of the interaction measured by the 

sequence [148,149]. Thus, for a smaller interaction strength the interaction is averaged up to 

longer time scales. Experimental approaches to characterizing this intermediate regime have 

been discussed [150,151]. 

Note that the averaging process of anisotropic interactions revealed by Figure 28 is 

analogous to the averaging of isotropic chemical shifts, which is a more widely known 

phenomenon in NMR: the separation between “fast exchange”, characterized by the 

observation of a single averaged chemical-shift value and “slow exchange”, in which case 

individual peaks for the involved states are observed, depends on the chemical-shift 
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difference. Fast exchange is defined as k ≫ ΔΩ, while for slow exchange k ≪	ΔΩ, and in the 

intermediate regime line broadening is observed. Similarly, the REDOR curves in the slow 

exchange regime can be seen as a superposition of individual REDOR recoupling curves. In 

our examples, the different exchanging states were assumed to have identical (rigid-limit) 

tensor parameters; thus a single recoupling behavior is observed. In the “fast exchange” 

regime, one also sees a single recoupling curve, which represents the averaged dipolar 

coupling tensor. These findings are thus analogous to chemical-shift averaging. The situation 

is complicated by the fact that in a powder sample different crystallites have different values 

of the dipolar coupling. Therefore, we see a superposition of curves where different 

crystallites can be in different exchange regimes. 

In the above example we have studied the case of a three-fold symmetric exchange 

process with equal populations. In such a case of C3 symmetry (or in cases of higher 

symmetry) and equal populations the resulting averaged tensor is itself axially symmetric, just 

as the rigid-limit tensors are axially symmetric. We now consider the more general case of a 

lower symmetry. Figure 29 shows the case of a two-site jump model. Similar to the case 

described above, we find fast, intermediate and slow exchange regimes, but in the fast-

exchange limit we get a recoupling curve that does not look like a typical REDOR curve. This 

is due to the fact that the averaged dipolar coupling is no longer axially symmetric. One can 

also see the asymmetry of the interaction arising from the motion by inspection of the 

corresponding tensors, shown in Figure 27. It was found there that motion generally leads to 

asymmetric tensors, unless the motion has three-fold (C3) or higher symmetry and equal 

populations.  

In the overwhelming majority of cases reported in the literature on dipolar-coupling 

measurements, the asymmetry of the averaged dipolar-coupling tensor is ignored, and only 

the scaling of the anisotropy is considered. The reason for this is that while the anisotropy is 

rather straightforward to measure (reflected by the oscillation frequency in the time domain, 

or a splitting observed in the frequency domain), the effects of tensor asymmetry are more 

subtle. The asymmetry is primarily manifest as a distortion of the recoupling curve. This is 

illustrated for the case of REDOR recoupling using a two-site jump model in Figure 29. 

However, in many recoupling sequences, a damping or distortion of the recoupling can also 
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arise from experimental imperfections, remote spins or relaxation during the recoupling 

sequence [149,152,153]. In most experiments, the recoupling curves (or Fourier transforms 

thereof) need to be fitted with empirical parameters such as a zero-frequency component or a 

damping, thus masking asymmetry effect. One notable exception is the REDOR experiment 

that has a built-in normalization, which eliminates the need to use ad hoc empirical fit 

parameters. In a recent application, REDOR has been applied to characterize non-symmetric 

side-chain motions [154]. 

3.4.1 Experimental measurement of anisotropic interactions 

The amplitudes of motion (reflected in order parameters, S, and tensor asymmetry η) 

can be obtained by comparing the dynamically-averaged anisotropic interaction to the 

respective rigid-limit value. The accuracy to which motional amplitudes can be obtained 

depends thus on the accuracy with which the tensor parameters can be obtained 

experimentally, and the precision of knowledge of the rigid-limit tensor. Accuracy is in fact 

quite critical, if one wants to interpret motional amplitudes quantitatively or combine them 

with relaxation data, as illustrated by a simple calculation: consider the case of N-H backbone 

order parameters in a protein. Typically, amide sites have a squared order parameter, S2, of 

approximately 0.85, or an order parameter S = 0.921. If the measurement of the dipolar 

coupling has a systematic error of -5% (or if the uncertainty of the rigid-limit value is of this 

order of magnitude) one would calculate an order parameter of S = 0.875 (or, more relevant 

when combining with relaxation data, S2 = 0.766). When viewed on an absolute scale of 

amplitude (1‑S2), this difference is substantial (1-S2 = 0.234 instead of 0.15), which shows that 

for absolute interpretation of motional amplitudes, and also for joint analyses with relaxation 

data, one needs to know precisely the rigid-limit value, and one needs experimental 

approaches that have an accuracy better than 1-2%. We review some common measurement 

schemes below. 

CSA tensors can be measured in solid-state NMR by Herzfeld-Berger analysis of the 

spinning sideband manifold under slow MAS conditions [155,156], single-crystal 

measurements [157] or static measurements. However, due to limited resolution under these 

conditions, and difficulties in obtaining single crystals, these approaches are not generally 
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applicable to proteins. As CSA tensors are relatively small (generally a few kHz), the 

spinning sideband manifold rapidly disappears when reaching MAS frequencies required for 

high resolution. Thus, the use of recoupling sequences is required under MAS. Among the 

currently most-often used approaches are symmetry-based [158] recoupling sequences, such 

as the C-type-based ROCSA (Recoupling Of CSA) experiment [159] ,which has been used 

for measuring CSA tensors in several proteins [99,106,156,159,160], and R-type sequences 

[161]. As is generally the case for recoupling sequences, the precision and accuracy with 

which tensor parameters are obtained are impacted by experimental imperfections such as RF-

field inhomogeneity or phase transients. Even if CSA tensors can be obtained accurately, the 

interpretation in terms of dynamic amplitudes is challenged by the fact that the rigid-limit 

tensor parameters are generally not precisely known. CSA tensors vary from site to site due to 

differences in local structure, and, for example, hydrogen bonding, particularly for 15N and 
13C' sites. Therefore, it is currently difficult to obtain quantitative order parameters from CSA 

measurements. 

Compared to CSA tensors, quadrupolar-coupling tensors are large (about 200 kHz for 
2H), and therefore the spinning sideband manifold is readily visible even at MAS frequencies 

beyond 10-20 kHz. Spinning sidebands can be fitted to extract tensor parameters, which has 

been reported for proteins [22]. An experimental challenge comes from the fact that the 

sideband manifold is very large, and exciting it uniformly requires very large RF field 

strengths (which are generally not available). If uniform excitation cannot be assured, the 

sideband intensities are skewed, somehow challenging the precision of fits. New 2H excitation 

and cross-polarization methods may at least partly solve this problem [162,163]. As with the 

CSA tensors, it is generally difficult to obtain the rigid-limit quadrupolar-coupling tensor 

parameters, as they depend on the local electron density. This makes absolute quantitative 

statements about the motional amplitudes difficult.  

Dipolar couplings are in this respect more straightforward to interpret, as the rigid-

limit coupling tensor is symmetric (see above) and its anisotropy can be readily computed 

from the type and distance of the involved nuclei, which, for directly bonded nuclei, is 

generally known to good accuracy. Measuring dipolar-coupling tensors under MAS requires 

the use of recoupling techniques. A number of approaches have been proposed for 
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measurement of dipolar couplings. They all consist of a rotor-synchronized pulse sequence 

that counteracts the MAS averaging. The most commonly used approaches are cross-

polarization (CP) buildup measurements [164,165], Lee-Goldburg CP [111,166], phase-

inverted CP [167,168], DIPSHIFT experiments [169,170], R-sequences [153,158,171,172], 

homonuclear SPC5 [173], T-MREV [174], or variants of REDOR [147] and TEDOR 

recoupling [106,175]. Systematic errors of dipolar-coupling measurements often are a 

challenge, and may arise from: (i) Experimental imperfections of the pulse sequence, in 

particular RF-field inhomogeneities or missetting of the applied RF-field amplitude. Besides 

these, the effects of phase transients can also play an important role; phase-transient 

compensated pulses might be a way to avoid such effects for some of the pulse sequences 

[176,177]. (ii) Artifacts that are due to other interactions than the one to be measured. 

Particularly, the measurement of a dipolar coupling between directly bonded nuclei may be 

impacted by the recoupling of the coupling to other spins. The potential systematic errors due 

to experimental imperfection have been investigated in a number of studies, such as in 

references [149,152,153,168], and we do not review all the different sequences here. In our 

view, the REDOR sequence appears to be among the most robust experiments for measuring 

heteronuclear dipolar couplings (as long as fairly isolated X-H spin systems are prepared, e.g. 

by deuteration), and we use this sequence here to exemplify the effects of RF field 

inhomogeneities.  

Figure 30 shows the effects of RF-field amplitude missetting on 1H and 15N RF 

channels on the apparent (measured) dipolar-coupling tensor anisotropy. Panel (a) shows the 

pulse sequence used for measuring H-N dipolar couplings in deuterated amide-protonated 

proteins. Panel (b) shows a typical RF inhomogeneity profile of a contemporary MAS probe. 

RF field distributions of the order of 5-10% across the sample volume are generally observed. 

The observed recoupling curves will, therefore, always be a sum over recoupling curves from 

different parts of the sample, with different effective recoupling behavior. In addition to this 

distribution of fields, one also needs to consider the impact that a misadjusted RF-field 

amplitude has on the recoupling curve. Panels (c) and (d) investigate the effect of RF 

missetting for the 1H RF field on the measured dipolar coupling, while panel (e) considers the 

effect of 15N RF missetting (which is very small). Missetting of the 1H RF field by about 10% 

can lead to an underestimation of the dipolar coupling by about 5%. Note that for other 
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recoupling sequences the errors can be substantially larger. Accurate measurement of dipolar 

couplings, thus, requires, in addition to choosing a pulse sequence that is as robust as possible, 

that the RF fields are carefully adjusted, and possibly that RF field inhomogeneities are taken 

into account when fitting the data. Furthermore, the effects of CSAs and remote spins need to 

be considered, and these generally vary between different recoupling sequences; CSA effects 

in some sequences are negligibly small, e.g. in REDOR, or they can be explicitly measured 

and accounted for in fits of the dipolar coupling [172]. 

Figure 31 shows experimentally determined 1H-15N dipolar-coupling derived order 

parameters (plotted here as S2) in microcrystalline ubiquitin as a function of the amino acid 

residue. The order parameter profile shown in black was obtained by careful calibration of the 

RF field strength of the 1H and 15N π pulses; furthermore, when analyzing these data, the 

previously measured RF field distribution in the coil was taken into account explicitly by 

applying a scaling factor [110]. Data sets shown in red and blue were recorded with slightly 

miscalibrated RF field strengths. One can see that as a result, the order parameters are 

underestimated; this is in agreement with numerical simulations and experimental 

investigations shown in Figure 30 (c) and (d). Interestingly, the systematic underestimation is, 

to a good approximation, a uniform scaling factor, as the close agreement between the three 

data sets after best-fit scaling shows (Figure 31b). This indicates that the relative order 

parameters between different sites can be obtained very reproducibly, even if the RF field is 

not very accurately set. With correct setting of the RF field strength one can obtain absolute 

order parameters. Interestingly, these order parameters are very similar to order parameters 

determined by relaxation-based solution-state NMR methods, panel (c), indicating that the 

sub-microsecond motion in solution and crystals is similar; we will further address this 

question in Section 4. 

To summarize this section, the measurement of dynamically-averaged anisotropic 

interactions (dipolar couplings, CSAs and quadrupolar couplings) provides direct insight into 

the amplitude of motions. The time scale over which motions are averaged depends on the 

interaction strength (and some experimental details), and typically the averaging is over time 

scales shorter than microseconds. Averaged anisotropic interactions provide information 

about the amplitude and, if the asymmetry can be measured, also about the geometry of the 
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motion. For a quantitative analysis the rigid-limit tensor parameters have to be known, which 

is most easily available for dipolar couplings. Dynamically-averaged anisotropic interactions 

are complementary to relaxation data. While the former provide rather straightforward 

information about amplitudes, the latter are sensitive to both amplitudes and time scales. A 

combined use of both observables is thus an attractive route to jointly characterizing rates and 

amplitudes. The following section illustrates such combined approaches. 

3.5  Combination of Averaged Anisotropic Interactions and Relaxation 

Data to Obtain Information About Motion 

The ultimate goal of dynamics studies is an atomic description of the motion of a 

molecule. In the ideal case, one would like to know all the three-dimensional structures that 

are inter-converting, as well as their relative populations and the height of the energy barriers 

between them. Obviously, no experimental technique can currently provide such information 

directly and we always need to use simplified approaches that characterize approximately the 

conformational space sampled by a given group of atoms. The best model to choose depends 

on the type of motion that is expected, which in turn depends primarily on the time scale of 

the considered motion, and, therefore, on the energy barrier between the involved states. 

Motions occurring on time scales shorter than microseconds connect states separated by rather 

low energy barriers. Often these states have similar relative populations, and differ mostly in 

local bond orientations (bond libration motions). Therefore, most commonly such motions are 

described with a parameter that describes the effective motional amplitude, and a parameter 

that describes the time scale of motion. A common model is restricted rotational diffusion 

(wobbling in a cone). Its advantage is that an (approximate) analytical equation is available 

for this model [60,101,178-180], and the difference between the different spectral densities 

J0(ω), J±1(ω), J±2(ω) can be accounted for [181] (see Section 2.2.1). Other models have also 

been used for this purpose, such as Gaussian-Angle Fluctuation (GAF) models [100]. 

Alternatively to these explicit geometrical models, the “model-free” approach is commonly 

used. It makes the assumption that the different spectral density functions are all equal, which 

is incorrect but seems to have essentially no consequences for the analysis (see Section 2.2.1). 

This approach is based on an assumption about the functional form of the correlation function 
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(exponentially decaying correlation function) rather than a geometrical model, and can be 

expanded in a straightforward manner to include more than one exponentially decaying 

component. This is of advantage when modeling several dynamics processes on different time 

scales from experimental data. We will use this model here to investigate how available 

experimental data (relaxation data and dipolar-coupling derived order parameters) can be used 

in a joint fit of amplitudes and time scales of motions. 

Figure 32 recapitulates the functional dependence of 15N relaxation rate constants as a 

function of the motional parameters in the “model-free” approach (S2 and τ). Calculations for 

different static magnetic fields are shown, and in the case of R1ρ, also different RF-field 

amplitudes are considered. Combining several measurements, i.e., R1 and R1ρ measurements at 

different fields might be a way to obtain the amplitudes and time scales of the underlying 

motion. Is such a fit possible – in other words, is the solution one obtains unique and 

unambiguous, or is it ill-defined? This question has been addressed in detail and by different 

means by a few recent studies [110,154,178,180,182], and we aim to summarise the main 

conclusions in Figure 32g and h. To this end, we assume a certain motional model, i.e. we 

assume an N-H site that undergoes motion described by an order parameter (S2 = 0.85) and a 

time scale of either 100 ps (panel g) or 50 ns (panel h). No matter if the motion is on a 

picosecond or nanosecond time scale, if only longitudinal relaxation-rate constants obtained at 

different B0 field are combined, the amplitude of motion is very poorly defined. This is due to 

the fact that R1 relaxation-rate constants have only a weak dependence on the B0 field, and 

combining several measurements does not provide a strong constraint on the fitted value of S2. 

The obvious solution is to combine such data with other data that have a very different 

dependence on S2 and τ. This can be achieved by adding transverse relaxation parameters, 

such as 15N R1ρ, or cross-correlated relaxation-rate constants, discussed in Section 3.4. In 

Figure 32 we explore the use of 15N R1ρ rate constants. Figure 32g shows that in the case that 

the motion is fast (sub-nanosecond), the 15N R1ρ measurement hardly provides any additional 

information. This is because when the motion is fast the absolute value of the relaxation rate 

constant is far below the experimental error, or the contributions of coherent dephasing to R1ρ. 

Only if the motion is slow (nanosecond-to-microsecond regime), the transverse relaxation rate 

constant allows restraining the parameter space. In practice, however, one can expect that 

there is always fast local motion, such that combining R1 and R1ρ measurements to extract 
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order parameters and time scales of motion generally fails (see below). Another possibility is 

to use relaxation parameters from other nuclei, e.g. carbonyl-13C or 13Cα, which are sensitive 

to different frequencies of the spectral-density function. Such an approach has been proposed 

recently [178]; it depends on specific assumptions about the backbone motion, such as rigidity 

of the peptide plane limiting motions to those affecting 15N and 13CO equally. Another 

approach is to measure directly the dipolar-coupling derived order parameter, and use it in a 

combined fit with relaxation data [98,128,178]. 

  Several recent studies investigated the outcome of model-free analyses of 

experimental or in-silico data of protein backbone motion [99,110,178,180,183]. These 

studies suggest that fits of relaxation data alone, without fixing the order parameter to an 

independently determined dipolar-coupling derived order parameter leads to systematically 

overestimated values of S2, and erroneous detection of nanosecond motion. Figure 33 

demonstrates for a case study of ubiquitin, in which 6 different relaxation data sets were fitted 

with or without dipolar-coupling based S2 values, that inclusion of dipolar-coupling derived 

order parameter is essential to obtain physically meaningful dynamics parameters.  

In practice, the simple model we have considered so far, namely that the motion can be 

described by a single motional process, is likely to be too simplistic. The relaxation-rate 

constants considered are sensitive to motions occurring on time scales from picoseconds to 

several milliseconds (see Figure 32), and it seems likely that more motional modes have to be 

included. Two-time scale model-free fits have been employed previously 

[98,110,128,178,180], and even three-time scale models have been fitted, and there seemed to 

be evidence that such a complex model is statistically justified [101]. Of course, such multi-

parameter models are a challenge in terms of uniqueness of the solution; furthermore, some of 

the motional components may have extremely low motional amplitude, if they occur on the 

time scale to which the relaxation-rate constant is most sensitive. When it comes to fitting 

very low-amplitude motional modes, one also needs to consider the potential influence of 

systematic errors on the raw data, e.g., residual spin diffusion or dipolar dephasing, or failure 

of the Redfield theory to accurately describe the relaxation-rate constants outside the regime 

of this theory. 
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In the above discussion, we have only considered spin relaxation arising through fluctuation 

of dipolar couplings and CSA tensors. In principle, the fluctuation of the chemical shift can 

also be exploited to gain information about motion on longer time scales (microseconds to 

milliseconds). In this time scale, coherence decay (transverse relaxation) can be induced by 

fluctuations of any of these parameters, i.e. isotropic or anisotropic chemical shifts, and 

dipolar couplings (see Figure 32 and the discussion about relaxation dispersion in Section 

3.3.3). Fitting dynamics over time scales from picoseconds to milliseconds will require a 

combined use of Redfield-theory based equations, and approaches used for analyzing, e.g., 

relaxation-dispersion data (see Section 3.3.3). Such an analysis may be complicated by the 

fact that slower motions may be diffusion-like, i.e. may be described by an order parameter, 

but microsecond motion may also involve higher-energy barriers, and involve few distinct 

states. Global models that attempt to describe motions on a wide range of time scales will 

need to model such complex motions, and deal with the problem of over-fitting which is often 

incurred.  

4  Selected Examples of Recent Applications: How do Protein 

Motions in Crystals Differ from those in Solution? 

In this last section, we show a few selected examples in which MAS solid-state NMR 

has been used to characterize protein dynamics. There is a growing number of interesting 

dynamics studies that address proteins of increasing complexity and biological interest, such 

as membrane proteins [104,184,185] and amyloid fibrils [106,186,187]. For reasons of limited 

space we focus here only on one particular aspect of biomolecular dynamics. We want to 

review how protein dynamics in crystals differ from the dynamics in solution. Does the 

crystalline lattice limit the motional freedom of proteins, or change the relative populations of 

states? Or is the water-rich environment of a crystal (filled to about 50% with water) 

essentially identical to free solution, where protein motions are concerned? As crystalline 

preparations are the most extensively studied ones by solid-state NMR, a coherent picture is 

emerging now about protein motion in crystals, in particular for model systems such as SH3, 

GB1 and ubiquitin. 
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When comparing protein dynamics in solution and solids, one needs to remember the 

methodological differences; in particular, relaxation-derived order parameters in solution 

report only on motions faster than the overall-tumbling correlation time (typically a few 

nanoseconds). In contrast, solid-state relaxation-rate constants probe internal motion over 

much wider time scales, as overall tumbling is absent; likewise, dipolar-coupling order 

parameters also probe motions from pico- to microseconds. In the light of these differences it 

is interesting to note that order parameters of SH3 and ubiquitin in solution and crystals are 

very similar. Figure 34 shows experimental S2 values for chicken α-spectrin SH3 and 

ubiquitin obtained in the solid state as well as in solution; furthermore, simulated order 

parameters, derived from MD simulations of a representative portion of a crystal lattice, and a 

molecule in solution, respectively, are shown. Overall, the absolute amplitude of motion 

appears to be very similar for most of the residues. Small exceptions could be identified. For 

example, the loop around residues 7-11 in ubiquitin shows somewhat larger amplitudes in 

solution; likewise, residue Q62 in ubiquitin, also located in a loop region, appears more 

mobile in solution than in the crystal. In SH3, curiously, residue Asn38 becomes more mobile 

in the crystal than in solution, as seen by MD simulations [182] (residue not in the 

experimental data of Figure 34a). This residue seems to co-exist in two conformations in the 

crystal, stabilized by intermolecular interactions, and exchanges between them; in contrast, in 

solution it is only in one conformation, which explains why it has less mobility in solution 

than in the crystal. Taken together, these data suggest that the backbone motion on sub-

microsecond time scales is very similar in solution and crystals, with a handful of exceptions 

located primarily in loop regions. Qualitatively, this picture has also been seen in other 

proteins, such as thioredoxin [99] and GB1 [179,180]. 

There is further support for the conclusion that the crystal lattice has rather limited 

impact on fast motions. Figure 35 shows two examples that suggest that side-chain motions 

also behave similarly in solution and in crystals. Figure 35a presents a comparison between 
13C R1 relaxation rate constants of 13CHD2-labeled Val/Leu methyl groups in the protein 

chicken α-spectrin SH3 in solution and in a crystal. For this comparison, the overall-tumbling 

contribution to the solution-state rate constants has been subtracted. The R1 rate constants are 

clearly highly correlated, showing that the pico- to nanosecond motions probed by this rate 

constant are hardly affected by the crystalline environment. Another investigation of side 
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chain dynamics has been reported for the protein ubiquitin, shown in Figure 35b-e. Here we 

look at H-C (asymmetric) dipolar couplings of Val residues, labeled with 13CHD2 in an 

otherwise deuterated background. While three out of the four valines show a rather large, and 

essentially symmetric dipolar coupling tensor, Val 70 has a lower tensor anisotropy, and non-

zero asymmetry. These data show that Val 70 samples different rotamer states, while the other 

valines populate primarily one rotamer state. Interestingly, solution-state NMR comes to the 

same conclusions [188], and even the relative rotamer populations are in good agreement with 

the crystal data (see panel d), suggesting that side chain motions (at least for these particular 

methyl-bearing side chains) behave similarly in solution and crystals. 

Another view of the impact of the crystalline environment on protein motion comes 

from comparisons of a given protein in different crystal packing arrangements. Recently, Ma 

et al. have studied dynamics of ubiquitin in three different crystal forms (crystallizing in 

different space groups) [189]. Figure 36 compares (panels a and b) observables that are 

primarily sensitive to sub-microsecond motions. These observables (15N R1 rate constants and 

dipolar order parameters) are, overall, similar. Exceptions, for which the dynamics are clearly 

different between the different crystal forms, are found in the loop (residues 7-11) and for 

residue Q62; in these two regions of the protein the amplitudes of motion differ, pointing to 

hindered motion through crystal contacts. Interestingly, this finding mirrors the picture 

provided by the comparison between solution and crystal data (Figure 34): also there, 

differences in motions were found for exactly the same regions, while the majority of the 

protein had very similar motional parameters. MD simulations on different crystal forms of 

ubiquitin support this view [183,189]. The picture that emerges from the various comparisons 

above is, therefore, that the crystalline environment does not detectably alter the dynamics on 

sub-microsecond time scales, except for a few residues located in loop regions. 

In the light of this view, it appears somewhat surprising that R1ρ rate constants in 

different crystals are rather different, at least for the cases reported for ubiquitin, as shown in 

Figure 36c and d. In fact, one of the studied crystals has a systematically higher level of R1ρ 

that is to reasonable approximation uniform across the sequence. This offset can be explained 

by a global motional process of the molecule, i.e. residual overall “rocking” motion. Such a 

rocking motion predicts also that X-ray diffraction resolution should be lower, and that the 
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Wilson B-factor (reflecting the precision with which the atomic positions can be determined) 

is higher. These predictions are indeed found experimentally found (Figure 36e). The rocking 

motion should also lead to slightly lower order parameters, and also this observation is 

experimentally found (see panel b). Additional support for such overall “rocking” motion in 

the crystal comes from MD simulations of the different crystals, which detects significant 

overall residual motion for cubic-PEG-ub [189]. It may be that such overall motion, found 

here in one particular crystal form, is a general contribution to resolution of solid-state NMR 

spectra. Further cases need to be studied to draw broad conclusions about the generality of 

rocking motion in crystals, and also higher-order assemblies. 

Finally, we turn to slower motional processes, of microseconds or slower. In Section 

3.3 we have discussed methods that allow study of conformational exchange processes on 

these time scales. In particular, we have discussed differential ZQ/DQ relaxation, CPMG 

relaxation-dispersion and R1ρ relaxation dispersion measurements that provide complementary 

views on exchange dynamics. For the case of ubiquitin, all these experiments have been 

performed. The picture emerging from these data shows that there is an exchange process in a 

well-defined region, enclosing the loop of residues D52-T55 (which forms a so-called type-II 

β-turn structure in microcrystals), as well as the neighboring helix. The exchange process is 

thought to correspond to a flip of peptide plane D52/G53, and some rearrangement of 

hydrogen bonds and side chain orientations, as discussed before [44,190,191]. The fitted 

exchange rate is about 3000 s-1, and the relative populations are approximately 90:10. 

Interestingly, in the solution state the exchange process is clearly different [190,192]. 

Although the same residues show exchange, the populations and kinetics are different. At the 

temperature at which large relaxation-dispersion profiles were seen in solid-state NMR 

experiments (300 K), the corresponding solution-state dispersion profiles are completely flat, 

and only at temperatures more than 20 K lower can one observe the exchange process, which 

is about one order of magnitude faster than in crystals even at this low temperature. Thus, we 

have here a clear impact of the crystal packing on the dynamics. This apparently slower 

dynamics in the crystal can be understood by steric clashes of side chains, which hamper the 

transition between the two involved conformations, as indicated in Figure 37. Furthermore, 

the order of the two conformations seems to be reversed: the state that has the higher 

population in the microcrystal seems to correspond to the lower-populated state in solution 
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and vice versa (see Figure 37). Taken together, these data show unambiguously that 

microsecond exchange processes between distinct states are altered by crystal packing. 

Differences in slow motion have also been observed for another protein, SH3 [27]. 

To summarize, we have provided a short review of some recently reported studies that 

provide insight into the impact of the crystalline environment on protein dynamics. The 

picture emerging from the cases reported here (SH3, ubiquitin, and also GB1) is the 

following. Fast dynamics, on picosecond time scales, generally correspond to very local 

motions, arising primarily from local bond librations. Residues in densely packed structures 

(secondary structures, hydrophobic core) often are in this category. As one may expect, such 

motions are hardly impacted by crystal packing, because they are only sensitive to the very 

local environment. The comparison of sub-microsecond motions discussed above seems to 

confirm this view: most residues in secondary structures, as well as methyl-bearing side 

chains, which are mostly in the hydrophobic core, have basically the same motional 

amplitudes in solution and crystal. Some effect of steric hindrance is seen in loop regions. 

Again, this seems physically reasonable, as loops often undergo larger-amplitude motions that 

involve several residues. When going to even longer time scales (microseconds) the available 

data from ubiquitin suggests that the crystalline environment slows down the motion 

considerably. Again, given the more concerted nature of such slow motions this is not 

surprising. One may thus draw a first conclusion and say that the more a particular motion is 

collective, the more likely it is to be impacted by packing interactions. Although this finding 

seems physically reasonable, further studies on additional systems will be needed to evaluate 

the generality of the findings on these first few model protein systems. 

5  Conclusions 

We have hopefully provided here an overview of the theory relevant to the 

measurement of molecular dynamics by magic-angle solid-state NMR. From a theoretical 

standpoint, MAS NMR provides a wealth of information about dynamics, arguably 

significantly more that its solution-state counterpart. This is because MAS-NMR-derived 

relaxation parameters are sensitive to a wider range of time scales than those from solution 
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studies, and averaging of both isotropic and anisotropic interactions can be used to 

characterize dynamics. The fact that there is no molecular tumbling in the solid state therefore 

means that one can potentially study motion in great detail. On the other hand, it is exactly 

this presence of multiple interactions that represents a challenge for quantitative 

measurements of dynamic parameters. We have discussed the challenges of discriminating 

dynamics-related parameters from other contributions in detail for the case of transverse 

relaxation-rate constants. 

Continuous improvement in MAS NMR hardware, in particular faster sample 

spinning, in sample preparation and isotope labeling, as well as in new experimental 

approaches, and the interplay between these different advances, is nowadays rapidly 

providing new avenues for studying (bio-)molecular motion at increasing levels of detail. 

Given the new areas of application of MAS NMR to challenging biological systems one can 

expect to witness a growing importance of this technique in elucidating the role of dynamics 

in molecular function. 
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Figure 1: Interactions in NMR spectroscopy, NMR observables probing molecular motion, 
and time-dependence of NMR parameters. (a) Interactions in NMR and their respective inter-
action strengths (in Hz), top of figure. (b) The time scales over which these interactions are 
averaged; for dynamics occurring on at a rate higher than the interaction strength (in Hz), the 
observed interaction strength is the average over the sample conformations (“fast” regime). 
(c) Methods for detecting dynamic process that are slow compared to the interaction strength 
(“slow” regime). (d) Methods for probing “intermediate” regime dynamics. (e) Time scales 
probed by spin relaxation measurements (upper two: longitudinal relaxation; lower two: 
transverse relaxation). (f) Typical time scales of changes of the density operator; the evolution 
of the spin states can be due to either relaxation processes (due to stochastic motion), or due 
to deterministic processes (i.e. non-stochastic processes ). In order to quantitatively measure 
relaxation parameters, one has to ensure that the coherent evolution is negligible compared to 
the dynamics-induced evolution (as marked with question marks here).  (g) Time scales of 
magic-angle spinning and typical spin nutation frequencies under RF fields. 

 
Figure 2: Coordinate systems and rotations required for the transformation of the space tensor 
of an NMR interaction from the principal-axis system into the laboratory-frame coordinate 
system for the example of a C‑H dipolar coupling in a CH3 group. 

 
Figure 3: a) Plot of the magnitude of the T1 relaxation rate constants in a static solid as a func-
tion of the crystallite orientation for a model of restricted rotational diffusion (dipolar relaxa-
tion in a NH spin system, θ = 45°, Dw = 2.525 106 s, 500 MHz). Plotted on top of the tensor 
are MAS trajectories (for different angles βMR) that show the partial averaging of the T1 relax-
ation-rate constants by MAS. b) The contour plot on the right-hand side shows the depend-
ence of the relaxation-rate constant under MAS on the rotor angle αRL t( ) = −ω rt  and βMR. 
The trajectories are indicated by dashed lines. c) The lower three panels show as cones the 
trajectories along which a given tensor, aligned at an angle of βMR (three different values, as 
indicated). 
 
Figure 4: R1 as a function of α and β for a N-H spin system (δD/2π = 22954 Hz, δCSA/2π = 
6867 Hz) at 600 MHz: a) two-site jump model (τc = 1 ns, γ0 = 30°) and b) a restricted-
rotational diffusion model (Dw = 2 106 s-1, θ = 30°).  

 
Figure 5: Simulated decay of the magnetization in a powder using averaged decays (blue) and 
approximations using averaged rate constants (red) and a mono-exponential fit (green) of the 
powder-averaged decays up to a value of 5% of the initial intensity for a) a two-site jump 
model and b) a restricted rotational diffusion model with the same parameters as in Fig. 4. 
The black dashed line indicates the cut-off value used in the fitting of the rate constants. 

 
Figure 6: Plot of the longitudinal 15N relaxation-rate constant for a two-site jump model and 
dipolar relaxation at a static magnetic field of 14.1 T (corresponding to a 1H resonance fre-
quency 600 MHz) as a function of the correlation time τc and the jump angle θ. a) Powder-
averaged rate constant for a two-site jump model, b) mono-exponential fit of the averaged de-
cays for a two-site jump model, and c) model-free calculation. The relative differences be-
tween the powder-averaged rate constants and the model-free calculations are shown in d) 
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while e) shows the relative difference between the mono-exponential fits and the model-free 
rate constants. f) Relative difference between the averaged rate constants and the mono-
exponential fits. 

 
Figure 7: Plot of the longitudinal 15N relaxation-rate constant for a restricted rotational-
diffusion in a cone model and dipolar relaxation at a static magnetic field of 14.1 T (corre-
sponding to a 1H resonance frequency 600 MHz) as a function of the correlation time τc and 
the cone opening angle θ. a) Powder-averaged rate constant for the wobbling-in-a-cone mod-
el, b) mono-exponential fit of the averaged decays for the wobbling-in-a-cone model, and c) 
model-free calculation. The relative differences between the powder-averaged rate constants 
and the model-free calculations are shown in d) while e) shows the relative difference be-
tween the mono-exponential fits and the model-free rate constants. f) Relative difference be-
tween the averaged rate constants and the mono-exponential fits. 

 
Figure 8: Simulation of the MAS spectrum of a proton spin system consisting of (a) 2 and (b) 
3 protons with identical chemical shifts and dipolar couplings of 10 kHz between all protons 
as a function of spinning frequency. The spectrum of the two-spin system is independent of 
the spinning frequency. The spectra have been horizontally shifted to improve the visibility. 

 
Figure 9: Plot of the changes in the longitudinal relaxation-rate constant R1i = 0.05 s-1 as a 
function of the difference of the two relaxation-rate constants R1i and R1j and the spin-
diffusion rate constant kij (see Eqs. (32) and (33)). This clearly shows that for reliable results, 
the spin-diffusion rate constant must significantly smaller than the difference of the two relax-
ation-rate constants. 

 
Figure 10: Time evolution of the inverted 15N polarization in a N-H two-spin system at 
600 MHz Larmor frequency under restricted rotational diffusion with Dw = 108 s-1 and θ = 40° 
leading to T1H = 5.3 s, T1N = 1.6 s and ΓHN = 0.11 s-1. The red line shows the mono-exponential 
decay with the time constant of T1N while the blue one shows the multi-exponential decay ob-
tained from the system of coupled differential equations of Eq. (34). Increasing the 1H auto-
relaxation rate constant by 1 s-1 and 3 s-1 leads to the decay shown in green and cyan, respec-
tively. An increase to 10 s-1 leads to the black dashed line that is almost equivalent to the 
mono-exponential decay shown in red. 

 
Figure 11: Dependence of R1 = 1/T1 on the correlation time and the order parameter for a sin-
gle time-scale model-free approach for an H-N two spin system at (a) 600 MHz and (b) 1100 
MHz proton Larmor frequency. The anisotropy of the dipolar coupling was assumed to be 
δNH / 2π  = 22954 Hz and the anisotropy of the axially-symmetric CSA tensor δN / 2π  = 
113 ppm. 

 
Figure 12: Dependence of the steady-state NOE η and the cross-relaxation rate constant σNH = 
Γ Iz ,Sz  on the correlation time and the order parameter for a simple single time-scale model-
free approach for an H-N two spin system. (a) η at 600 MHz and (b) η at 1100 MHz, (c) σNH 
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at 600 MHz and (d) σNH  at 1100 MHz proton Larmor frequency. The anisotropy of the dipo-
lar coupling was assumed to be δNH / 2π  = 22954 Hz. 

 
Figure 13: Dependence of the dipolar/CSA cross-correlated cross-relaxation rate constant 
ΓSz ,2 IzSz  on the correlation time and the order parameter for a simple single time-scale model-
free approach for an H-N two spin system at (a) 600 MHz and (b) 1100 MHz proton Larmor 
frequency. The anisotropy of the dipolar coupling was assumed to be δNH / 2π  = 22954 Hz 
and the anisotropy of the axially-symmetric CSA tensor δN / 2π  = 113 ppm. 

 
Figure 14: 15N R2 relaxation-rate constant, obtained from Eq. (46). In the contour plot on the 
left, a MAS frequency of 20 kHz was assumed; the right panel shows traces at an order pa-
rameter of S2 = 0.9 for three MAS frequencies, as indicated. In all cases a magnetic field 
strength of 14.1 T was assumed. 

 
Figure 15: 15N transverse decay rate constants in crystals of deuterated ubiquitin. The R2’ data 
set in blue was recorded on a perdeuterated sample, re-protonated on amide sites to 20%, at a 
MAS frequency of 57 kHz and a B0 field strength of 19.9 T (850 MHz 1H Larmor frequency). 
In this experiment, a simple delay – π  pulse – delay sequence without any 1H decoupling was 
used. In the data set in green, the same experimental conditions were chosen, but a 3.1 kHz 
WALTZ decoupling on 1H was applied. The data set shown in red is the 15N R1ρ relaxation 
rate constant (on-resonance), which was measured at 39.5 kHz MAS frequency at a B0 field 
strength of 14.1 T in the presence of a 15 kHz spin-lock RF field strength (without 1H decou-
pling). The sample used for this measurement was perdeuterated at non-exchangeable sites, 
and re-protonated to 50% at exchangeable sites (prepared in a H2O/D2O mixture under condi-
tions that allow full equilibration at all sites at the desired ratio). The data set in black is the 
predicted 15N R1ρ relaxation rate constant, which is based on amplitudes and time scales of 
amide motion, as obtained from a model-free fit [110]. For this latter, a set of up to six relaxa-
tion rate constants and the motional averaged H-N dipolar coupling anisotropy was used in a 
fit. The three residues indicated have been shown to undergo conformational exchange on a 
microsecond time scale, contributing the their transverse relaxation rate constants. 

 
Figure 16: a) Coherent contributions to the two 15N multiplet lines from CSA/dipole interfer-
ence at 600 MHz 1H Larmor frequency in the static case. The dipolar coupling has an anisot-
ropy of δNH/2π = 22954 Hz and the CSA tensor anisotropy is δN/2π = 6867 Hz pattern (black 
line) and the two multiplet lines (blue lines) corresponding to the proton spin in α and β state, 
respectively. b) shows the center band of the MAS manifold as a function of the spinning fre-
quency (νr = 1, 2, 5, 10, 20, 50, 100 kHz, for color code see legend in figure). One can clearly 
see the intensity difference between the two multiplet lines at lower spinning frequencies due 
to the different width of the powder patterns. At MAS frequencies above 20 kHz the differ-
ence becomes small.  

 
Figure 17: 1H-15N dipolar/15N CSA cross-correlated relaxation, from numerical simulations. 
(a) Exchange model used for these simulations. The exchange occurs between two distinct 
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states, in which the peptide plane is rotated along the Cα-Cα axis by an angle φ. The 1H-15N 
dipolar interaction (1.02 Å distance) is inclined with respect to this rotation axis by an angle 
θD = 77°, and the 15N CSA tensor (assumed to be axially symmetric, with Δσ = -170 ppm) is 
inclined by θCSA =  97°. The jump angle can be related to a generalized order parameter S2 as 
S2 = (1+3 cos2φ)/4. Panel (b) shows 15N spectra resulting from free evolution of 15N coherence 
without 1H decoupling. The asymmetry of the line width of the doublet components is evi-
dent. Two different MAS frequencies are shown, as indicated. All spectra are normalized to 
the height of the larger peak. (c) Cross-correlated relaxation rate constant ΓCSA/D  as a function 
of the jump time constant for three different MAS frequencies, as indicated. The lower plot is 
a logarithmic plot of the rate constant. The value of ΓCSA/D

 
= 1 s-1, which is the approximate 

detection limit. The exchange jump angle was assumed as θ = 26.5°, corresponding to an or-
der parameter S2 = 0.85. Panel (d) shows Γ

I + ,I +Sz  
as a function of the amplitude of motion and 

the time constant. The MAS frequency was set to 50 kHz. 

 
Figure 18: Simulation of the differential DQ/ZQ relaxation, ΔRMQ, The simulation assumed a 
two-site exchange model (the same as in Figure 17), in which the axially symmetric 15N CSA 
tensor had a Δσ = 6800 Hz (-170 ppm at 14.1 T), and the assumed axially symmetric 1H CSA 
tensor had a Δσ = 480 Hz. The 1H CSA tensor was inclined relative to the 15N tensor by 10 
degrees. In this simulation we followed a previously employed experimental scheme in solu-
tion [132] in which the buildup of 2HyNy from 2HxNx is monitored. This buildup arises from 
differences in relaxation rate constants of ZQ and DQ coherences, as can easily be verified by 
expressing these product operators in raising/lowering operator basis. The differential relaxa-
tion rate constant ΔRMQ can be obtained from <2HyNy>/<2HxNx> = tanh(ΔRMQ t/2). Panel (a) 
shows the differential relaxation rate constant ΔRMQ as a function of time scale and amplitude 
of the motion, assuming that all isotropic chemical shifts are equal in the two states. The jump 
angle was converted to an order parameter S2 as S2 = (1+3 cos2φ)/4. Panel (b) shows the MAS 
dependency of ΔRMQ as a function of the time scale of motion, for a jump amplitude of φ = 
5°. In both (a) and (b) we assumed that the isotropic chemical shift is identical in the two ex-
changing states, and that the two states are populated equally. In panel (c) it is assumed that 
the two CSA tensors and the dipolar coupling are unchanged by the exchange process, and the 
isotropic chemical shifts of 1H and 15N vary. Two different assumptions about the Δω values 
and different relative populations show the MAS dependence of ΔRMQ, due to CSA/CSA 
modulation. Panel (d) shows a general case, which involves fluctuation of both the isotropic 
and anisotropic components of the two chemical shifts. Here Δσ15N = 6800 Hz, ηCSA,15N = 0, 
Δσ1H = 3600 Hz, ηCSA,1H = 0.9 and the exchange occurred between two states (90%/10% popu-
lation) in which the orientations of the tensors are inclined by 30°, and the isotropic chemical 
shift changes are Δν15N = 160 Hz, Δν1H = 800 Hz. 

 
Figure 19: 15N R1ρ rate constants for a MAS frequency of 40 kHz and three different RF-field 
amplitudes, 10 kHz, 30 kHz and 35 kHz. The data were calculated based on the analytical ex-
pressions (Eq. (53)) derived within the Redfield-theory framework. The 15N CSA was set to 
6800 Hz and the dipolar coupling to 22.9 kHz (1.02 Å distance). 

 
Figure 20: Comparison of two different 15N relaxation rate constants, measured in deuterated 
ubiquitin at fast MAS. Shown in red and black are the 15N R1ρ (at 39 kHz MAS and 15 kHz 
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spin-lock) and the 1H-15N dipolar/15N CSA cross-correlated relaxation [98], respectively. The 
insert shows a correlation between these two. 

 
Figure 21: Conformational exchange as seen by 15N R1ρ relaxation-dispersion experiments un-
der MAS, obtained by stochastic Liouville simulations. An exchange between two states is 
assumed populated to 90% and 10% respectively, and differing in the bond orientation (CSA, 
dipole), and the 15N isotropic chemical shift (Δν = 300 Hz). Different jump angles are simu-
lated, as shown in the figure, and the exchange rate was 1000 s-1. The MAS frequency was 
40 kHz, and the B0 field strength was 14.1 T. The red dashed area is shown in a zoom view on 
the right. Dashed curves show the case in which the isotropic chemical shift difference be-
tween the two states is zero, i.e. where only fluctuations of the anisotropic interactions occur.  

 
Figure 22: Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments in rotating 
solids. (a) Illustration of the CPMG pulse sequence element; shown are four different repeti-
tion rates of the refocusing pulse train, applied to the 15N nucleus. (b) Implementation of the 
CPMG pulse element in a so-called relaxation-compensated scheme [143]. In this scheme, an 
in-phase-to-anti-phase element is inserted in the middle of the constant-time relaxation delay. 
(c) CPMG dispersion profiles, i.e. effective R2 rate constants, determined from a 40 ms con-
stant-time relaxation delay, as a function of the CPMG frequency. These profiles were ob-
tained from numerical integration of the Bloch-McConnell equation; they are identical to nu-
merical simulations, assuming that the two states differ exclusively in their 15N isotropic 
chemical shift, i.e. that the two states are identical in terms of dipolar coupling and CSA. The 
two exchanging states (populated to pA = 90%, pB = 10%) have a 15N isotropic chemical-shift 
difference of |Δω15N| = 300 Hz, and different exchange rate kAB as indicated in the legend. (d) 
Numerical simulations of the exchange process in a three-spin system, as shown in the insert, 
in which the NH bond undergoes a jump. In one simulation an additional remote 1H spin 
(fixed in space) is included. Here, kex = kAB+kBA = 2112 s-1, pB = 10%, |Δω15N| = 760 Hz and 
different jump angles are assumed as indicated. (e) Two-spin (HN) simulations, assuming 
|Δω15N| = 0, pB = 10%, and different kAB. The jump angle θ = 20° (f) Four-spin simulations 
(HN pair and two space-fixed remote protons) of CPMG relaxation dispersion, showing the 
deviation of the dispersion profiles from the Bloch-McConnell-type dispersion curves. The 
four-spin simulations (triangles) show a “scatter” around the curves corresponding to the 
Bloch-McConnell calculations for the same exchange parameters. Consequently, the fits 
(dashed lines) result in systematic errors; the size of these errors, which in this case are within 
the experimental noise, can be estimated through numerical simulations. Details about these 
simulations are provided in the Supporting Information of Ref. [44]. 

 
Figure 23: Comparison of log10(R1ρ) rate constants calculated with (a) Redfield theory [135] 
(Eqs. (53) and (54)), and (b) obtained from stochastic Liouville simulations (νr = 40 kHz, ν1 = 
12 kHz). Panel (c) shows the ratio of the Redfield and the stochastic calculations while (d) 
shows the relative difference between the two with the stochastic calculation. The two meth-
ods agree very well in the range of correlation times from 10-8 s to 10-6 s. For longer correla-
tion times, there is a clear difference with the rates calculated by the Redfield approach being 
larger. For very long correlation times, the agreement becomes better again. For correlation 
times shorter than 10-8 s, there is again a discrepancy between the two methods, which is due 
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to the stochastic simulations being carried out in the rotating frame. As soon as the correlation 
times approach the Larmor frequencies, such an approach gives wrong results. 

 
Figure 24: Comparison of the CSA/D cross-correlated cross-relaxation rate constants 
log10 ΓCSA/D( )  calculated with (a) Redfield theory and (b) obtained from stochastic Liouville 
simulations (νr = 40 kHz, ν1 = 12 kHz). Panel (c) shows the ratio of the Redfield and the sto-
chastic calculations while (d) shows the relative difference between the two with the stochas-
tic calculation. 

 
Figure 25: Comparison of the CSA/CSA cross-correlated cross-relaxation rate constants  
log10(ΔRMQ) (Eq. (50)) calculated with (a) Redfield theory and (b) obtained from stochastic 
Liouville simulations (νr = 40 kHz). Panel (c) shows the ratio of the Redfield and the stochas-
tic calculations while (d) shows the relative difference between the two with the stochastic 
calculation. 

 
Figure 26: Slices from Figure 23-Figure 25 at two values of the order parameters. this illus-
trates the differences between the Redfield and stochastic Liouville approach if the MAS 
spinning frequency and the stochastic motion are of the same order of magnitude. The differ-
ences for very short correlation times are due to the fact that the stochastic simulations are 
carried out in the rotating frame and do not sample spectral densities at the Larmor frequency 
and higher. 

 
Figure 27: Graphical representation of a second-rank tensor, and dynamic averaging. (A) Rep-
resentation of a dipolar-coupling tensor, a symmetric rank-2 tensor. (B) Visualization of the 
tensor-averaging by a stochastic two-site jump. Here it is assumed that the two conformations, 
shown in blue and red in the top part are separated by an angle of 90°; the averaged tensors 
are shown for different relative populations of the two states, ranging from 100% state A (left) 
to 100% state B (right). As one can readily see, the averaged tensors have a smaller magni-
tude (tensor anisotropy), and they are generally not axially symmetric any more (η > 0). (C) 
Investigation of the tensor averaging resulting from a three-site jump. The three confor-
mations span a tetrahedral geometry (lower right part). The resulting tensors from fast ex-
change between these states are depicted, as a function of the relative populations of the 
states; the tensors in the corners of the triangle correspond to 100% of a given conformer. For 
three examples the tensors are encircled and the corresponding REDOR curves are shown in 
panel (D). The red curve corresponds to equal population of the three states (C3 symmetry), 
and the REDOR curve is simply scaled relative to the rigid-limit case (blue). In the general 
case (black), the functional form of the REDOR curve deviates from the simple behavior, 
which is due to the asymmetry of the averaged tensor. 

 
Figure 28: REDOR curves and averaging of motion occurring at different time scales. These 
simulations assumed a N-H dipolar coupling with an anisotropy of δNH/(2π) = 20 kHz at a 
MAS frequency of 40 kHz. In order to sample the REDOR curve sufficiently during the initial 
increase, a shifted finite-pulse REDOR sequence [98,148,161] was used with a time shift of 
10 μs. Simulated REDOR curves for a shifted finite-pulse REDOR experiment (νr = 40 kHz, 
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τs = 10 μs, ν1I = ν1S = 100 kHz, δNH/(2π) = 20 kHz) on a two-spin N-H system. The motional 
model is a symmetric three-site jump model (θ = 70.5°, φ = 120°) where the rate constant was 
varied between the values 1 s‑1 and 108 s‑1. 

 
Figure 29: Simulated REDOR curves for a two-site exchange process. Simulated REDOR 
curves for a shifted finite-pulse REDOR experiment (νr = 40 kHz, τs = 10 μs, ν1I = ν1S = 
100 kHz, δNH/(2π) = 20 kHz) on a two-spin N-H system. The motional model is a two-site 
jump model (θ = 70.5°) where the rate constant was varied between the values 1 s‑1 and 
108 s‑1. One can clearly see that for large rate constants one does not obtain a typical REDOR 
curve due to the fact that the averaged dipolar coupling in this case is not axially symmetric. 

 
Figure 30: The effect of RF field misadjustment on apparent dipolar coupling strengths. (a) 
The pulse sequence used here, a time-shifted  REDOR experiment, for measurement of 1H-15N 
dipolar couplings [98]. (b) RF field distribution in a 1.6 mm HXY probe, obtained by Fourier 
transformation of a nutation curve. (c) Simulated REDOR curves, obtained with the 1H RF 
pulses applied at different field strengths (x-axis) were fitted to obtain the apparent dipolar 
coupling strength (y-axis). A perfect π pulse here has an RF field strength of 100 kHz (5 μs 
duration). Deviations of the apparent dipolar coupling from the nominal value (red line) are 
seen when the RF field is misadjusted. The dashed line results when RF inhomogeneity is in-
cluded explicitly in the simulations. (d) Experimental verification of the data in panel (c). 1D 
REDOR curves were measured with different RF field settings (x-axis) and the apparent dipo-
lar coupling was extracted by numerical fits of the REDOR curves. Similar to the simulated 
case, the dipolar coupling is underestimated when the RF field is misset. (e) Similar simula-
tions and experiments, with the 15N RF field being varied. Details can be found in reference 
[110]. 

 
Figure 31: REDOR-derived HN order parameters in ubiquitin. (a) Three different measure-
ments of dipolar order parameters, using best-possible RF calibration, and explicit considera-
tion of the RF inhomogeneity upon fitting (black), as well as two measurements with slightly 
misset RF field strengths (blue, red). In (b), the red and blue data set have been multiplied by 
a factor that minimizes the offset to the black data set. Panel (c) shows a comparison to solu-
tion-state order parameters (derived from relaxation measurements). See reference [110] for 
details. 

 
Figure 32: 15N relaxation rate constants as a function of motional parameters within the mod-
el-free approach. Panels (a), (b) and (c) represent 15N R1 relaxation rate constants at field 
strengths corresponding to 400, 600 and 1000 MHz 1H Larmor frequencies, respectively. Pan-
els (d), (e) and (f) show 15N R1ρ relaxation rate constants, at 40 kHz MAS frequency. The B0 
field strength and spin-lock RF field strengths are indicated above the panels. Note that the 
vertical axis in panels (a)-(c) range from 1 ps to 10 μs, while in panels (d)-(f) it extends from 
100 ps to 100 ms. Panels (g) and (h) illustrate two concrete examples of motional scenarios, 
and how given motional parameters are reflected in relaxation rate constants. In (g) it is as-
sumed that the motion is described by an order parameter S2 = 0.85, and a correlation time 
constant τ = 100 ps, as indicated by a cross. The relaxation rate constants (R1 at 14.1 T, R1 at 
23.5 T and R1ρ at 14.1 T, 40 kHz MAS and 10 kHz spin-lock) were calculated, and realistic 



  99 

   

noise levels were added to these rate constants (0.009 s-1 for R1, 0.4 s-1 for R1ρ). The grey area 
represents the regions of the parameter space (S2, τ) which are in agreement with the relaxa-
tion rate constants. It is evident that the two R1 relaxation rate constants fail to restrain the S2 
values; the possible parameter space for the R1ρ measurement is very large, owing to the fact 
that for such fast motions the R1ρ rate constant is very small compared to its uncertainty. Thus, 
the amplitude of such fast motion can hardly be fitted from any relaxation measurements. 
Panel (h) shows a similar analysis for slower motion (S2 = 0.85, τ = 50 ns). As R1ρ is sensitive 
to such slower motion, the combined information from R1 and R1ρ measurements allows the 
motional parameters to be defined.  See text for further discussion. 

 
Figure 33: Model-free fits of backbone dynamics in microcrystalline ubiquitin. For these fits, 
15N R1 rate constants (3 different B0 fields), 1H-15N dipolar-15N CSA cross-correlated relaxa-
tion (2 different B0 fields) and 15N R1ρ rate constants were used, as well as 1H-15N dipolar-
coupling derived order parameters. (a) Order parameters S2 obtained from three different fit 
approaches: (i) fitting relaxation data without the dipolar order parameters (red), (ii) including 
the dipolar-S2 in the fit, but not fixing the order parameter to the dipolar-S2 (blue) and (iii) fix-
ing the S2 to the dipolar-S2 (black). (b) Zoom into part of the β-strand that has alternating pat-
tern of high/low S2 values, and alternating H-bonding pattern. (c) Plot of S2 values on the 
structure. The corresponding time scales for the three cases are shown in (d), (e) and (f), re-
spectively. Panel (g) shows the correlation times from panel (f) on the structure. Note that the 
dipolar-S2 are very similar to solution-state S2 (see Figure 31), whereas a fit of R1 and R1ρ 
leads to systematically higher S2 and detection of nanosecond motion for all residues. Figure 
reproduced from reference [110]. 

 
Figure 34: Backbone NH order parameters in solution and crystals in SH3 (a) and ubiquitin 
(b,c). Data in panels (a) and (b) are from HN dipolar couplings obtained on crystalline SH3 
[182] and ubiquitin [110], respectively, or from 15N spin relaxation measurements (for the cor-
responding solution-state samples). In panel (a), only those residues are shown for which both 
solution- and solid-state data are available. Data in panel (c) are from MD simulations. For the 
simulation of the crystalline protein an explicit crystal lattice, composed of 48 molecules was 
simulated, according to the crystalline arrangement in the experimental structure. Water was 
explicitly simulated in both the solution- and crystal-state MD simulation. Details can be 
found in reference [189]. 

 
Figure 35: Methyl side chain dynamics in solution and crystal as seen by solid- and solution-
state NMR. (a) 13C R1 relaxation rate constants in CHD2-labeled Val/Leu methyl groups in the 
protein SH3. The effect of overall tumbling on the solution-state rate constants has been sub-
tracted out. A high degree of correlation is evident, providing evidence that sub-microsecond 
side chain motions in solution and crystals are similar. Panels (b) to (e) show Val methyl side 
chain dynamics in the protein ubiquitin. Here, the focus is on side chain rotamer jumps; pos-
sible rotamer states for Val side chains are depicted in panel (b). Asymmetric dipolar cou-
plings (c), characterized by their tensor anisotropy δD and asymmetry η show that Val 70 has a 
higher amplitude of motion than Val 5, 17 and 26 [154]. In (d) these data were used to com-
pute relative rotamer populations for valines in the crystal sample, assuming the three-site 
jump model from panel (b). For each Val residue, three bars are shown, representing the pop-
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ulations of the three rotamer states (ordered by decreasing population level, as the populations 
cannot be unambiguously assigned to gauche+, gauche and trans states). Also shown in (d) 
are solution-state rotamer populations [188], obtained from analysis of J-couplings. As in the 
crystal, Val 70 populates all three rotamers, while Val 5, 17 and 26 populate essentially only 
one rotamer. (e) Location of the Val residues in the ubiquitin structure. 
 
Figure 36: Backbone dynamics in different crystal forms of the protein ubiquitin. All data 
shown in black are from ubiquitin crystals obtained with the precipitant MPD (which is the 
crystal form used in all discussions above), data in red are from cubic-shaped crystals ob-
tained with the precipitant PEG, and data in blue are from rod-shaped ubiquitin crystals with 
PEG. Panels (a)-(c) show residue-wise comparisons of 15N R1 rate constants, HN dipolar order 
parameters and 15N R1ρ rate constants, respectively. While 15N R1 rate constants and S2 values 
are similar in the two crystals, the 15N R1ρ rate constant is clearly offset in cubic-PEG-ub, as 
compared to MPD-ub (c). In (d) a histogram of 15N R1ρ rate constants is shown for the two 
crystal forms shown in panels (a)-(c), as well as the third crystal form, rod-PEG-ub. The over-
all increased 15N R1ρ in cubic-PEG-ub points to an overall motion of the molecule in this crys-
tal form. Panel (e) provides evidence that such a restricted overall motion also has conse-
quences for X-ray observables: cubic-PEG-ub crystals diffract to lower resolution, and the 
Wilson-B factor is higher than in the other two crystal forms (two independent data sets are 
reported for the PEG-derived crystals). Reproduced with permission from reference [189]. 

 
Figure 37: Conformational exchange processes on μs time scales in ubiquitin in solution and 
crystals. (a) Zoom into the crystal structure of the crystals used for solid-state NMR studies. 
The peptide plane 52/53, which presumably undergoes an exchange process, is highlighted. 
The hydrogen bonding of this β-turn loop to the adjacent helix is also indicated. Molecules 
shown in blue are neighboring molecules in the crystal. (b) Zoom into the equivalent part in 
the solution-state structure. Note that the hydrogen bonding is changed, the peptide plane 
52/53 is flipped relative to its orientation in (a), as indicated by colored circles, and the side 
chain of E24 is pointing outward. Panels (c) and (d) show schematic free-energy landscapes 
(free energy is increasing vertically); the exchange rate constant and the populations of the 
“minor state”, as determined from relaxation-dispersion NMR in solids and solution, respec-
tively, are indicated. The slowing-down of the exchange process in crystals may be explained 
by steric hindrance of side chain E24 which contacts E64 of a neighboring molecule in the 
crystal, and the stabilization of the peptide plane conformation of D52/G53 (water-mediated 
H-bond to K63 of neighboring molecule). 
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Glossary: 

AHT: average-Hamiltonian theory 

CCR: cross-correlated relaxation 

CEST: chemical-exchange saturation transfer 

CODEX: centerband-only detection of exchange 

CPMG: Carr-Purcell-Meiboom-Gill 

CSA: chemical-shift anisotropy 

DQ: double quantum 

EXSY: exchange spectroscopy 

GAF: Gaussian axial fluctuations 

MAS: magic-angle spinning 

MPD: methyl-pentane-diol 

MQ: multiple quantum 

NMR: nuclear-magnetic resonance 

NOE: nuclear Overhauser effect 

PEG: poly-ethylene-glycol 

RD: relaxation dispersion 

REDOR: Rotary Echo Double Resonance 

RF: radio frequency 

ROCSA: Recoupling of CSA 

TROSY: transverse-relaxation optimized spectroscopy 

ZQ: zero quantum 
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x The theoretical basis for determining molecular dynamics by magic-angle 
spinning solid-state NMR is provided. 

x Redfield relaxation theory is revisited with an emphasis on the particularities 
of its application to samples rotating at the magic angle, and the limitations of 
relaxation theory are discussed. 

x The measurement of incompletely averaged interactions (dipolar couplings, 
chemical shift anisotropies and quadrupolar couplings) are reviewed, 
regarding the information content of these observables and experimental 
approaches. 

x Selected recent applications of biomolecular dynamics studies are presented, 
focusing on studies that investigate crystalline proteins. 
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