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The legacy of 50 years of fuzzy sets: A

discussion ∗

Didier Dubois and Henri Prade

IRIT, CNRS and Université Paul Sabatier, 31062 Toulouse, France

December 15, 2015

Abstract: This note provides a brief overview of the main ideas and notions

underlying fifty years of research in fuzzy set and possibility theory, two important

settings introduced by L. A. Zadeh for representing sets with unsharp boundaries

and uncertainty induced by granules of information expressed with words. The

discussion is organized on the basis of three potential understanding of the grades

of membership to a fuzzy set, depending on what the fuzzy set intends to repre-

sent: a group of elements with borderline members, a plausibility distribution, or

a preference profile. It also questions the motivations for some existing general-

ized fuzzy sets. This note clearly reflects the shared personal views of its authors.

keywords: fuzzy set, possibility theory, similarity, uncertainty, preference.

1 Introduction

The founding paper on fuzzy sets [72], written by Lotfi Zadeh, is 50 years old.

This seminal paper, sometimes ill-regarded at the beginning, has given rise to a

huge literature, several dedicated journals, and many conferences each year for

several decades now. It has affected many areas of scientific research (some-

times marginally, sometimes significantly) ranging from mathematics (especially

many-valued logics, topology, algebra and category theory) to engineering prac-

tice especially in modeling, control, optimization, and data processing, but also

with some clear impact on techniques devoted to pattern recognition and image

processing, operations research, artificial intelligence, databases and information



systems. Besides, fuzzy sets have influenced uncertainty analysis through the in-

troduction of possibility theory [80] based on the use of membership functions for

representing incomplete information, a bit more than a decade after the publica-

tion of the founding paper. The latter issue has contributed to a clarification of the

confusion, pervading early years, between fuzzy sets and probability.

This discussion paper tries to organize the legacy of fuzzy sets in an orderly

way, highlighting the main ideas, sometimes misunderstood, and pointing out

what seem to be promising trends and barren areas as well as indicating some

neglected views of interest. The paper will briefly situate various subfields of

fuzzy sets in the light of the various interpretations of membership functions in

terms of distance, preference or uncertainty [20], and suggest potentially fruitful

fuzzy set-inspired topics for future research and applications.

2 Basic ideas behind fuzzy sets

The introduction of the notion of a fuzzy set by L. A. Zadeh was motivated by the

fact that, quoting the founding paper [72]:

“imprecisely defined “classes” play an important role in human think-

ing, particularly in the domains of pattern recognition, communica-

tion of information, and abstraction”.

This seems to have been a continuous concern in all Zadeh’s papers since the

beginning, as well as the need to develop a sound mathematical framework for

handling these “classes”. This purpose required an effort to go beyond classical

binary-valued logic, the usual setting for classes. Although many-valued logics

had been there for a while, what is really remarkable is that due to this concern,

Zadeh started to think in terms of sets rather than only in terms of degrees of truth.

Since a set is a very basic notion, it was opening the road to the introduction of

the fuzzification of any set-based notions such as relations, events, or intervals,

while sticking with the many-valued logic point of view only does not lead you

to consider such generalized notions. In other words, while Boolean algebras are

underlying both propositional logic and naive set theory, the set point of view

may be found richer in terms of mathematical modeling, and the same thing takes

place when moving from many-valued logics to fuzzy sets. Moreover, the study

of set operations on fuzzy sets has in return strongly contributed to a renewal of

many-valued logics (see [14] for an introductory overview).

According to the founding paper [72], a fuzzy set represents



“a class of objects with a continuum of grades of membership”,

but in a footnote, Zadeh acknowledges that “the range of the membership function

can be taken to be a suitable partially ordered set”. This is an important remark,

which opens the road to to more abstract constructs and to type-n fuzzy sets as

well. Zadeh also observes that the case where the unit interval is used as a mem-

bership scale “corresponds to a multivalued logic with a continuum of truth values

in the interval [0, 1]”, acknowledging the link with many-valued logics.

So, a fuzzy set can be understood as a class equipped with an ordering of

elements expressing that some objects are more in the class than others. However,

in order to generalise the Boolean connectives, we need more than a mere relation

between elements if one is to extend intersection, union and complement of sets,

let alone implication to fuzzy sets. The set of possible membership grades has

to be a complete lattice [33] so as to capture union and intersection, and either

the concept of residuation or an order-reversing function are needed in order to

express some kind of negation and implication.

Moreover, from the beginning, it was made clear that fuzzy sets were not

meant as probabilities in disguise, since one can read [72] that

“the notion of a fuzzy set is completely non-statistical in nature”

and that it provides

“a natural way of dealing with problems where the source of impre-

cision is the absence of sharply defined criteria of membership rather

than the presence of random variables.”

In a nutshell, the main idea behind fuzzy sets is to make membership to sets

gradual rather than abrupt. For instance, in the case of totally ordered universes,

changing sharp membership thresholds into soft ones. It leads to extending the

usual notions from set theory, logic, and inference, replacing Boolean algebra by

many-valued ones, as well as all forms of set-valued mathematics to fuzzy set-

valued mathematics. Presented as such, note that this extension is prima facie not

related to the idea of uncertainty.

Fuzziness should also not be confused with vagueness [79], which is exclu-

sively a concept pertaining to natural language. Indeed, the representation of

gradual properties is not the unique information processing scenario that gives

rise to borderline cases, one of the features of vagueness [13]. Vagueness refers to

uncertainty of meaning (the membership function is ill-known), which is distinct



from gradualness (membership is a matter of degree) [12]. The idea of typical-

ity underlying linguistic terms is more connected to the one of similarity than to

uncertainty [58].

As a consequence,

• originally, fuzzy sets were designed to formalize the idea of soft classifi-

cation, which is more in agreement with the way people use categories in

natural language.

• fuzziness is just implementing the idea of gradation in all forms of reasoning

and problem-solving, as for Zadeh, everything is a matter of degree.

• a degree of membership is an abstract notion to be interpreted in practice.

According to the area of application, several interpretations can be found such

as degree of similarity (to a prototype in a class), degree of plausibility, or degree

of preference [20]. We now survey the use of fuzzy sets with respect to these three

semantics.

3 Membership grades related to distance

The idea of representing a class by a fuzzy set [2], and later [79, 83] the fuzzy

set representation of linguistic terms naming classes, is underlain by the idea of

gradual transition between a set of elements that fully belong to the class, or that

are fully representative of the term, and a set of elements that do not belong at

all to the class, or that are definitely excluded by the meaning of the term. The

first set, whose elements have membership 1, may be understood as the typical

elements of the fuzzy set. More generally, the membership degree of an element

to a fuzzy set is a degree of typicality of this element with respect to the class or

the term represented, which is all the greater as the element is closer to the set of

typical elements. Thus, in this view, membership grades can be naturally related

to the idea of distance.

The most popular part of the fuzzy set literature deals with clustering, model-

ing and control, where gradual transitions between classes and their use in interpo-

lation are the basic contribution of fuzzy sets. Intuitively speaking, a cluster gath-

ers elements that are rather close to each other (or close to some core element(s)),

while they are well-separated from the elements in the other cluster(s). Thus, the

notions of graded proximity, similarity (dissimilarity) are at work in fuzzy clus-

tering. With gradual clusters, the key issue is to define fuzzy partitions. The most



widely used definition of a fuzzy partition, originally due to Ruspini [59], where

the sum of membership grades of one element to the various classes is 1, suggests

a connection (present in Ruspini’s paper) between membership grades and prob-

abilities, according to which a degree of membership of an element in a class can

be identified with the probability that the element will be assigned to the class.

Even though this view seems to be at odds with Zadeh’s non-statistical intuitions,

it is not surprising at all, as the closer an object to the prototypes of a class, the

more often it will be assigned to this class. Measuring probability by distance is

already present in the early times of statistics, when Gauss discovered the normal

distribution as the only error function compatible with the least squares method

(minimizing the Euclidean distance to observations), as explained by Stigler [63].

The statistical point of view on clustering is just a reversal of perspective with

respect to the one of fuzzy sets, whereby the more often an object is assigned to

a class, the closer is this object to the prototypes of the class. The question is

then whether we measure strength of membership by observing frequencies in a

training set or by computing distances to class prototypes. Using Gaussian-shaped

distributions the two points of view are formally equivalent. However, fuzzy sets

theory offers a more flexible mathematical framework for error-minimizing esti-

mation methods, that cover distances other than Euclidean, as in the case of data

reconciliation methods [15].

The view of a fuzzy set as a fuzzy cluster of elements, clusters forming a parti-

tion, has led Zadeh to emphasize the idea of granulation as a core concept support-

ing fuzzy logic [88], while in the crisp case, granulation and the notion of partition

are basic in the theory of rough sets [54]. Interestingly enough, some bridges can

be established between, (fuzzy) clusters, extensional fuzzy sets [40, 42], granula-

tion, graded indistinguishability, and formal concept analysis [30] [25]. One ap-

plication of fuzzy granulation is the notion of fuzzy transform [55] of a real-valued

function with respect to a Ruspini’s fuzzy partition [59] where the coefficients rep-

resenting the transform are obtained in terms of the integral of the product of the

function with each of the basic functions defining the partition (which evaluate the

degree of adequacy of the value of the variable with the corresponding element of

the fuzzy partition). From these numbers, an approximation of the function can be

recovered. The same concept of fuzzy granulation is at work in density estimation

methods based on fuzzy histograms [65], where the analogy with kernel-based

methods is striking: again a kernel expresses similarity and plays the same inter-

polation role as a membership function but it is couched in the phraseology of,

and formalised inside, probability theory.

The role of fuzzy sets in modeling and control originated in the idea of fuzzy



algorithms and programs [73], where fuzzy instructions are instructions involv-

ing fuzzy labels. In that respect, the role of fuzzy if-then rules was soon recog-

nized [76], while their interpolation power was emphasized later [86]. Basically,

it offers a reconciliation between logical notions such as Boolean categories and

inference, and numerical modeling techniques in engineering, that extensively ex-

ploit the notion of (linear) interpolation. A fuzzy model (e. g., fuzzy rules in

the sense of Takagi-Sugeno [67]) is typically a collection of local usual mathe-

matical models, each defined on gradual overlapping domains forming a partition

of the input space. These mathematical models are related via an interpolation

scheme taking advantage of soft boundaries and membership grades to neighbor-

ing domains. Such interpolation schemes are similar to the ones of neural nets.

The bridge between neural nets and fuzzy sets leads to a useful trade-off between

model accuracy (thanks to universal approximation capabilities) and model inter-

pretability, provided that the fuzzy sets appearing in the rules remain meaningful

for the expert, as in the first fuzzy controllers (e.g., [48]). It is also worth mention-

ing that the inference mechanism underlying Takagi-Sugeno fuzzy rules is close

in spirit to case-based decision theory, later axiomatized by Gilboa and Schmei-

dler [32]: in the latter, the decision to apply should maximize a counterpart of

expected utility where probabilities are replaced by similarities to previous cases

where the decision led to results whose utility is known, while in the former, since

the potential decisions belong to a continuum, the similarity based weighting is

directly applied to the (linear) models of actions given in the conclusion part of

the fuzzy rules.

4 Membership grades related to uncertainty

Fuzziness is also often interpreted as a form of uncertainty. However, this view is

sometimes based on a misunderstanding. In its original understanding a grade of

membership is not considered as a degree of (un)certainty [22]: asserting that a

man is almost bald (implying he has almost no hairs) differs from saying that this

man is almost certainly bald (leaving the possibility that finally he is not bald at

all).

Fuzzy sets can represent uncertainty (in a gradual way) because crisp sets

are often used to represent an ill-known value (in a crisp way like in interval

analysis or in propositional logic). Viewed as representing uncertainty a set just

distinguishes between values that are considered possible and values that are not,

and fuzzy sets just introduce grades to soften boundaries of an uncertainty set. So



in a fuzzy set it is the set that captures uncertainty [23]. This point of view echoes

an important distinction made by Zadeh himself [79] between

• conjunctive (fuzzy) sets, where the set is viewed as the conjunction of its

elements. This is the case for clusters discussed in the previous section.

But also with set-valued attributes like the languages spoken more or less

fluently by an individual.

• and disjunctive fuzzy sets which corresponds to mutually exclusive possi-

ble values of an ill-known single-valued attribute, like the ill-known birth

nationality of an individual.

In the latter case, fuzzy sets are called possibility distributions [80] and act as elas-

tic constraints on a precise value [77, 78]. Possibility distributions have an epis-

temic flavor, since they represent the information we have at our disposal about

what values remain more or less possible for the variable under consideration,

and what values are (already) known as impossible. This epistemic view is in

complete contrast with the ontic view underlying conjunctive fuzzy sets [26].

The first illustration of the power of possibility theory proposed by Zadeh

was an original theory of approximate reasoning [81, 84, 85], later reworked for

emphasizing new points [87, 90], where pieces of knowledge are represented by

possibility distributions that fuzzily restrict the possible values of variables, or tu-

ples of variables. These possibility distributions are combined conjunctively, and

then projected in order to compute fuzzy restrictions acting on the variables of in-

terest. This view is the one at work in constraint satisfaction problems (CSP), and

anticipates weighted CSP [4] by many years, although without any algorithmic

concerns. One research direction, quite in the spirit of the objective of “comput-

ing with words” [87], would be to further explore the possibility of a syntactic

(or symbolic) computation of the inference step (at least for some noticeable frag-

ments of this general approximate reasoning theory), where the obtained results

are parameterized by fuzzy set membership functions that would be used only for

the final interpretation of the results. An illustration of this idea can be found in

an approach to reasoning with relative orders of magnitude [39]. It is also at work

in possibilistic logic [27], a very elementary formalism handling pairs made of

a Boolean formula and a certainty weight. Such pairs encode simple possibility

distributions.

Associated with a possibility distribution, is a possibility measure [80], which

is a max-decomposable set function. Thus, one can evaluate the possibility of a

crisp, or fuzzy, statement of interest, given the available information supposed to



be represented by a possibility distribution. It is also important to notice that the

introduction of possibility theory by Zadeh was closely related to the modeling of

information expressed in natural language. This view contrasts with the motiva-

tions of the English economist Schackle [61, 62], interested in a non-probabilistic

view of expectation, who designed a formally similar theory, but rather based on

the idea of degree of impossibility understood as a degree of surprise.

However, apart from a brief mention in [82], Zadeh does not explicitly use

of the notion of necessity (the natural dual of the modal notion of possibility) in

his work on possibility theory and approximate reasoning. Still, it is important

to distinguish between statements that are necessarily true (to some extent), i.e.

whose negation is almost impossible, from the statements that are only possibly

true (to some extent) depending on the way the fuzzy knowledge would be made

precise. The simultaneous use of the two notions is often required in applications

of possibility theory. Besides, in possibility theory, apart from a (strong) necessity

measure reflecting, by complementation, what is known as being more or less

impossible, and the dual (weak) possibility measure reflecting consistency with

the available information, there exist two other set functions of interest (see, e.g.,

[21]): a strong possibility measure which guarantees that all interpretations in a

subset are possible to some extent, and a dual weak necessity measure. The joint

use of these four set functions provides the proper setting for representing bipolar

information, when one distinguishes between positive information, e.g., what has

been observed, and negative information, corresponding, e.g., to what is not ruled

out by generic knowledge [24].

Interestingly, necessity (resp. possibility) measures are formally special case

of belief (resp. plausibility) functions (already pointed out in Shafer’s book [64])

and special cases of coherent lower probabilities in the sense of Walley [70]. This

direction is at odds with Zadeh’s motivations for possibility theory but it opens the

way to the systematic use of membership functions (as possibility distributions) to

represent incomplete information in statistics, from likelihood functions to confi-

dence intervals and probabilistic inequalities [10] as well as dispersion measures

and parameter estimation methods [50].

Necessity degrees are also the building blocks of possibilistic logic (see [27]

for an up-to-date overview), where classical logic formulas are associated with

lower bounds of a necessity measure for assessing their certainty. The semantics

of a (conjunctive) set of possibilistic logic formulas is expressed by a possibility

distribution over a set of interpretations (or possible worlds). This is an example

of possibility distribution defined on an abstract, non-ordered referential, where

the possibility distribution is no longer the precisiation of a linguistic term on an



ordered often continuous universe of discourse as it is the case in Zadeh’s approxi-

mate reasoning approach. Possibilistic logic has found a number of developments

in artificial intelligence including the handling of inconsistency, the modeling of

exception-tolerant reasoning, the fusion of logical knowledge bases, and the de-

sign of possibilistic counterparts to Bayesian networks, which are semantically

equivalent to possibilistic logic bases, but exhibit a graphical representation. See

[27] for an introduction to these issues and for references. The definition of possi-

bilistic networks requires the introduction of the notion of conditioning in possi-

bility theory. It turns out that two forms of conditioning make sense, one defined

with minimum, the other with product. These two forms of conditioning differ-

entiate qualitative and quantitative possibility theory [21]. Let us also mention

a recent application of a possibilistic logic-like handling of uncertain functional

dependencies to the design of databases containing dubious tuples [44].

The links and differences between modal logic and possibility theory have

been a matter of debates, not always well-focused, for a long time; see [91] for

a recent position paper by Zadeh. Still, the recent development of generalized

possibilistic logic (GPL) (see [27] for a brief account and references), where one

can reason both in terms of possibility and necessity, and whose axiomatics is as

the one of a (graded) epistemic modal logic, sheds some light on the question:

the semantics of GPL is in terms of sets of possibility distributions (rather than a

unique possibility distribution as in basic possibilistic logic), while the semantics

of general modal logics require accessibility relations.

Apart from the reasoning side, another important area of the application of

the possibility theory-based understanding of fuzzy sets is the computation with

ill-known quantities represented by fuzzy intervals. The possibility of performing

arithmetic operations on fuzzy numbers was also pointed out by Zadeh [78], then

developed by other scholars (see [19] for a survey in the XXth century). The

calculus of fuzzy intervals is a gradual extension of set-valued mathematics and

the extension principle underlying it can be expressed in possibility theory. The

calculus of fuzzy intervals is instrumental in various areas including:

• systems of linear equations with fuzzy coefficients (see the paper by Lod-

wick and Dubois in this special issue) and differential equations with fuzzy

initial values, and fuzzy set functions [45];

• fuzzy random variables for the handling of linguistic or imprecise statistical

data [31, 8];

• fuzzy regression methods [52];



• operations research and optimisation under uncertainty [93, 16, 46].

This research trend contrasts with the mainstream fuzzy modeling approach, dis-

cussed in the previous section, which promotes mathematical models in the usual

sense, albeit constructed by means of fuzzy sets, and does not express uncertainty.

Systems analysis based on fuzzy intervals and fuzzy differential equations has

been less developed than fuzzy modeling partly because it leads to complex cal-

culations, but also because the epistemic nature of the fuzzy approach under the

uncertainty interpretation is sometimes ill-understood at the practical level, run-

ning the risk of posing mathematical problems that are not always reflecting their

intended meaning. For instance, the equality of membership functions on each

side of a fuzzy linear equation with fuzzy numbers is very demanding and is not

equivalent to the identity between actual values of the terms on each side of the

equality. So there is sometimes a gap between mathematical results and the actual

problem they are supposed to model in this area.

5 Membership grades related to preference

Another natural semantics for the grades of membership of a fuzzy set is in terms

of degrees of satisfaction, when the fuzzy set represents a value function. For

instance, the probability of a fuzzy event [74] has exactly the same form as the

expected utility of an act after Savage, interpreting the utility function as the mem-

bership function of the fuzzy set of good consequences of this act. Likewise, in

multicriteria decision evaluation, the rating profile of an object according to vari-

ous criteria is easily viewed as the fuzzy set of satisfied criteria.

In this respect the invention of fuzzy set connectives by Zadeh has triggered a

large literature on

• aggregation operations both from a mathematical point of view (see [43])

and for multicriteria evaluation (see [36] [1] [69] for recent books).

• maxmin approaches to optimization, in multicriteria linear programming,

initiated in [68, 93] and more recently seen as a special case of valued con-

straint satisfaction [4].

This framework for multicriteria evaluation, constraint-based reasoning, and

optimization is clearly part of the legacy of Zadeh’s 1965 paper, as well as the

one he published with Richard Bellman in 1970 [3]. Originally rather elementary

(using max and min), it is characterized by:



• the assumption of a common value scale for the various factors, constraints

or criteria. This is a strong assumption that nevertheless includes both quan-

titative and qualitative scales.

• A unified view of possible aggregation modes ranging from conjunctions

and disjunctions to generalized means.

• Sophisticated criteria weighting schemes that allow for dependent criteria.

On this issue, the fuzzy set literature has met the economic literature on

Choquet integrals [35]. In the qualitative framework, the counterpart to

Choquet integral is Sugeno integral [66, 35], also called fuzzy integral by

Sugeno, because it uses maximum and minimum, respectively the basic

disjunction and conjunction in fuzzy set theory. From its inception, it was

construed as a tool for multiple criteria evaluation. Sugeno integral acted as

a bridge between fuzzy set theory and Choquet integrals.

• Extensions to bipolar decision analysis methods that measure pros and cons

of decisions, losses and gains in a separate way [34].

Another important offspring of Zadeh’s early papers is fuzzy preference mod-

eling based on the gradual extension of equivalence relations and orderings pro-

posed in [75], generalizing transitivity to maxmin transitivity. Preference mod-

eling is the first step in multicriteria evaluation, whereby it is more natural for a

person to represent his or her preference on a set of objects by an ordering re-

lation than by a utility function. The basic tool for analyzing human-originated

preference relations is their decomposition into strict preference, indifference and

incomparability [6]. Using fuzzy relations, it is possible to express how much an

object is preferred to another. A number of publications starting by an early paper

of Orlowski [53] and later on triggered by the book by Fodor and Roubens [29]

address the issue of decomposing a fuzzy relation into graded strict preference,

indifference and incomparability. Bodenhofer [5] has shown fuzzy ordering re-

lations should be envisaged conjointly with a fuzzy similarity relation expressing

indifference.

Besides, here again the meaning of the values in a fuzzy relation matters, as

it may either reflect intensity of preference, or uncertainty about all-or-nothing

preference. Unless this is clarified, it is very difficult to apply fuzzy preference

modeling in concrete decision-making problems. Indeed, one may argue that the

measurement issue present in utility theory is for the most part obviated by the use

of order relations, while this advantage is lost when making such relations fuzzy.



Note that the use of a fuzzy ordering relation implies that it makes sense to say:

object 1 is preferred to object 2 to the same extent as object 3 is preferred to object

4, which suggests to consider preference difference measurement methods. A lot

of work needs to be done to let such mathematical models of preference be used

as a basis for multicriteria evaluation, in place of questionable methods based on

triangular fuzzy numbers defined on arbitrary value scales [11].

Finally, it is not clear all valued relations can be put under the umbrella of

fuzzy logic. In so-called reciprocal relations, the sum of the preference values of

one object against the other and of the latter against the former is 1, so that it is

more natural to interpret them in terms of probability of preference. Such recipro-

cal relations exist for a long time and differ from the valued relations introduced

in Zadeh’s paper. As a consequence, calling reciprocal relations fuzzy relations

may be misleading [9].

In many practical applications, preference and uncertainty are conjointly present.

For instance, fuzzy databases [56, 57] may be both a matter of

1. expressing preferences in the queries by specifying flexible restrictions on

the desired attribute values or by handling priorities between attributes,

2. handling uncertainty when the database contains imprecise or fuzzy pieces

of information.

When both issues are present, we are led to compute possibility and necessity

measures for fuzzy events, in order to distinguish between answers that are cer-

tain (to some extent) to reach highly satisfactory values, and answers for which

this is only possible (to some extent). At work here are pessimistic and optimistic

decision criteria, which have been axiomatized [28], thus providing formal foun-

dations for qualitative possibility theory.

Databases may be viewed as a repertory of cases. This leads to substitute

similarity to uncertainty in possibilistic decision criteria, as in fuzzy case-based

reasoning methods [18, 41], coming close to the idea of similarity-based possibil-

ity [92].

6 Higher-order membership grades

Ten years after the invention of fuzzy sets, Zadeh [78] considered the possibility

of iterating the process of changing membership grades into (fuzzy) sets, giv-

ing birth to interval-valued fuzzy sets, fuzzy set-valued (type 2) fuzzy sets, and



more generally type n fuzzy sets. While this idea is philosophically tempting

and reflects the problematic issue of measuring membership grades of linguistic

concepts, it has given birth to a high number of publications pertaining to vari-

ants of higher-order fuzzy sets, often reinventing the same notions under different

names. To name a few:1 intuitionistic fuzzy sets, vague sets, hesitant fuzzy sets,

soft sets, arbitrary combinations of the above notions (for instance, interval-valued

intuitionistic fuzzy sets, fuzzy soft sets, etc.).

There are several concerns to be pointed out with these complexifications

(rather than generalizations) of fuzzy sets. They shed some doubt on the theo-

retical or applied merits of such developments of fuzzy set theory:

• Each new kind of fuzzy sets gives birth to a plethora of routine theoretical

papers, redefining basic concepts of fuzzy sets in the new setting, irrespec-

tive of what the new membership grades mean, and presenting no motiva-

tions;

• Several of these constructions reinvent existing notions under different some-

times questionable names. For instance vague sets are the same as intuition-

istic fuzzy sets, and formally they are just a different encoding of interval-

valued fuzzy sets (a pair of nested sets, versus an orthopair of disjoint sets

[7]). Moreover the link between intuitionistic fuzzy sets and intuitionism

hardly exists[17]. Hesitant fuzzy sets were proposed already in 1975 under

a different name [37]; soft sets are set-valued mappings, a notion that has

been well-known for a long time in the theory of random sets.

• Some generalizations of fuzzy sets often underly a misunderstanding [26]:

are they special kinds of L-fuzzy sets or an approach to handling uncertainty

about membership grades? The latter motivation is often put forward in the

introduction of such papers, while the main text adopts an algebraic struc-

ture derived from L-fuzzy sets. For instance, many authors speak of “type-

2-connectives”. However, if a type 2 fuzzy set is understood as a fuzzy set

of (a possibility distribution over) membership functions, it is enough to ap-

ply the extension principle to the type 1 fuzzy logic expression of interest,

in order to compute the resulting fuzzy set-valued membership grade; there

is no need to appeal to a specific algebraic structure on some set of higher-

order membership grades different from the unit interval, all the more so as

1We omit references here, for the sake of conciseness; readers can find a lot of them by search-

ing for the corresponding key-words.



compositionality of connectives is then lost [22]. There is no such thing as

type-2 connectives in this case.

• Algebraic structures for complex membership grades stemming from higher-

order fuzzy sets are in general special kind of lattices. Actually, these

higher-order fuzzy sets are special cases of L-fuzzy sets, hence often re-

dundant from a mathematical point of view [71, 38].

• The incurred complexity of higher-order fuzzy set-based approaches is some-

times not justified. Practical applications of type 2 fuzzy sets in the model-

ing area sometimes come down to models with more tuning parameters than

usual fuzzy systems, but they are often standard input-output models after

due defuzzification steps. So it is difficult to understand why they would

outperform usual fuzzy systems without being subject to overfitting effects.

In practice, many authors restrict to interval-valued fuzzy sets, under the

strange name “interval type 2 fuzzy sets”, to simplify calculations. Like-

wise applications of intuitionistic to multicriteria decision making seem to

artificially increase the burden of collecting preference ratings in the form of

pairs of numbers (or even of intervals) whose meaning may be more unclear

to the user than mere membership values.

• Many methods using type 2 fuzzy sets revisit calculations with fuzzy inter-

vals, without referring to the corresponding state of the art.

The point is not to claim that such variants of fuzzy sets are necessarily mis-

leading or useless. They often try to capture convincing intuitions but are too often

developed for their own sake, sometimes at odds with these intuitions. See [17]

for a full-fledged discussion on intuitionistic fuzzy sets and interval-valued fuzzy

sets, and [26] for the clash of intuitions between notions of bipolarity and uncer-

tainty pervading intuitionistic fuzzy sets. Regarding soft sets, only outlined in the

founding paper [51], they were originally meant as an extension of the alpha-cut

mapping to non-nested sets, a concept more recently considered by several au-

thors [23, 60, 49] in a more applied perspective. However, followers of the soft

set trend often adopt the set-valued mapping point of view without reference to

cuts of fuzzy sets. For instance, the highly cited paper of Maji et al. [47] seem to

consider soft sets in the algebraic framework of formal concept analysis [30] only.

As a consequence, there is an effort to be pursued in terms of motivation,

mathematical rigor, and convincing applications, in order to make this part of the

fuzzy set legacy worth developing further.



7 Conclusion

The intention of this note was to overview research topics that stemmed from

Zadeh’s founding paper and early subsequent publications of his, and that seem to

have a promising future. However, our discussion has no pretense to provide an

exhaustive coverage of all the potential application fields of fuzzy set and possibil-

ity theory. Several noticeable ones have not been cited (e.g., information retrieval,

machine learning), and those that have been mentioned are mainly there for illus-

trating various usages of fuzzy set notions, rather than for advocating their merits

with respect to other approaches.

Note that fuzzy set research now reaches a point where the corpus of basic

tools has been already considerably developed, and very few new basic concepts

seem to have emerged in the last 10 years. These basic tools become more and

more accepted in various established disciplines (for example, fuzzy systems in

non-linear control engineering, fuzzy clustering in data analysis, fuzzy interval

computations in risk analysis, etc.). In this sense, fuzzy set theory has come

of age. These numerous achievements contrast with various attempts to fuzzify

mathematical notions or complexify existing fuzzy set concepts, which can be

called “fuzzification for its own sake”, that seems to be driven, as in many fields

nowadays, by the pressure to publish papers in the academic world. This increases

the number of publications without always contributing much to science, while at

a higher level in the society “the pursuit of knowledge for his own sake is increas-

ingly being replaced by a quest for education as a ticket to a better-paying job”,

as denounced by Zadeh himself [89] and deplored by the scientific community.
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[41] E. Hüllermeier. Case-based Approximate Reasoning. Springer, Berlin,

2007.

[42] F. Klawonn. Fuzzy points, fuzzy relations and fuzzy functions. In: Dis-

covering the World with Fuzzy Logic, (V. Novák and I. Perfilieva, eds.),

Physica-Verlag, Heidelberg, 431-453, 2000.

[43] E. P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Springer, 2000.

[44] S. Link, H. Prade. Relational database schema design for uncertain data.

Centre for Discrete Mathematics and Theoretical Computer Science, Uni-

versity of Auckland, Research Report 469, Aug. 2014.

[45] W. A. Lodwick and M. Oberguggenberger, Eds, Differential Equations Over

Fuzzy Spaces - Theory, Applications, and Algorithms, special issue of

Fuzzy Sets and Systems 230: 1-162, 2013.

[46] M.K. Luhandjula Fuzzy optimization: Milestones and perspectives Fuzzy

Sets and Systems, 274: 4-11, 2015.

[47] P. K. Maji, R. Biswas, A. R. Roy. Soft set theory. Comput. Math. Appl., 45

(4-5), 555-562, 2003.

[48] E. H. Mamdani. Application of fuzzy algorithms for control of simple dy-

namic plant. Proc. IEEE, 121 (12), 1585-1588, 1976.

[49] T. P. Martin and B. Azvine. The X-mu Approach: Fuzzy quantities, fuzzy

arithmetic and fuzzy association rules. IEEE Symp. on Foundations of Com-

putational Intelligence (FOCI), 2013.

[50] G. Mauris. Possibility distributions: A unified representation of usual direct-

probability-based parameter estimation methods. Int. J. Approx. Reasoning,

52 (9),1232-1242, 2011.



[51] D. Molodtsov. Soft set theory - First results. Comput. Math. Appl., 37 (4/5),

19-31, 1999.

[52] S. Muzzioli, A. Ruggieri, B. De Baets A comparison of fuzzy regression

methods for the estimation of the implied volatility smile function, Fuzzy

Sets and Systems, 266:131-143, 2015

[53] S. Orlovsky. Decision-making with a fuzzy preference relation, Fuzzy Sets

Syst., 1, 155-168, 1978.

[54] Z. Pawlak. Rough Sets. Theoretical Aspects of Reasoning about Data.

Kluwer Acad. Publ., Dordrecht, 1991.

[55] I. Perfilieva. Fuzzy transforms: Theory and applications. Fuzzy Sets and

Systems, 157, 993-1023, 2005.

[56] F. E. Petry. Fuzzy Databases: Principles and Applications (with a chapter

by P. Bosc). International Series in Intelligent Technologies, 1995.

[57] O. Pivert, P. Bosc. Fuzzy Preference Queries to Relational Databases. Im-

perial College Press, 2012.

[58] H. Prade and S. Schockaert. Handling borderline cases using degrees: An

information processing perspective. In: (with discussion) In: Understanding

Vagueness - Logical, Philosophical and Linguistic Perspectives, (P. Cintula,

Ch. Fermüller, eds.), vol. 36 of Studies in Logic, College Publications, 291-

309, 2012.

[59] E. H. Ruspini. A new approach to clustering. Inform. and Control, 15, 22-

32, 1969.

[60] D. Sanchez, M. Delgado, M.A. Villa, J. Chamorro-Martinez. On a non-

nested level-based representation of fuzziness Fuzzy Sets and Systems 192:

159-175, 2012.

[61] G. L. S. Shackle. Expectation in Economics. Cambridge University Press,

UK, 1949. 2nd edition, 1952.

[62] G. L. S. Shackle. Decision, Order and Time in Human Affairs (2nd edition),

Cambridge University Press, UK, 1961.



[63] S. M. Stigler 1990. The History of Statistics: The Measurement of Uncer-

tainty before 1900. Cambridge, MA: Belknap Press.

[64] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,

1976.

[65] O. Strauss: Quasi-continuous histograms. Fuzzy Sets and Systems 160(17):

2442-2465 (2009)

[66] M. Sugeno. Fuzzy measures and fuzzy integrals: a survey. In: Fuzzy Au-

tomata and Decision Processes, (M. M. Gupta, G. N. Saridis, and B. R.

Gaines, eds.), 89-102, North-Holland, 1977.

[67] T. Takagi, M. Sugeno. Fuzzy identification of systems and its applications

to modeling and control. IEEE Trans. on Systems, Man, and Cybernetics,

15 (1), 116-132, 1985.

[68] H. Tanaka, T. Okuda and K. Asai, On fuzzy mathematical programming, J.

Cybernetics, 3, 37-46, 1974.

[69] V. Torra, Y. Narukawa. Modeling Decisions - Information Fusion and Ag-

gregation Operators. Springer, 2007.

[70] P. Walley. Measures of uncertainty in expert systems. Artif. Intell. 83 (1),

1-58; 1996.

[71] G.-J. Wang, Y.-H. He, Intuitionistic fuzzy sets and L-fuzzy sets, Fuzzy Sets

and Systems 110, 271-274, 2000.

[72] L. A. Zadeh. Fuzzy sets. Information and Control, 8 (3), 338-353,1965.

[73] L. A. Zadeh. Fuzzy algorithms. Information and Control, 12, 94-102,1968.

[74] L. A. Zadeh, Probability measures of fuzzy events, J. Math. Anal. Appl. 23

(1968), 421-427

[75] L.A. Zadeh, Similarity relations and fuzzy orderings, Inf. Sci. 3 (1971) 177-

200.

[76] L. A. Zadeh. Outline of a new approach to the analysis of complex systems

and decision processes. IEEE Trans. on Systems, Man, and Cybernetics, 3

(1), 28-44, 1973.



[77] L. A. Zadeh, Calculus of fuzzy restrictions. In: Fuzzy sets and Their Ap-

plications to Cognitive and Decision Processes, (L. A. Zadeh, K. S. Fu, K.

Tanaka, M. Shimura, eds.), Proc. U.S.-Japan Seminar on Fuzzy Sets and

Their Applications, Berkeley, July 1-4, 1974, Academic Press, 1-39, 1975.

[78] L. A. Zadeh. The concept of a linguistic variable and its application to ap-

proximate reasoning. Inf. Sci., Part I, 8 (3), 199-249; Part II, 8 (4), 301-357;

Part III, 9 (1), 43-80,1975.

[79] L. A. Zadeh, PRUF - a meaning representation language for natural lan-

guages. Int. J. Man-Machine Studies, 10, 395-460, 1978.

[80] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and

Systems, 1, 3-28, 1978.

[81] L. A. Zadeh. A theory of approximate reasoning. In: Machine Intelligence,

Vol. 9, (J. E. Hayes, D. Mitchie, and L. I. Mikulich, eds.), 149-194, 1979.

[82] L.A. Zadeh, Fuzzy sets and information granularity. In: Advances in Fuzzy

Set Theory and Applications, (M. M. Gupta, R. K. Ragade, R. R. Yager,

eds.), North-Holland, 3-18, 1979.

[83] L. A. Zadeh. Precisiation of meaning via translation into PRUF. In: Cog-

nitive Constraints on Communication, (L. Vaina, J. Hintikka, eds.), Reidel,

Dordrecht, 373-402, 1984.

[84] L. A. Zadeh. Syllogistic reasoning in fuzzy logic and its application to usu-

ality and reasoning with dispositions. IEEE Transactions on Systems, Man,

and Cybernetics, 15 (6), 754-763,1985.

[85] L. A. Zadeh. Knowledge representation in fuzzy logic. IEEE Trans. Knowl.

Data Eng., 1 (1), 89-100, 1989.

[86] L. A. Zadeh. The calculus of fuzzy if-then rules. AI Expert, 7 (3), 23-

27,1992.

[87] L. A. Zadeh. Fuzzy logic = computing with words. IEEE Trans. Fuzzy Sys-

tems 4(2): 103-111,1996.

[88] L. A. Zadeh. Toward a theory of fuzzy information granulation and its cen-

trality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 90,

111-128, 1997.



[89] L. A. Zadeh. Editorial. UC-Berkeley Computer Science Commencement

Address. IEEE Trans. on Systems, Man and Cybernetics, Part C: Applica-

tions and Reviews, 28 (1), 7-8, 1998.

[90] L. A. Zadeh, Generalized theory of uncertainty (GTU) – principal concepts

and ideas. Computational Statistics & Data Analysis, 51, 15-46, 2006.

[91] L. A. Zadeh. A note on modal logic and possibility theory. Inf. Sci. 279:

908-913 (2014)

[92] L. A. Zadeh. A note on similarity-based definitions of possibility and prob-

ability. Inf. Sci., 267, 334-336, 2014.

[93] H.-J. Zimmermann, Fuzzy programming and linear programming with sev-

eral objective functions. Fuzzy Sets Syst., 1, 45-55, 1978.


