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Ann Lemahieu and Lise Van Proeyen * Pôles de la fonction zêta topologique d'une courbe plane et polyèdre de Newton

Abstract.

-The local topological zeta function is a rational function associated to a germ of a complex holomorphic function. This function can be computed from an embedded resolution of singularities of the germ. For functions that are nondegenerate with respect to their Newton polyhedron it is also possible to compute it from the Newton polyhedron. Both ways give rise to a set of candidate poles of the topological zeta function, containing all poles. For plane curves, W. Veys showed how to filter the actual poles out of the candidate poles induced by the resolution graph. In this note we show how to determine from the Newton polyhedron of a nondegenerate plane curve which candidate poles are actual poles.

Résumé.-La fonction zêta topologique locale est une fonction rationnelle associée au germe d'une fonction complexe holomorphe. Cette fonction peut être calculée à partir d'une résolution plongée du germe. Pour les fonctions qui sont non dégénérées pour leur polyèdre de Newton, elle peut également être calculée à partir de ce polyèdre de Newton. Ces deux méthodes donnent lieu à un ensemble de candidats pôles, contenant tous les pôles.

Pour les courbes planes, W. Veys a démontré comment filtrer les pôles de l'ensemble des candidats pôles induit par le graphe de la résolution. Dans cette note on montre, pour les courbes planes non dégénérées, comment déterminer les pôles directement à partir du polyèdre de Newton.

Version française abrégée

1.1 La fonction zêta topologique locale.-En 1992 J. Denef et F. Loeser ont introduit la fonction zêta topologique. Soient f : (C n , 0) → (C, 0) le germe d'une fonction holomorphe et π : X → C n une résolution plongée des singularités de f -1 {0}. On note (E j ) j∈S les composantes irréductibles de π -1 (f -1 {0}) et on note les multiplicités de E j dans les diviseurs de f

• π et de π * (dx 1 ∧ . . . ∧ dx n ) sur X par N j et ν j -1 respectivement. Pour I ⊂ S on pose E I := ∩ i∈I E i et E • I := E I \ (∪ j / ∈I E j ). On écrit χ(•) pour la caractéristique d'Euler-Poincaré. La fonction zêta topologique locale associée à f est la fonction rationnelle en une variable com- plexe Z top,f (s) := I⊂S χ(E • I ∩ π -1 {0}) i∈I 1 N i s+ν i .
Les pôles de la fonction zêta topologique locale sont dans l'ensemble {-ν i /N i | i ∈ S}; on appelle cet ensemble un ensemble de candidats pôles. Plusieurs conjectures, comme la conjecture de monodromie et la conjecture d'holomorphie, relient ces pôles aux valeurs propres de la monodromie locale de f (voir par exemple [De]). Il est très remarquable que la plupart de ces candidats pôles soit annulée dans la fonction zêta topologique locale. En général, on ne sait pas comment voir si un candidat pôle est un vrai pôle. Il existe un critère complet seulement pour les courbes planes.

Théorème [Ve] Soit f ∈ C[x, y] un polynôme non-constant qui satisfait f (0) = 0 et soit π : X → C 2 la résolution plongée minimale de f -1 {0} en un voisinage de 0. Alors s 0 est un pôle de Z top,f (s) si et seulement si s 0 = -ν i N i pour une composante exceptionnelle E i qui intersecte au moins trois fois d'autres composantes ou si s 0 = -1 N i pour E i une composante irréductible de la transformée stricte de f = 0.

1.2 Fonction zêta topologique et polyèdres de Newton

.-Soit f ∈ C[x 1 , . . . , x n ] un polynôme non-constant qui satisfait f (0) = 0. On note f = k∈Z n ≥0 a k x k , où k = (k 1 , . . . , k n ) et x k = x k 1 1 •. . .•x kn n . Le support de f est supp f := {k ∈ Z n ≥0 | a k = 0}. Le polyèdre de Newton Γ 0 de f à l'origine est l'enveloppe convexe dans R n ≥0 de k∈supp f k + R n ≥0 .
Un polynôme f (x 1 , . . . , x n ) est appelé non dégénéré pour son polyèdre de Newton Γ 0 si pour chaque face compacte τ de Γ 0 les polynômes

f τ := k∈τ a k x k et ∂f τ /∂x i , 1 ≤ i ≤ n, n'ont pas de zéro commun dans (C\{0}) n .
Pour a 1 , . . . , a r ∈ R n \{0}, on pose cône(a 1 , . . . , a r ) :

= { r i=1 λ i a i | λ i ∈ R, λ i > 0}.
Si ∆ peut être écrit comme cône(a 1 , . . . , a r ), avec a 1 , . . . , a r ∈ Z n \{0} linéairement indépendants sur R, alors ∆ est appelé un cône simplicial. Pour un cône simplicial ∆ engendré par des vecteurs primitifs et linéairement indépendants a 1 , . . . , a r ∈ Z n , la multiplicité de ∆, notée mult(∆), est l'indice du réseau Za 1 + . . . + Za r dans le groupe des points à coordonnées entières de l'espace vectoriel engendré par a 1 , . . . , a r . Soit Γ 0 un polyèdre de Newton dans

R n . Pour a = (a 1 , . . . , a n ) ∈ R n ≥0 on note N (a) := inf x∈Γ 0 a • x, ν(a) := n i=1 a i et F (a) := {x ∈ Γ 0 | a • x = N (a)}. Chaque F (a), a = 0, est une face de Γ 0 . On peut associer à une face τ de Γ 0 son cône dual τ • ⊂ R n , qui est défini comme la clôture dans R n de {a ∈ R n ≥0 | F (a) = τ }. Pour une face τ de codimension 1, on a τ • = aR ≥0 pour un a ∈ Z n ≥0 primitif, et l'équation de l'hyperplan contenant τ est a • x = N (a). On utilisera aussi la notation N (τ ) et ν(τ ), signifiant respectivement N (a) et ν(a) pour cet a ∈ Z n ≥0 associé. Soit ∆ = R ≥0 a 1 + • • • + R ≥0 a r , avec a 1 , . . . , a r ∈ Z n ≥0 linéairement indépendants et primitifs. J. Denef et F. Loeser définissent J ∆ (s) := mult(∆) r i=1 (N (a i )s+ν(a i )) et à une face arbitraire τ de Γ 0 ils associent la fonction rationnelle J τ (s) := k i=1 J ∆ i (s), avec τ • = ∪ k i=1 ∆ i une décomposition de τ • en cônes simpliciaux ∆ i de dimension = dim τ • qui satisfont dim(∆ i ∩ ∆ j ) < si i = j.
Théorème [START_REF] Denef | Caractéristiques d' Euler-Poincaré, fonctions zêta locales, et modifications analytiques[END_REF]Théorème 5.3] Si f est non dégénéré pour Γ 0 , alors la fonction zêta topologique locale est égale à

Z top,f (s) = τ sommet de Γ 0 J τ (s) + s s + 1 τ face compacte de Γ 0 , dim τ ≥1 (-1) dim τ (dim τ )!Vol(τ )J τ (s).
Pour une face τ de dimension 0, Vol(τ ) := 1. Pour les autres faces compactes, Vol(τ ) est le volume de τ pour la forme ω τ . C'est une forme de volume sur Aff(τ ), l'espace affine engendré par τ, telle que le parallélépipède engendré par une base du réseau Z n ∩ Aff(τ ) ait volume 1. Ce théorème donne un autre ensemble de candidats pôles (contenant tous les pôles) de la fonction zêta topologique locale : -1 et les nombres rationnels -ν(τ )/N (τ ) pour τ une face de codimension 1 de Γ 0 . On va dire qu'une telle face contribue ce candidat pôle.

En dimension 2, on dira qu'un segment du polyèdre de Newton est une face du type B 1 par rapport au variable x (resp. au variable y) si le segment a un sommet dans l'hyperplan de coordonnées x = 0 (resp. y = 0) et un sommet à distance 1 de cet hyperplan.

Dans cette note on donne le critère suivant pour être un vrai pôle -parmi les candidats pôles du dernier ensemble -de la fonction zêta topologique locale.

Théorème Soit f ∈ C[x, y] non dégénéré pour son polyèdre de Newton Γ 0 à l'origine 0. Alors pour un candidat pôle s 0 = -1 contribué par une face de Γ 0 on a : s 0 est un pôle de Z top,f si et seulement si s 0 est contribué par une face de codimension 1 de Γ 0 qui n'est pas une face du type B 1 .

Introduction

The local topological zeta function.-

In 1992 J. Denef and F. Loeser introduced a new zeta function which they called the topological zeta function because of the topological Euler-Poincaré characteristic turning up in it. Let f : (C n , 0) → (C, 0) be the germ of a holomorphic function and let π : X → C n be an embedded resolution of f -1 {0}. We denote by E i , i ∈ S, the irreducible components of π -1 (f -1 {0}), and by N i and ν i -1 the multiplicities of E i in the divisor on X of f • π and π * (dx 1 ∧ . . . ∧ dx n ), respectively. For I ⊂ S we denote also

E I := ∩ i∈I E i and E • I := E I \ (∩ j / ∈I E j ).
Further we write χ(•) for the topological Euler-Poincaré characteristic.

The local topological zeta function associated to f is the rational function in one complex variable Z top,f (s

) := I⊂S χ(E • I ∩ h -1 {0}) i∈I 1 N i s+ν i . J.
Denef and F. Loeser proved in [DL] that these definitions are independent of the choice of the resolution. The poles of the local topological zeta function are part of the set {-ν i /N i | i ∈ S}; therefore this set is called a set of candidate poles. Various conjectures, such as the monodromy conjecture and the holomorphy conjecture, relate the poles to the eigenvalues of the local monodromy of f (see for example [De]). A very remarkable fact is that most of the candidate poles are cancelled in the topological zeta function. In general, it is not known how to see whether a candidate pole is a pole or not. Only for plane curves there exists a complete criterion. In [Ve] W. Veys showed:

Theorem 1. Let f ∈ C[x,
y] be a non-constant polynomial satisfying f (0) = 0, and let π : X → C 2 be the minimal embedded resolution of f -1 {0} in a neighbourhood of 0. Then s 0 is a pole of Z top,f (s) if and only if s 0 = -ν i N i for some exceptional curve E i intersecting at least three times other components or s 0 = -1 N i for some irreducible component E i of the strict transform of f = 0.

The topological zeta function out of the Newton polyhedron

.-Let f ∈ C[x 1 , . . . , x n ] be a non-constant polynomial satisfying f (0) = 0. We write f = k∈Z n ≥0 a k x k , where k = (k 1 , . . . , k n ) and x k = x k 1 1 • . . . • x k n n . The support of f is supp f := {k ∈ Z n ≥0 | a k = 0}. The Newton polyhedron Γ 0 of f at the origin is the convex hull in R n ≥0 of k∈supp f k + R n ≥0 .
A face of the Newton polyhedron is the intersection of Γ 0 with a supporting hyperplane. A facet is a face of dimension n -1. A polynomial f (x 1 , . . . , x n ) is called nondegenerate with respect to its Newton polyhedron Γ 0 if for every compact face τ of Γ 0 the polynomials

f τ := k∈τ a k x k and ∂f τ /∂x i , 1 ≤ i ≤ n, have no common zeroes in (C\{0}) n . If a 1 , . . . , a r ∈ R n \{0}, then cone(a 1 , . . . , a r ) := { r i=1 λ i a i | λ i ∈ R, λ i > 0}.
If ∆ can be written as cone(a 1 , . . . , a r ), with a 1 , . . . , a r ∈ Z n \{0} linearly independent over R, then ∆ is called a simplicial cone. For a simplicial cone ∆ spanned by the primitive and linearly independent vectors a 1 , . . . , a r ∈ Z n , the multiplicity of ∆, denoted by mult(∆), is the index of the lattice Za 1 + . . . + Za r in the group of the points with integral coordinates of the vector space generated by a 1 , . . . , a r . Then mult(∆) is equal to the greatest common divisor of the determinants of the (r × r)-matrices obtained by omitting columns from the matrix A with rows a 1 , . . . , a r .

Let Γ 0 be a Newton polyhedron in R n . For a = (a 1 , . . . ,

a n ) ∈ R n ≥0 we put N (a) := inf x∈Γ 0 a • x, ν(a) := n i=1 a i and F (a) := {x ∈ Γ 0 | a • x = N (a)}.
All F (a), a = 0, are faces of Γ 0 . To a face τ of Γ 0 one associates a dual cone τ • ⊂ R n , defined as the closure in R n of {a ∈ R n ≥0 | F (a) = τ }. This is a cone of dimension n -dim τ with vertex in the origin. For a facet τ , one has τ • = aR ≥0 for some primitive a ∈ Z n ≥0 , and then the equation of the hyperplane through τ is a • x = N (a). We also use the notation N (τ ) and ν(τ ), meaning respectively N (a) and ν(a) for this associated

a ∈ Z n ≥0 . The set {τ • | τ face of Γ 0 } defines a subdivision of R n ≥0
and is called the normal fan to Γ 0 . In 1976 A.N. Varchenko proved in [Var] that the map from the toric variety corresponding to a regular subdivision of the normal fan to C n is an embedded resolution for all polynomials having Γ 0 as Newton polyhedron in the origin and that are nondegenerate with respect to Γ 0 . J. Denef and F. Loeser used this to provide a formula for the local topological zeta function out of the Newton polyhedron.

Suppose ∆ = R ≥0 a 1 + • • • + R ≥0 a r , with a 1 , . . . , a r ∈ Z n ≥0 linearly independent and primitive. They define J ∆ (s) := mult(∆) r i=1 (N (a i )s+ν(a i )) and to an arbitrary face τ of Γ 0 they associate the rational function

J τ (s) := k i=1 J ∆ i (s), with τ • = ∪ k i=1 ∆ i a decomposition of τ • into simplicial cones ∆ i of dimension = dim τ • satisfying dim(∆ i ∩ ∆ j ) < if i = j. Theorem 2. [DL, Théorème 5.3] If f is nondegenerate with respect to Γ 0 , then the local topo- logical zeta function is equal to Z top,f (s) = τ vertex of Γ 0 J τ (s) + s s + 1 τ compact face of Γ 0 , dim τ ≥1 (-1) dim τ (dim τ )!Vol(τ )J τ (s).
For a face τ of dimension 0, Vol(τ ) := 1. For every other compact face Vol(τ ) is the volume of τ for the volume form ω τ . This is a volume form on Aff(τ ), the affine space spanned by τ, such that the parallelepiped spanned by a lattice-basis of Z n ∩ Aff(τ ) has volume 1. The product (dim τ )!Vol(τ ) is also called the normalized volume of τ. If τ is a simplicial facet, this normalized volume is equal to the multiplicity of the cone spanned by the vertices divided by N (τ ).

Theorem 2 yields another set of candidate poles (containing all poles) of the local topological zeta function, namely -1 together with the rational numbers -ν(τ )/N (τ ) for τ a facet of Γ 0 . We will say that such a facet contributes the candidate pole. In the following section we will give a criterion for a candidate pole of this set to be a pole of the local topological zeta function.

Remark 1. There is also a graphical way to determine the candidate pole contributed by a facet τ . If (r, . . . , r) is the intersection point of the diagonal of the first quadrant with the affine hyperplane containing τ , then the candidate pole -ν(τ )/N (τ ) is equal to -1/r.

Description of the poles in terms of the Newton polyhedron

We will say that a facet of a 2-dimensional Newton polyhedron is a B 1 -facet with respect to the variable x (resp. to the variable y) if it has one vertex in the coordinate hyperplane x = 0 (resp. y = 0) and one vertex at distance one of this hyperplane.

Theorem 3. Let f be a complex polynomial in two variables. Suppose that f is nondegenerate with respect to its Newton polyhedron Γ 0 . Then for a candidate pole s 0 = -1 contributed by some facet of Γ 0 it holds: s 0 is a pole of Z top,f if and only if s 0 is contributed by a facet of Γ 0 that is no B 1 -facet.

Proof. Suppose first that s 0 is a candidate pole of order 2. Let σ and τ be facets such that s 0 = ν(τ )/N (τ ) = ν(σ)/N (σ) = 1, having exactly one point in common. According to Remark 1, the picture should be as in Figure 1. Note that τ or σ might not be compact. The facets τ Figure 1 Figure 2 Figure 3 and σ are no B 1 -facets, since otherwise r should be equal to 1 and s 0 = -1. When looking at the formula for the topological zeta function given in Theorem 2, it is obvious that a candidate pole of order two is also a pole of order two. Suppose now that s 0 is a candidate pole of order 1 and suppose first that s 0 is contributed by a compact facet τ . Then we fix notation as in Figure 2. Note that k = l and m = n. We sum the contributions to the local topological zeta function coming from the segment τ and the points with coordinates (k, l) and (m, n) (see Theorem 2). If g is the normalized volume of τ (which implies g = gcd(m -k, l -n)), the contribution of τ is

- sg 2 (s + 1)((lm -kn)s + l -n + m -k) ,
the contribution of the point with coordinates (k, l) is given by

(b -l)(m -k) -(l -n)(k -a) ((lm -kn)s + l -n + m -k)((bk -al)s + b -l + k -a) and the contribution of (m, n) is (l -n)(c -m) -(n -d)(m -k) ((lm -kn)s + l -n + m -k)((nc -md)s + n -d + c -m) .
Once summed these 3 contributions, we compute the residue Res at s = -(l-n+m-k)/(lm-kn):

Res = (l -n + m -k)((ml -nk)(ml -nk + k -m + n -l) + g 2 (n -m)(k -l)) (lm -kn)(n -m)(k -l)(ml -nk + k -m + n -l) . If τ is a B 1 -facet, then k = 0, m = 1, g = 1 or n = 0, l = 1, g = 1.
It is easy to calculate that then Res = 0. From now on, we suppose τ is no B 1 -facet. First we note that ml-nk+k-m+n-l > 0.

This follows from the fact that a candidate pole in dimension two is always bigger than or equal to -1. Since we suppose s 0 = -1, this leads to l-n+m-k lm-kn < 1. If τ is intersecting the diagonal of the first quadrant, then there can clearly not exist another facet τ yielding this candidate pole. To show that the candidate pole s 0 = -ν(τ )/N (τ ) is a pole of Z top,f , it is thus sufficient to prove that Res = 0. As in this situation k < l, k < m, n < m, n < l, it follows that Res = 0 if and only the factor

F := (ml -nk)(ml -nk + k -m + n -l) + g 2 (n -m)(k -l) = 0.
We have ml -nk > 0, k -l < 0, n -m < 0 and ml -nk + k -m + n -l > 0. This leads to F > 0 and Res = 0.

Suppose now that τ is lying above the diagonal in the first quadrant. Then we have k < m < n < l. We prove now that Res < 0. It is easy to see that this is equivalent to F > 0. We observe that (ml -nk)(ml

-nk + k -m + n -l) -(l -k)(n -m)(m -k) 2 = lm(m -k)(m -k -1) + k(n -m)(m -k) 2 + kn(m -k) +(l -n)(lm(m -1) -nk 2 ) + kn(l -n).
All terms in this summand are greater or equal than 0 and we find that the total expression is equal to 0 exactly when k = 0 and m = 1 or equivalently, when τ is a B 1 -facet. If τ is not a B 1 -facet, then we find F > 0 because g 2 ≤ (m -k) 2 . If τ is a facet lying under the diagonal, then one can permute n with k and m with l. We get the same conclusion: the residue is strictly negative unless the facet is a B 1 -facet. Now we are left with the case that s 0 is a candidate pole of order 1, contributed by a facet τ that is not compact. Suppose Aff(τ ) ↔ x = a and (a, b), (c, d) and σ are as in Figure 3. (The line segment σ might not be compact, in that case d = b.) Then the candidate pole s 0 = -1/a only turns up in the term of the local topological zeta function originating from the point (a, b). As τ induces a candidate pole of order 1, one has that a = b. This term is equal to c-a (as+1)((bc-ad)s+b-d+c-a) . The residue in s 0 is 1 (a-b) . As in the case of a compact facet, when τ intersects the diagonal of the first quadrant, then s 0 is only contributed by τ and thus s 0 is a pole. If τ is lying completely above the diagonal, then 1 (a-b) < 0. Also for non-compact facets parallel with the x-axis one gets the same conclusion.

Hence, contributions coming from different facets (compact or not compact) do not cancel each other. This ends the proof.

Remark 2. Notice that the computed residues do not depend on the neighbour segments of τ , although they are used in the computation of the residue.
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