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On monodromy for a class of surfaces

In this note we present a result on the monodromy conjecture for surfaces that are generic with respect to a toric idealistic cluster.

Résumé

Sur la monodromie pour une certaine classe de surfaces. On présente dans cette note un résultat sur la conjecture de monodromie pour les surfaces qui sont génériques pour un amas torique idéalistique.

En général, il peut y avoir beaucoup d'annulations qui font que j∈J b χ(E • j ) = 0. On obtient que χ(E • j ) < 0 si et seulement si la configuration dans E j ∼ = P 2 consiste en (au moins trois) droites -éventuellement exceptionelles -qui passent toutes par le même point. Ce résultat nous permet de démontrer :

, alors e -2πiνj /Nj est une valeur propre de la monodromie de f .

Comme application on peut vérifier la conjecture de monodromie pour 'la plupart' des pôles.

Corollaire Si -ν j /N j est un candidat pôle de Z top,f d'ordre 1 qui est un pôle, alors e -2πiνj /Nj est une valeur propre de la monodromie de f .

Version française abrégée

En 1992 Denef et Loeser ont introduit la fonction zêta topologique. Un analogue de la conjecture de monodromie, déjà établie pour la fonction zêta d'Igusa, était né pour cette nouvelle fonction zêta. Loeser a demontré la conjecture de monodromie pour les courbes et pour les polynômes qui sont nondégénérés pour leur polyèdre de Newton et qui satisfont des conditions numériques ( [L1,L2]). Artal Bartolo, Cassou-Noguès, Luengo, Melle Hernández ([A-B,C-N,Lu,M-H]), Rodrigues ([Ro]) et Veys ([Ve1]) ont également traité de cette conjecture mystérieuse. Soient f : (C d , 0) → (C, 0) le germe d'une fonction holomorphe et π : X → C d une résolution plongée des singularités de f -1 {0}. On note (E j ) j∈S les composantes irréductibles de π -1 (f -1 {0}) et on note respectivement les multiplicités de E j dans les diviseurs de f •π et de π * (dx 1 ∧. . .∧dx d ) sur X par N j et par ν j -1. Pour I ⊂ S on pose E I := ∩ i∈I E i et E • I := E I \ (∪ j / ∈I E j ). La fonction zêta topologique locale associée à f est la fonction rationnelle en une variable complexe Z top,f (s) :

= I⊂S χ(E • I ∩ π -1 {0}) i∈I 1 
Nis+νi . Denef et Loeser ont montré que la fonction zêta topologique ne dépend pas de la résolution plongée choisie ( [De,L]). Supposons maintenant que f est une fonction en trois variables et que la surface f = 0 a exactement une singularité isolée 0. Alors on peut supposer que π est un isomorphisme sur le complément de l'image inverse de l'origine. Soient (E j ) j∈J:={1,••• ,r} les composantes irréductibles exceptionnelles de π -1 {0}. Dans l'article [A'C] A'Campo montre que la fonction zêta de monodromie ζ f de f à 0 peut être Email addresses: lemahieu@mathematik.uni-kl.de (Ann Lemahieu), wim.veys@wis.kuleuven.be (Willem Veys).
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écrite comme ζ f (t) = r j=1 (1 -t Nj ) χ(E • j )
. Sous cette description les valeurs propres de la monodromie de f sont les zéros de ζ f et la conjecture de monodromie devient 'Si s est un pôle de Z top,f , alors e 2πis est un zéro de ζ f '. Fixons maintenant un candidat pôle s := -ν j /N j , j ∈ J, de Z top,f . Nous écrivons ν j /N j comme a/b avec a et b premiers entre eux et nous définissons l'ensemble J b := {j ∈ J | b|N j }. La formule d'A'Campo implique que e 2πis est un zéro de ζ f si et seulement si j∈J b χ(E • j ) = 0. On considère les surfaces génériques pour lesquelles il existe une résolution plongée des singularités réalisée par l'éclatement d'une constellation torique qui est la constellation des points de base d'un idéal monomial de support fini.

E j ∼ = P 2 Eα ∩ E j E β ∩ E j Eγ ∩ E j P Q R Figure 1
Le contexte des constellations toriques en dimension 3 implique que la configuration dans E j ∼ = P 2 est comme dans la Figure 1. Les seules intersections possibles avec d'autres composantes exceptionelles sont les droites de coordonnées E α ∩ E j , E β ∩ E j et E γ ∩ E j et les points P , Q et R sont les seuls points de E j ∼ = P 2 dans lesquelles il est permis d'éclater.

Introduction

In 1992 Denef and Loeser introduced the topological zeta function. The monodromy conjecture, first stated for the Igusa zeta function, got an analogue for this new zeta function. Loeser proved the conjecture for curves and for polynomials that are nondegenerate with respect to their Newton polyhedron and that satisfy some numerical conditions ( [L1,L2]). Also Artal Bartolo, Cassou-Noguès, Luengo, Melle Hernández ([A-B,C-N,Lu,M-H]), Rodrigues ([Ro]) and Veys ([Ve1]) provided results about this mysterious conjecture. We explain in this note by geometric arguments a phenomenon concerning calculation of monodromy and the monodromy conjecture for surfaces that are generic with respect to a 3-dimensional toric idealistic cluster . Let f : (C d , 0) → (C, 0) be the germ of a holomorphic function and let π : X → C d be an embedded resolution of singularities of f -1 {0}. We write (E j ) j∈S for the irreducible components of π -1 (f -1 {0}) and we denote by N j and ν j -1 the multiplicities of E j in the divisor on X of f • π and π * (dx 1 ∧ . . . ∧ dx d ) respectively. The couples (N j , ν j ) j∈S are called the numerical data of the embedded resolution (X, π). For I ⊂ S we denote also

E I := ∩ i∈I E i and E • I := E I \ (∪ j / ∈I E j ).
The local topological zeta function associated to f is the rational function in one complex variable Z top,f (s

) := I⊂S χ(E • I ∩ π -1 {0}) i∈I 1 
Nis+νi . Indeed, Denef and Loeser proved that this expression does not depend on the chosen embedded resolution (see [De,L]). From now on suppose that f is a function in three variables and that the surface f = 0 has only one isolated singularity 0. Then we may suppose that π is an isomorphism outside the inverse image of the origin. Say that the (E j ) j∈J:={1,••• ,r} are the irreducible exceptional components of π -1 {0}.

In [A'C] A'Campo showed that the zeta function of monodromy ζ f of f at 0 can then be written as

ζ f (t) = r j=1 (1 -t Nj ) χ(E • j )
. Under this description, the eigenvalues of monodromy of f are the zeroes of ζ f and the monodromy conjecture becomes 'If s is a pole of Z top,f , then e 2πis is a zero of ζ f '. Now fix a candidate pole s := -ν j /N j , j ∈ J, of Z top,f . We write ν j /N j as a/b such that a and b are coprime and we define the set

J b := {j ∈ J | b|N j }. It follows from A'Campo's formula that e 2πis is a zero of ζ f if and only if j∈J b χ(E • j ) = 0.
To introduce the class of surfaces we work with, we first say something about clusters. For details we refer to [C,G-S,L-J]. Let X be a nonsingular variety of dimension d ≥ 2 and Z be obtained from X by a finite succession of point blowing-ups. A point

Q ∈ Z is infinitely near to a point P ∈ X if P is in the image of Q. Let Q 0 ∈ X =: X 0 . A constellation with origin Q 0 is a finite sequence C := {Q 0 , Q 1 , • • • , Q r-1 } of points such that each Q j is infinitely near to Q 0 and is a point on the variety X j obtained by blowing up Q j-1 in X j-1 , j ∈ {1, • • • , r -1}. For each Q i ∈ C,
denote the exceptional divisor of the blowing-up in Q i and its strict transform at any stage by

E i . If Q j ∈ E i , then Q j is proximate to Q i ; we write j → i. A d-dimensional toric constellation with origin Q 0 is a constellation C := {Q 0 , Q 1 , • • • , Q r-1 } such that each Q j is a 0-dimensional orbit in the toric variety X j obtained by blowing up Q j-1 in X j-1 , 1 ≤ j ≤ r -1.
A tree with a root such that each vertex has at most d following adjacent vertices is called a d-ary tree. There is a natural bijection between the set of d-dimensional toric constellations with origin and the set of finite d-ary trees with a root, with the edges labeled with positive integers not greater than d, such that two edges with the same source have different labels. The labels indicate in which affine chart the points are created. A cluster

A := (C, m) consists of a constellation C := {Q 0 , • • • , Q r-1 } and a sequence m := (m 0 , • • • , m r-1
) of nonnegative integers. The idea of clusters is to express that a system of hypersurfaces is passing through the points of the constellation with (at least) the given multiplicities. An ideal I in O X,Q0 is finitely supported if I is primary for the maximal ideal of O X,Q0 and if there exists a constellation C of X such that IO Xr is an invertible sheaf. An infinitely near point Q of Q 0 is a base point of I if Q belongs to the constellation with the minimal number of points, say r, with the above property. The canonical map X r → X associated to the constellation of base points of a finitely supported ideal I to X is an embedded resolution of the subvariety of (X, Q 0 ) defined by a general enough element in I. We will consider generic surfaces for which there exists an embedded resolution of singularities realised by the blowing-up of a toric constellation with origin that is the constellation of base points of a finitely supported monomial ideal. In general there can be a lot of cancellations which make that j∈J b χ(E • j ) = 0. We study when χ(E • j ) < 0 for some j ∈ J. We obtain that χ(E • j ) < 0 if and only if the configuration in E j ∼ = P 2 consists of (at least three) lines -possibly exceptional -that are all going through the same point. Using this result we prove:

Theorem If χ(E • j ) > 0, then e -2πiνj
/Nj is an eigenvalue of monodromy of f .

As an application we can verify the assertion in the monodromy conjecture for 'most' poles.

Corollary If -ν j /N j is a candidate pole of Z top,f of order 1 that is a pole, then e -2πiνj /Nj is an eigenvalue of monodromy of f .

The results presented in this note are shown by geometric arguments and cover unknown cases of the monodromy conjecture. In a forthcoming paper we will actually prove the monodromy conjecture in this context. That proof is completely combinatorial.

2. Determination of the cases in which appears a negative χ(E • j )

Let I ⊂ C[x, y, z] be a finitely supported monomial ideal and let S be a surface given by a general element in I. We will write Ŝ for its strict transform, whatever the stage is. We will denote the curves E j ∩ Ŝ ⊂ E j ∼ = P 2 by C j , j ∈ J, and their strict transforms by Ĉj .

Lemma 2.1 x, y or z can not be a factor in the equation of C j . Proof. Suppose that x is a factor in the equation of C j . Then the monomial ideal I would not be finitely supported. Indeed, at the moment that, say x appears as factor in the equation of C j , the strict transform of C j in some affine chart takes the form xg x + zg z , for some polynomials g x , g z in C[x, y, z]. It is now obvious that the ideal can not be principalised by blowing up a toric constellation.

Lemma 2.2 The curve C j ⊂ P 2 is generically reducible if and only if its equation is of the form h(m, n) = 0 with h a homogeneous polynomial in two variables of degree at least 2, and m and n two monomials. Proof. The claim follows from [Bo,Deb,Na,Thm. 1.2].

Notice also that the setting of toric constellations in dimension 3 implies that the configuration in E j ∼ = P 2 is as in Figure 1. The only possible intersections with other exceptional components are the coordinate lines E α ∩ E j , E β ∩ E j and E γ ∩ E j and the points P , Q and R are the only points in E j ∼ = P 2 in which it is allowed to blow up.

Lemma 2.3 If the equation of C j contains three variables, then χ(E • j ) ≥ 0. Proof. Suppose that χ(E • j ) < 0. We split cases according to whether C j is irreducible or not. (i) If the curve C j is irreducible, then χ(C j ) ≤ 2 and if χ(E • j ) < 0, the configuration in E j should consist of C j and two lines such that these three curves intersect in exactly one point, say P . Moreover χ(C j ) should then be equal to 2. When the degree d of C j is at least 2 and if one of the lines would not be a principal tangent line to C j in P , then this line would intersect C j in another point. This is a contradiction. Hence, C j should be analytically reducible in P , and consequently χ(C j ) < 2. So suppose now that deg(C j ) = 1. In an affine chart where one can see P , one can write E α ↔ x = 0, E β ↔ y = 0 and then C j should have an equation of the form c x x + c y y = 0 with c x and c y complex numbers. However, the equation of C j contains the three variables. (ii) Suppose now that the curve C j is reducible. Lemma 2.2 implies that the equation of C j is of the form h(m, n) = 0 with h a homogeneous polynomial in two variables of degree at least 2, and m and n two monomials. Then by Lemma 2.1 one easily verifies that (m, n) must be of the form (x a y b , z a+b ). We may suppose moreover that a and b are coprime (otherwise we change h). The decomposition in irreducible components of C j is then k i=1 (x a y b -c i z a+b ) with the c i ∈ C * . As the curves x a y b -c i z a+b = 0 are rational with Euler characteristic 2, we get χ(E • j ) = 0 or χ(E • j ) = 1, depending on the position and the number of exceptional components that are present.

We continue to search for cases in which appears an exceptional component E j for which χ(E • j ) < 0. It follows by Lemma 2.1 that the equation of C j can not contain just one variable. The remaining case to investigate is when the equation of C j contains exactly two variables, say x and y. As C j then has a homogeneous equation in two variables, say of degree m, it follows that the curve C j consists of m lines having exactly one point in common. From Lemma 2.1 it follows that x m and y m certainly appear in the equation of C j . The point Q j is then contained in a subcluster of the form m m m m m m'

3 3 3 3 3 Qt Q t+1 Q t+2 Q j Q l Q l+1 (1) 
In this chain Q t is the point with the lowest level for which an edge with label 3 is leaving and that also has multiplicity m. We suppose that Q l is the point in the chain with the highest level for which its multiplicity is equal to m. The point Q j can be equal to Q t and Q l+1 can be absent. As C j is of degree m, the point Q j has multiplicity m on the surface. Obviously the multiplicity of Q j+1 is also m.

We will now study χ(E

• j ). -If Q j = Q t , then the configuration in E j ∼ = P 2 is as in Figure 2. If the exceptional line E γ ∩ E j is present, then χ(E • j
) is always equal to 0. Suppose now that E γ ∩ E j does not appear. This means that Q t is moreover the point with the lowest level in the chain from which an edge with label 3 is leaving. If Q j is the origin of the constellation, then χ(E

• j ) = 2 -m.
If there is exactly one point, say Q α , for which j → α, then χ(E • j ) = 1 -m. Finally, if there exist two points, say Q α and Q β , for which j → α and j → β, then χ(E

• j ) = -m. -If j ∈ {t + 1, • • • , l -1}
, then the configuration in E j is as in Figure 3 and then χ(E • j ) = 0.

Eα ∩ E j E β ∩ E j E j ∼ = P 2 Eγ ∩ E j Figure 2 Eα ∩ E j E β ∩ E j E j ∼ = P 2 E j ∩ E j-1
Figure 3 Conclusion: χ(E • j ) < 0 if and only if the configuration in E j ∼ = P 2 consists of (at least three) linespossibly exceptional -that are all going through the same point. N l = c d with c and d coprime, then t / ∈ J d . Proof. If we denote the numerical data of E t by (N, ν), then, independently of the number of points Q s for which t → s, one easily computes that the numerical data for i ∈ {t + 1, • • • , l} are E i ((i -t + 1)N, (i -t + 1)ν -(i -t)). Now the first assertion follows immediately. To see the second claim, suppose that t ∈ J d . Then d | N which implies that l-t+1|(l-t+1)ν-(l-t). This contradiction closes the proof. Theorem 3.2 If χ(E • j ) > 0, then e -2πiνj /Nj is an eigenvalue of monodromy of f . Proof. Suppose that E j is an exceptional component such that χ(E • j ) > 0. To prove that e -2πiνj /Nj is an eigenvalue of monodromy of f , we show that e -2πiνj /Nj is a zero of ζ f . We write ν j /N j as a/b with a and b coprime. If J b does not contain an index t for which χ(E • t ) < 0, then there is nothing to verify. So suppose now that χ(E • t ) < 0 and that t ∈ J b . From Lemma 3.1 it follows that E j = E l and that l ∈ J b . We will show that χ(E

• t ) + χ(E • l ) ≥ 0. Let us therefore study the configuration in E l ∼ = P 2 . The equation of C l-1 is of the form c 0 x m + c 1 x m-1 y + • • • + c m y m , with c k ∈ C (0 ≤ k ≤ m) and c 0 and c m different from 0. It follows from Lemma 2.1 that the equation of C l is then equal to c 0 x m + c 1 x m-1 y + • • • + c m y m + zg(x,
y, z) for some polynomial g ∈ C[x, y, z], g = 0. In particular we have that C l cannot be of the form as in Lemma 2.2 and thus that it is irreducible. Hence χ(C l ) ≤ 2.

E l ∼ = P 2 E l ∩ E l-1 Figure 4 E l ∼ = P 2 E l ∩ Eα E l ∩ E l-1 Figure 5 E l ∼ = P 2 Eα ∩ E l E l-1 ∩ E l E β ∩ E l P Figure 6
If Q t is the origin of the constellation, then the configuration in E l ∼ = P 2 is like in Figure 4. The curve C l can be singular. We get χ(E

• l ) = χ(E l ) -(χ(C l ) + (χ(E l-1 ) -m)) ≥ 3 -(2 + (2 -m)) = m -1 and χ(E • t ) + χ(E • l ) ≥ (2 -m) + (m -1) = 1.
Suppose that there exists exactly one point, say Q α , for which t → α. Then χ(E • l ) is minimal if C l and E l ∩ E α intersect only in one point, as in Figure 5. Again we find χ(E • l ) ≥ m -1. Then χ(E • t ) + χ(E • l ) ≥ (1 -m) + (m -1) = 0. When there exist two points, say Q α and Q β , to which Q t is proximate, then χ(E • l ) is minimal when E α , E β and C l intersect in exactly one point, say in P , see Corollary 3.3 If -ν j /N j is a candidate pole of Z top,f of order 1 that is a pole, then e -2πiνj /Nj is an eigenvalue of monodromy of f . Proof. In [START_REF] Veys | Vanishing of principal value integrals on surfaces[END_REF] it is shown that then there exists an exceptional component E k such that ν k /N k = ν j /N j and such that χ(E • k ) > 0. The result follows now immediately from Theorem 3.2.

These results are particular for this context. In [START_REF] Veys | Poles of Igusa's local zeta function and monodromy[END_REF] are given many examples where appear negative χ(E • j ) while the configuration in E j = P 2 does not consist of lines. It also often happens that positive χ(E • j ) does not imply that e -2πiνj /Nj is an eigenvalue of monodromy of f .

  Let χ(E • t ) < 0 such that we are in the situation (1). (i) If a set J b contains the index t, then it also contains the indices in {t + 1, • • • , l}. (ii) If ν l

  Figure 6. Moreover, to have χ(E • l ) = m -1, one should also require that χ(C l ) = 2. If m ≥ 2, then E α ∩ E l and E β ∩ E l are principal tangent lines to C l in P but then χ(C l ) ≤ 1. If m = 1, then the equation of C l must be x + c y y + c z z = 0 for some c y , c z ∈ C * . But then C l intersects the three coordinate lines in three different points and χ(E • l ) = 1. It follows that we always have that χ(E • l ) ≥ m and thus χ(E • t ) + χ(E • l ) ≥ -m + m = 0. This study permits us to conclude that i∈J b χ(E • i ) > 0.