Poincaré series of a toric variety

Ann Lemahieu

To cite this version:

Ann Lemahieu. Poincaré series of a toric variety. Journal of Algebra, 2007, 315 (2), pp.683-697. 10.1016/j.jalgebra.2007.06.008 . hal-01280028

HAL Id: hal-01280028

https://hal.science/hal-01280028

Submitted on 28 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Poincaré series of a toric variety

Ann Lemahieu *

Abstract

For an affine toric variety X we compute the Poincaré series of the multiindex filtration defined by a finite number of monomial divisorial valuations on the ring $\mathcal{O}_{X, 0}$. We give an alternative description of the Poincaré series as an integral with respect to the Euler characteristic over the projectivization of the space of germs $\mathcal{O}_{X, 0}$. In particular we study divisorial valuations on the ring $\mathcal{O}_{\mathbb{C}^{d}, 0}$ that arise by considering toric constellations. We give an explicit formula for the Poincaré series and a nice geometric description. This generalizes an expression of the Poincaré series for curves and rational surface singularities.

A. Campillo, F. Delgado and S.M. Gusein-Zade computed the Poincaré series of the multi-index filtration on the ring of germs of functions in two variables defined by orders of a function on the branches of a reducible curve singularity in [C,D,G-Z2] and [C,D,G-Z5]. For plane curves they showed that the Poincaré series coincides with the Alexander polynomial of the link of the singularity. An intuitive motivation for this phenomenon is still missing. Also for an arbitrary collection of plane divisorial valuations the Poincaré series has been studied, see [D,G-Z]. In [C,D,G-Z6] the Poincaré series of the multi-index filtration on the ring of germs of functions on a rational surface singularity defined by the multiplicities of a function along components of the exceptional divisor of a resolution of the singularity has been computed.

These Poincaré series can be written in several ways. They can be described by the fibers of the corresponding extended semigroups. They also have the shape of an integral with respect to the Euler characteristic over the projectivization of the space of germs of functions (see [C,D,G-Z4] and [C,D,G-Z6]). This notion is similar to the notion of motivic integration and has been introduced in [C,D,G-Z3]. Furthermore, one has a description at the level of the modification space.

As the following shows, for an arbitrary affine variety X with a finite set of divisorial valuations on the ring of germs $\mathcal{O}_{X, o}$, with o a point on X, the multiindex filtration induced by the valuations does not always permit to define its Poincaré series.
Let k be an arbitrary field. The Poincaré series of X is given by a multiindex filtration with index set \mathbb{Z}^{r} that is induced by a set of discrete valuations $\left\{\nu_{1}, \cdots, \nu_{r}\right\}$ of $\mathcal{O}_{X, o}$. For $\underline{v}=\left(v_{1}, \cdots, v_{r}\right) \in \mathbb{Z}^{r}$, such valuations induce complete ideals $I(\underline{v}):=\left\{g \in \mathcal{O}_{X, o} \mid \nu_{i}(g) \geq v_{i}, 1 \leq i \leq r\right\}$. When the centre of each valuation ν_{i}, i.e. the set $\left\{g \in \mathcal{O}_{X, o} \mid \nu_{i}(g)>0\right\}$, is the maximal ideal m of $\mathcal{O}_{X, o}$

[^0]$(1 \leq i \leq r)$, the k-vector spaces $I(\underline{v}) / I(\underline{v}+\underline{1})$ have finite dimension. Let us denote $d(\underline{v}):=\operatorname{dim} I(\underline{v}) / I(\underline{v}+\underline{1})$. Then the series $L\left(t_{1}, \cdots, t_{r}\right)=\sum_{\underline{v} \in \mathbb{Z}^{r}} d(\underline{v}) \underline{t}^{\underline{v}}$ is a well-defined Laurent series. Let \underline{v} and \underline{v}^{\prime} be vectors in \mathbb{Z}^{r}, let $j \in \bar{J}:=\{1, \cdots, r\}$ and suppose that $v_{i}=v_{i}^{\prime}$ for all $i \in J \backslash j$. If $v_{j} \leq 0$ and $v_{j}^{\prime} \leq 0$, then $I(\underline{v})=I\left(\underline{v}^{\prime}\right)$ and hence $\prod_{i=1}^{r}\left(t_{i}-1\right) L\left(t_{1}, \cdots, t_{r}\right) \in \mathbb{Z}\left[\left[t_{1}, \cdots, t_{r}\right]\right]$. The Poincaré series is then defined as
$$
P\left(t_{1}, \cdots, t_{r}\right)=\frac{\prod_{i=1}^{r}\left(t_{i}-1\right) L\left(t_{1}, \cdots, t_{r}\right)}{\left(t_{1} \cdots t_{r}-1\right)}
$$

However, if one of the valuations ν_{1}, \cdots, ν_{r} does not have its centre at m , then one can not define the series L. Indeed, suppose $\nu_{i}(1 \leq i \leq r)$ is a valuation with centre at the prime ideal p_{i} which is different from m . If $g \in \mathcal{O}_{X, o}$ and $\underline{\nu}(g)=\underline{v}$, then choose a function $h \in \mathrm{~m} \backslash \mathrm{p}_{i}$. Now for each $n \in \mathbb{Z}_{\geq 0}$ one has that $g h^{n} \in I(\underline{v})$ and $g h^{n} \notin I(\underline{v}+\underline{1})$ and, as all the $g h^{n}\left(n \in \mathbb{Z}_{\geq 0}\right)$ are linearly independent over k, it follows that $d(\underline{v})$ is infinite.

In this article we work over the field $k=\mathbb{C}$. We compute the Poincaré series for affine toric varieties and provide some equivalent descriptions for the Poincaré series such as exist in the cases of curves, rational surface singularities and plane divisorial valuations. As an interesting example, we study the case of divisorial valuations on the ring $\mathcal{O}_{\mathbb{C}^{d}, o}(d \geq 2)$ that are created by toric constellations.

1. Poincaré series of an affine toric variety

Let $\sigma \subset N \otimes_{\mathbb{Z}} \mathbb{R}$ be a rational finite polyhedral strongly convex d-dimensional cone, where $N=\mathbb{Z}^{d}$. Let M be the dual space to N, then there is a natural bilinear map $M \times N \rightarrow \mathbb{Z}:(m, n) \mapsto\langle m, n\rangle$. The dual cone $\check{\sigma}$ to σ is defined as the set $\left\{m \in \mathbb{R}^{d} \mid\langle m, x\rangle \geq 0, \forall x \in \sigma\right\}$. When S is a semigroup in $\check{\sigma} \cap M$ that generates $\check{\sigma}$ as cone, then also S is finitely generated. Without loss of generality, we assume that M is also the group generated by the semigroup S. We consider $\mathbb{C}[S]$ as the S-graded algebra $\oplus_{s \in S} \mathbb{C} \chi^{s}$. Let X be the affine toric variety $\operatorname{Spec}(\mathbb{C}[S])$. Note that X is a normal variety if and only if $S=\check{\sigma} \cap M$. Let $\pi: X^{\prime} \rightarrow X$ be an equivariant proper birational morphism, X^{\prime} being another toric variety. An irreducible codimension 1 subvariety D of X^{\prime} induces a discrete valuation ν_{D} of $\mathbb{C}(X)$ and so an element n_{D} of N that acts as follows:

$$
\begin{aligned}
n_{D}: M & \longrightarrow \mathbb{Z} \\
m & \longmapsto \nu_{D}\left(\chi^{m}\right)
\end{aligned}
$$

If D is an irreducible component of $X^{\prime} \backslash T$ then n_{D} is a primitive element in $\sigma \cap N$. Vice versa a primitive element n in $\sigma \cap N$ defines a discrete valuation ν of $\mathbb{C}(X)$ by setting $\nu\left(\sum_{m \in F} a_{m} \chi^{m}\right)=\min \left\{n(m) \mid m \in F, a_{m} \neq 0\right\}$. In fact, one has $\nu=\nu_{D}$ for some D in X^{\prime} for an appropriated $\pi: X^{\prime} \rightarrow X$. Such valuations are usually called monomial valuations.
As we saw before, the valuations inducing the Poincaré series must have the
unique 0-dimensional orbit of X as centre. If D is an irreducible component of codimension 1 of $X^{\prime} \backslash T$, then $\pi(D)$ is the closure of the orbit that is associated to the unique face τ of σ such that $\stackrel{\circ}{\tau}$ contains n_{D}. This means that the valuations that we are considering correspond bijectively to the primitive elements of $\stackrel{\circ}{\sigma} \cap N$. In what follows we identify both notions. The above correspondence also stands for non-primitive elements in $\stackrel{\circ}{\sigma} \cap N$ and non-normalized monomial valuations.

We compute the Poincaré series $P_{X, H}$ of the affine toric variety X with respect to an arbitrary set of divisorial monomial valuations $H=\left\{\nu_{1}, \cdots, \nu_{r}\right\}$ such that $H \subset \stackrel{\circ}{\sigma}$. In what follows $\underline{\nu}$ stands for the vector $\left(\nu_{1}, \cdots, \nu_{r}\right)$ and by $\langle s, \underline{\nu}\rangle$ we mean the vector $\left(\left\langle s, \nu_{1}\right\rangle,\left\langle s, \nu_{2}\right\rangle, \cdots,\left\langle s, \nu_{r}\right\rangle\right)$. We define the monomial cone C as the cone generated by the values that can be obtained by valuating monomials, i.e. the cone generated by the set $\{\underline{\nu}(m) \mid \mathrm{m}$ monomial in $\mathbb{C}[S]\}$.
One has a \mathbb{Z}-linear map $\phi: M \longrightarrow \mathbb{Z}^{r}$ given by $\phi(m)=\langle m, \underline{\nu}\rangle$. This map induces the following map among Laurent series groups

$$
\begin{aligned}
\Phi: \mathbb{Z}[[M]]=\mathbb{Z}\left[\left[u_{1}, \cdots, u_{d}, u_{1}^{-1}, \cdots, u_{d}^{-1}\right]\right] & \longrightarrow \mathbb{Z}\left[\left[\mathbb{Z}^{r}\right]\right]=\mathbb{Z}\left[\left[t_{1}, \cdots, t_{r}, t_{1}^{-1}, \cdots, t_{r}^{-1}\right]\right] \\
\sum_{i} \lambda_{i} \underline{u}^{m} & \longmapsto \sum_{i} \lambda_{i} \underline{t}^{\langle m, \underline{\nu}\rangle}
\end{aligned}
$$

Notice that for each commutative group Γ the Laurent series group $\mathbb{Z}[[\Gamma]]$ is in fact a $\mathbb{Z}[\Gamma]$-module, and that the assignment of this module to Γ is functorial. In particular, for our given semigroup S, one has the multi-graded Poincaré series of commutative algebra $Q(\underline{u})=\sum_{s \in S} \underline{u}^{s}$ which is an element of $\mathbb{Z}[[S]]$ and so can be interpreted as an element in $\mathbb{Z}[[M]]$. In fact, this multi-graded Poincaré series is usually expressed as a rational function having $Q(\underline{u})$ as power series expansion. The Poincaré series in geometry $P_{X, H}(\underline{t})$ is an element in $\mathbb{Z}\left[\left[\mathbb{N}^{r}\right]\right]$ and so also an element of $\mathbb{Z}\left[\left[\mathbb{Z}^{r}\right]\right]$. The following result shows the relationship between both Poincaré series.

Theorem 1.- The Poincaré series $P_{X, H}$ defined by the multi-index filtration induced by H and associated to the multi-graduation of S, is the image under Φ of the Poincaré series of commutative algebra of the semigroup S, i.e.

$$
P_{X, H}(\underline{t})=\Phi(Q(\underline{u})) .
$$

Proof. For a set $A \subset\left\{i_{1}, \cdots, i_{s}\right\}$, let α_{A} be the function

$$
\begin{aligned}
\alpha_{A}: \mathbb{Z}^{s} & \longrightarrow \mathbb{Z}^{s} \\
\underline{v} & \longmapsto \underline{v}^{\prime}
\end{aligned}
$$

where $v_{i}^{\prime}=v_{i}-1$ if $i \in A$ and $v_{i}^{\prime}=v_{i}$ if $i \notin A$.
Then, for $\underline{v} \in \mathbb{Z}^{r}$, the coefficient of $\underline{\underline{t}}$ in $\prod_{i=1}^{r}\left(t_{i}-1\right) L\left(t_{1}, \cdots, t_{r}\right)$ is

$$
(-1)^{r} \sum_{A \subset\{1, \cdots, r\}}(-1)^{\# A} \operatorname{dim} \frac{I\left(\alpha_{A}(\underline{v})\right)}{I\left(\alpha_{A}(\underline{v})+\underline{1}\right)}
$$

and the coefficient of $\underline{\underline{v}}$ in $P_{X, H}(\underline{t})$ is

$$
\begin{aligned}
& (-1)^{r+1} \sum_{A \subset\{1, \cdots, r\}}(-1)^{\# A} \operatorname{dim} \frac{I\left(\alpha_{A}(\underline{v})\right)}{I\left(\alpha_{A}(\underline{v})+\underline{1}\right)}+ \\
& (-1)^{r+1} \sum_{A \subset\{1, \cdots, r\}}(-1)^{\# A} \operatorname{dim} \frac{I\left(\alpha_{A}(\underline{v})-\underline{1}\right)}{I\left(\alpha_{A}(\underline{v})\right)}+ \\
& (-1)^{r+1} \sum_{A \subset\{1, \cdots, r\}}(-1)^{\# A} \operatorname{dim} \frac{I\left(\alpha_{A}(\underline{v})-\underline{2}\right)}{I\left(\alpha_{A}(\underline{v})-\underline{1}\right)}+\cdots
\end{aligned}
$$

This finite sum can be rewritten as

$$
(-1)^{r+1} \sum_{A \subset\{1, \cdots, r\}}(-1)^{\# A} \operatorname{dim} \frac{\mathbb{C}[S]}{I\left(\alpha_{A}(\underline{v})+\underline{1}\right)} .
$$

Every subset $A \subset\{1, \cdots, r\}$ can be written in a unique way as $A_{1} \times A_{2}$, with $A_{1} \subset\{2, \cdots, r\}$ and $A_{2} \subset\{1\}$. We group the terms having the same component A_{1} and we get

$$
\begin{aligned}
& \sum_{A \subset\{1, \cdots, r\}}(-1)^{\# A} \operatorname{dim} \frac{\mathbb{C}[S]}{I\left(\alpha_{A}(\underline{v})+\underline{1}\right)} \\
= & \sum_{A \subset\{2, \cdots, r\}}(-1)^{\# A} \#\left\{\chi^{s} \mid\left\langle s, \nu_{1}\right\rangle=v_{1},\left\langle s,\left(\nu_{2}, \cdots, \nu_{r}\right)\right\rangle \geq \alpha_{A}\left(v_{2}, \cdots, v_{r}\right)+\underline{1}\right\} .
\end{aligned}
$$

We go on simplifying in the same way, so now we write every subset $A \subset$ $\{2, \cdots, r\}$ as $A_{1} \times A_{2}$, with $A_{1} \subset\{3, \cdots, r\}$ and $A_{2} \subset\{2\}$ and so on. At each step we group the terms having the same component A_{1} and we obtain

$$
\begin{aligned}
& \quad \sum_{A \subset\{3, \cdots, r\}}(-1)^{\# A+1} \#\left\{\chi^{s} \mid\left\langle s, \nu_{1}\right\rangle=v_{1},\left\langle s, \nu_{2}\right\rangle=v_{2},\right. \\
& = \\
& \quad \sum_{A \subset\{4, \cdots, r\}}(-1)^{\# A+2} \#\left\{\chi^{s} \mid\left\langle s, \nu_{1}\right\rangle=\nu_{1},\left\langle s, \nu_{2}\right\rangle=v_{2},\left\langle s, \nu_{3}\right\rangle=v_{3},\right. \\
& \\
& \left.\quad\left\langle s,\left(\nu_{4}, \cdots, \nu_{r}\right)\right\rangle \geq \alpha_{A}\left(v_{4}, \cdots, v_{r}\right)+\underline{1}\right\} \\
& \vdots \\
& = \\
& (-1)^{r-1} \#\left\{\chi^{s} \mid\langle s, \underline{\nu}\rangle=\underline{v}\right\} .
\end{aligned}
$$

Hence the Poincaré series $P_{X, H}(\underline{t})$ is

$$
\sum_{\underline{v} \in \mathbb{Z}^{r}} \#\left\{\chi^{s} \mid\langle s, \underline{\nu}\rangle=\underline{v}\right\} \underline{\underline{v}} .
$$

In what follows we will write $N(\underline{v})$ when we want to refer to the number $\#\{s \in S \mid\langle s, \underline{\nu}\rangle=\underline{v}\}$. Since σ is d-dimensional and strongly convex, one has that $N(\underline{v})$ is finite for every \underline{v}.

The semigroup of X with respect to the set of valuations H is

$$
S_{H}=\left\{\underline{v} \in \mathbb{Z}^{r} \mid \underline{v}=\underline{\nu}(g) \text { for some } g \in \mathcal{O}_{X, o}\right\} .
$$

Let g be a function in $I(\underline{v})$, say $g=\sum_{i=1}^{s} \lambda_{i} m_{i}$ where the m_{i} are monomials and the λ_{i} are complex numbers $(1 \leq i \leq s)$. For $j \in J$, we denote by $a_{j}(g)$ the part $\sum_{i \in K_{j}} \lambda_{i} m_{i}$, where $K_{j}=\left\{i \mid \nu_{j}\left(m_{i}\right)=v_{j}\right\}$, and by $\underline{a}(g)=\left(a_{1}(g), \cdots, a_{r}(g)\right)$. The set $\hat{S}_{H}=\left\{(\underline{\nu}(g), \underline{a}(g)) \mid g \in \mathcal{O}_{X, o}\right\}$ is a semigroup with respect to the summation of the components $\underline{\nu}$ and multiplication of the parts \underline{a} and is called the extended semigroup. This notion showed up for the first time in [C,D,G-Z1] where it was introduced for plane curves. Later this notion has been extended in the study of the Poincaré series of plane divisorial valuations and rational surface singularities.
For $j \in J$, denote by $D_{j}(\underline{v})$ the complex vector space $I(\underline{v}) / I\left(\underline{v}+\underline{e_{j}}\right)$ where e_{j} is the r-tuple with j-th component equal to 1 and the other components equal to 0 . Consider the application

$$
\begin{aligned}
j_{\underline{v}}: I(\underline{v}) & \longrightarrow D_{1}(\underline{v}) \times \cdots \times D_{r}(\underline{v}) \\
g & \longmapsto\left(a_{1}(g), \cdots, a_{r}(g)\right)=\underline{a}(g) .
\end{aligned}
$$

Let $D(\underline{v})$ be the image of the map $j_{\underline{v}}$. Then $D(\underline{v}) \simeq I(\underline{v}) / I(\underline{v}+\underline{1})$ and we define $F_{\underline{v}}$ as $D(\underline{v}) \cap\left(D_{1}^{*}(\underline{v}) \times \cdots \times D_{r}^{*}(\underline{v})\right)$ where $D_{j}^{*}(\underline{v})$ denotes $D_{j}(\underline{v}) \backslash\{\underline{0}\}, j \in J$. Having the map

$$
\begin{array}{lll}
\rho: \quad \hat{S}_{H} & \longrightarrow S_{H} \\
\underline{\nu}(g), \underline{a}(g)) & \longmapsto & \underline{\nu}(g),
\end{array}
$$

$F_{\underline{v}}$ can also be expressed as $\rho^{-1}(\underline{v})$ and therefore one also calls the spaces $F_{\underline{v}}$ the fibers of the extended semigroup \hat{S}_{H}. For $\underline{v} \in S_{H}$, the space $F_{\underline{v}}$ is the complement to an arrangement of vector subspaces in the vector space $D(\underline{v})$. Moreover $F_{\underline{v}}$ is invariant with respect to multiplication by nonzero constants. Let $\mathbb{P} F_{\underline{v}}=F_{\underline{v}} / \mathbb{C}^{*}$ be the projectivization of $F_{\underline{v}}$. It is the complement to an arrangement of projective subspaces in the projective space $\mathbb{P} D(\underline{v})$.
As the ideal $I(\underline{v})$ is a monomial ideal, one can see the space $F_{\underline{v}}$ as the set of functions $g=\sum_{i=1}^{s} \lambda_{i} m_{i}$ in $\mathcal{O}_{X, o}$ (the m_{i} are monomials and the $\lambda_{i}, 1 \leq i \leq s$, are complex numbers different from 0) for which $\underline{\nu}(g)=\underline{v}$ and for which for all $i \in\{1, \cdots, s\}$ holds that $m_{i} \in I(\underline{v})$ and that there exists a $j \in J$ such that $\nu_{j}\left(m_{i}\right)=\nu_{j}(g)$. If a function g with $\underline{\nu}(g)=\underline{v}$ has this form, we say that g is in reduced form. We write $\operatorname{supp}(g)$ for the support of g, which is the set $\left\{m_{i} \mid 1 \leq i \leq s\right\}$.
Now let us fix $\underline{v} \in \mathbb{Z}^{r}$. Let \mathcal{M} be the set of all monomials that can appear in the support of some g in $\mathbb{P} F_{\underline{v}}$, so $\mathcal{M}=\{m$ monomial $\mid m \in I(\underline{v})$ and $\exists j \in J$: $\left.\nu_{j}(m)=v_{j}\right\}$. Note that \mathcal{M} is a finite set. For a subset L of \mathcal{M}, let $\underline{\nu}(L)$ be the vector $\underline{w} \in \mathbb{Z}^{r}$ with $w_{j}=\min \left\{\nu_{j}(m) \mid m \in L\right\}, j \in J$.

Proposition 1.-

$$
P(\underline{t})=\sum_{\underline{v} \in \mathbb{Z}^{r}} \chi\left(\mathbb{P} F_{\underline{v}}\right) \underline{t} \underline{v} .
$$

Proof.
We write $\mathbb{P} F_{\underline{v}}$ as a disjoint union:

$$
\mathbb{P} F_{\underline{v}}=\bigcup_{L \subset \mathcal{M}, \underline{\nu}(L)=\underline{v}}\left\{g \in \mathbb{P} F_{\underline{v}} \mid \operatorname{supp}(g)=L\right\} .
$$

For $\Lambda_{L}=\left\{g \in \mathbb{P} F_{\underline{v}} \mid \operatorname{supp}(g)=L\right\}$, one has that $\chi\left(\Lambda_{L}\right)=\chi\left(\mathbb{C}^{* k}\right)=0$ for some $k \in \mathbb{Z}_{>0}$ when L is not a singleton, and $\chi\left(\Lambda_{L}\right)=1$ when L is a singleton. This gives us

$$
\chi\left(\mathbb{P} F_{\underline{v}}\right)=N(\underline{v}) .
$$

This result can also be obtained by the combinatorial proof given in [C,D,G-Z2] or in [C,D,G-Z3]. Actually their proof works for every variety for which the Poincaré series exists. Exploiting the fact that our varieties are toric, we obtain this explicit and much shorter proof.

Analogously to the case of curves and rational surface singularities, we write the Poincaré series as an integral with respect to the Euler characteristic over the projectivization $\mathbb{P} \mathcal{O}_{X, o}$. We first recall this notion, introduced in [C,D,G-Z3] and inspired by the notion of motivic integration (see for example [D,L]). It was developed to integrate over $\mathbb{P} \mathcal{O}_{\mathbb{C}^{n}, o}$ what is not allowed by the usual Viro construction where one integrates with respect to the Euler characteristic over finite dimensional spaces (see [V]). It can be extended to integrals over $\mathbb{P} \mathcal{O}_{X, o}$, for X an arbitrary variety.

Let m be the maximal ideal in the ring $\mathcal{O}_{X, o}$ and for $k \in \mathbb{Z}_{\geq 0}$, let $\mathcal{J}_{X, o}^{k}=$ $\mathcal{O}_{X, o} / \mathrm{m}^{k+1}$ be the space of k-jets of functions on the toric variety X. For a complex vector space L (finite of infinite dimensional) let $\mathbb{P} L=(L \backslash\{0\}) / \mathbb{C}^{*}$ be its projectivization and let $\mathbb{P}^{*} L$ be the disjoint union of $\mathbb{P} L$ with a point. One has a natural map $\pi_{k}: \mathbb{P} \mathcal{O}_{X, o} \mapsto \mathbb{P}^{*} \mathcal{J}_{X, o}^{k}$.

Definition.- A subset $A \subset \mathbb{P} \mathcal{O}_{X, o}$ is said to be cylindrical if $A=\pi_{k}^{-1}(B)$ for a constructible (i.e. a finite union of locally closed sets) subset $B \subset \mathbb{P}_{X, o}^{k} \subset$ $\mathbb{P}^{*} \mathcal{J}_{X, o}^{k}$.

Definition.- For a cylindrical subset $A \subset \mathbb{P O}_{X, o}\left(A=\pi_{k}^{-1}(B), B \subset \mathbb{P} \mathcal{J}_{X, o}^{k}\right)$, its Euler characteristic $\chi(A)$ is defined as the Euler characteristic $\chi(B)$ of the set B.

Let $\psi: \mathbb{P} \mathcal{O}_{X, o} \rightarrow G$ be a function which takes values in an abelian group G.

Definition.- We say that the function ψ is cylindrical if, for each $g \in G, g \neq 0$, the set $\psi^{-1}(g) \subset \mathbb{P} \mathcal{O}_{X, o}$ is cylindrical.

Definition.- The integral of a cylindrical function ψ over the space $\mathbb{P} \mathcal{O}_{X, o}$ with respect to the Euler characteristic is

$$
\int_{\mathbb{P O}_{X, o}} \psi d \chi:=\sum_{g \in G, g \neq 0} \chi\left(\psi^{-1}(g)\right) \cdot g
$$

if this sum makes sense in G. If the integral exists, the function ψ is said to be integrable.

Let $\mathbb{Z}[[t]]=\mathbb{Z}\left[\left[t_{1}, \cdots, t_{r}\right]\right]$ be the group with respect to the addition of formal power series in the variables t_{1}, \cdots, t_{r}. We have the map $\underline{\nu}: \mathbb{P} \mathcal{O}_{X, o} \longrightarrow \mathbb{Z}^{r}$. Let $\underline{\underline{\nu}}$ be the corresponding function with values in $\mathbb{Z}[[t]]$.

Proposition 2.-

$$
P(\underline{t})=\int_{\mathbb{P O}_{X, o}} \underline{\underline{t}} d \chi .
$$

Proof. For $\underline{v} \in \mathbb{Z}_{\geq 0}^{r}$, let $N=1+\max \left\{v_{i} \mid 1 \leq i \leq r\right\}$ and let $Y_{\underline{v}}=\left\{j^{N} g \in\right.$ $\left.\mathbb{P} \mathcal{J}_{X, o}^{N} \mid g \in \mathbb{P} F_{\underline{v}}\right\} \subset \mathbb{P} \mathcal{J}_{X, o}^{N}$. Then $\left\{g \in \mathbb{P} \mathcal{O}_{X, o} \mid \underline{\nu}(g)=\underline{v}\right\}=\pi_{N}^{-1}\left(Y_{\underline{v}}\right)$. Consider the map

$$
\begin{aligned}
\alpha: Y_{\underline{v}} & \longrightarrow F_{\underline{v}} \\
j^{N} g & \longmapsto \underline{a}(g) .
\end{aligned}
$$

This map is \mathbb{C}^{*}-invariant and so can be considered as a map $\alpha: Y_{\underline{v}} \longrightarrow \mathbb{P} F_{\underline{v}}$. As α is a locally trivial fibration whose fibre is a complex affine space we obtain

$$
\int_{\mathbb{P} \mathcal{O}_{X, o}} \underline{t}_{\underline{\nu}} d \chi=\sum_{\underline{v} \in \mathbb{Z}^{r}} \chi\left(Y_{\underline{v}}\right) \underline{t}^{\underline{v}}=\sum_{\underline{v} \in \mathbb{Z}^{r}} \chi\left(\mathbb{P} F_{\underline{v}}\right) \underline{t}^{\underline{v}}=P(\underline{t}) .
$$

2. Poincaré series of \mathbb{C}^{d} induced by a toric constellation

In this section we look at the particular case where X is \mathbb{C}^{d} endowed with the action of the torus $T \cong\left(\mathbb{C}^{*}\right)^{d}(d \geq 2)$. We study the Poincaré series of \mathbb{C}^{d} where the modification π is given by a toric constellation \mathcal{C} with origin. Let us first recall the basic notions in the context of toric constellations (see for example [C,G-S,L-J]).

Let Z be a variety obtained from X by a finite succession of point blowingups. A point $Q \in Z$ is said to be infinitely near to a point $O \in X$ if O is in the image of Q; we write $Q \geq O$. A constellation is a finite sequence $\mathcal{C}=\left\{Q_{0}, Q_{1}, \cdots, Q_{r-1}\right\}$ of infinitely near points of X such that $Q_{0} \in X=X_{0}$ and each Q_{j} is a point on the variety X_{j} obtained by blowing up Q_{j-1} in X_{j-1}, $j \in J$. When Q_{j} is a 0 -dimensional T-orbit in the toric variety X_{j}, for $j \in J$, the constellation is said to be toric.
The relation ' \geq ' gives rise to a partial ordering on the points of a constellation. In the case that they are totally ordered, so $Q_{r} \geq \cdots \geq Q_{0}$, the constellation \mathcal{C} is called a chain.

For every Q_{j} in \mathcal{C}, the subsequence $C^{j}=\left\{Q_{i} \mid Q_{j} \geq Q_{i}\right\}$ of \mathcal{C} is a chain. The integer $l\left(Q_{j}\right)=\# \mathcal{C}^{j}-1$ is called the level of Q_{j}. In particular Q_{0} has level 0 . If no other point of \mathcal{C} has level 0 then Q_{0} is called the origin of \mathcal{C}.
A tree with a root such that each vertex has at most d following adjacent vertices is called a d-ary tree. There is a natural bijection between the set of d-dimensional toric constellations with origin and the set of finite d-ary trees with a root, with the edges weighted with positive integers not greater than d, such that two edges with the same source have different weights. We simply say 'weights' when we want to refer to the weights on the edges. The weights indicate in which affine chart the points of the constellation are created (see [C,G-S,L-J] for details).

Let $E_{j}(j \in J)$ be the irreducible components of the exceptional divisor \mathcal{D} created by blowing up the constellation $\mathcal{C}=\left\{Q_{0}, Q_{1}, \cdots, Q_{r-1}\right\}$ and let ξ_{j} be the generic point of $E_{j}(j \in J)$. Then $\mathcal{O}_{X, \xi_{j}}$ is a discrete valuation ring. We denote the induced valuation by ν_{j}.
We denote the matrix of the linear system of equations $\langle s, \underline{\nu}\rangle=\underline{v}$ by $\mathcal{L}(\mathcal{C})$ and we denote the column vectors of $\mathcal{L}(\mathcal{C})$ by $\underline{v}_{1}, \cdots, \underline{v}_{d}$. Let C be the cone in $\mathbb{R}_{\geq 0}^{r}$ generated by $\underline{v}_{1}, \cdots, \underline{v}_{d}$. Note that C is the monomial cone associated to the constellation \mathcal{C}. Recall that the cone is regular if it can be generated by a part of a basis of \mathbb{Z}^{r}. If $\mathcal{L}(\mathcal{C})$ has rank s and if $s<d$, then the cone is said to be degenerated.

Example:

Suppose $d=4$ and \mathcal{C} is the constellation pictured at the left. By blowing up in the origin Q_{0} we get an exceptional variety $B_{0} \cong \mathbb{P}^{3}$. In B_{0} there are 2 points in which we blow up, namely Q_{1} and Q_{2}. For example the point Q_{1} is the origin of the affine chart induced by the weight 1 , we shortly denote this affine chart by ' 1 '.
After blowing up in Q_{1} we get an exceptional variety $B_{1} \cong \mathbb{P}^{3}$, where again we blow up in 2 points. The point Q_{3} is the origin of the affine chart ' $1-1$ ' and Q_{4} is the origin of the affine chart ' $1-2$ '. The associated linear system $\mathcal{L}(\mathcal{C})$ is

$$
\left\{\begin{array}{c}
a+b+c+d=v_{1} \\
a+2 b+2 c+2 d=v_{2} \\
2 a+b+2 c+2 d=v_{3} \\
a+3 b+3 c+3 d=v_{4} \\
2 a+3 b+4 c+4 d=v_{5}
\end{array}\right.
$$

and C is the cone $\langle(1,1,2,1,2),(1,2,1,3,3),(1,2,2,3,4)\rangle \subset \mathbb{R}_{\geq 0}^{5}$ which is obviously degenerated.

To know the Poincaré series one can use Theorem 1. Let $\underline{v}_{1}, \cdots, \underline{v}_{d}$ be the column vectors of $\mathcal{L}(\mathcal{C})$. Then it follows by Theorem 1 that

$$
P(\underline{t})=\frac{1}{\left(1-\underline{t}^{\underline{v}_{1}}\right) \cdots\left(1-\underline{t}_{d}\right)} .
$$

One can also obtain $P(\underline{t})$ by computing the numbers $N(\underline{v})=\#\left\{s \in \mathbb{N}^{d} \mid\right.$ $\langle s, \underline{\nu}\rangle=\underline{v}\}$ for each $\underline{v} \in \mathbb{Z}^{r}$. We determine them as later these values will be useful for us. The following proposition gives some properties of the cone C which will allow us to compute the numbers $N(\underline{v})$.

Proposition 3.-

1. C is a regular cone;
2. C is degenerated if and only if the number of different weights appearing in the constellation is less than or equal to $d-2$.

Proof. If the number of different weights appearing in the constellation \mathcal{C} is less than or equal to $d-2$, then at least 2 columns in $\mathcal{L}(\mathcal{C})$ are equal and C is degenerated. Suppose that the number of different weights is bigger than $d-2$, say that $1, \cdots, d-1$ are weights appearing in the constellation and let Q_{1}, \cdots, Q_{d-1} be points in the constellation such that Q_{i} is a point with minimal level arising in an affine chart induced by the weight i and such that whenever $Q_{i} \geq Q_{j}$ and $Q_{i} \neq Q_{j}$, then $i>j(1 \leq i, j \leq d-1)$.
The linear equations induced by the origin Q_{0} and by Q_{1}, \cdots, Q_{d-1} give rise to a linear system whose determinant can be supposed to be of the form

$$
\left|\begin{array}{cccccc}
1 & 1 & 1 & \cdots & \cdots & 1 \\
1 & 2 & 2 & \cdots & \cdots & 2 \\
* & a_{2}-1 & a_{2} & \cdots & \cdots & a_{2} \\
* & * & a_{3}-1 & a_{3} & \cdots & a_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
* & \cdots & \cdots & * & a_{d-1}-1 & a_{d-1}
\end{array}\right|=\left|\begin{array}{cccccc}
1 & 1 & 1 & \cdots & \cdots & 1 \\
-1 & 0 & 0 & \cdots & \cdots & 0 \\
* & -1 & 0 & \cdots & \cdots & 0 \\
* & * & -1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
* & \cdots & \cdots & * & -1 & 0
\end{array}\right|,
$$

where a_{2}, \cdots, a_{d-1} are integer numbers. As this determinant is equal to 1 , the cone C is regular and non-degenerated.
Now if C is degenerated, and generated by $s=\operatorname{rank}(\mathcal{L}(\mathcal{C}))$ vectors then there are $s-1$ different weights appearing in the constellation. In the same way as above we obtain a $(s \times s)$-determinant which is equal to 1 such that also in this case C is regular.

Note that it follows from the proof that saying that the cone C is degenerated, is the same as saying that there is one column that appears at least twice in $\mathcal{L}(\mathcal{C})$ and that there are no other linear dependencies between the columns of $\mathcal{L}(\mathcal{C})$.

- If C is non-degenerated then $N(\underline{v})=1$ if $\underline{v} \in C$, else $N(\underline{v})=0$. Suppose that $\underline{v}_{1}, \cdots, \underline{v}_{d}$ are the column vectors of the linear system $\mathcal{L}(\mathcal{C})$. As C is regular, we obtain again

$$
P(\underline{t})=\frac{1}{\left(1-\underline{t}^{\underline{v}_{1}}\right) \cdots\left(1-\underline{t}^{\underline{v}_{d}}\right)} .
$$

- When C is degenerated, let then $\underline{v}_{1}, \cdots, \underline{v}_{s}$ be the s different vectors that generate C and let \underline{v}_{s} be the vector that appears at least twice as column vector in $\mathcal{L}(\mathcal{C})$. As C is regular, one can write each $\underline{v} \in C$ in a unique way as $\underline{v}=\lambda_{1} \underline{v}_{1}+\cdots+\lambda_{s-1} \underline{v}_{s-1}+\lambda \underline{v}_{s}$, for some $\lambda_{i}, \lambda \in \mathbb{Z}_{\geq 0}(1 \leq i \leq s-1)$. Setting $k=d-s+1$, a simple calculation shows that

$$
N(\underline{v})=\binom{k+\lambda-1}{\lambda}
$$

if $\underline{v} \in C$, else $N(\underline{v})=0$. Using that $\sum_{\lambda \in \mathbb{Z} \geq 0}\binom{k+\lambda-1}{\lambda} x^{\lambda}=\frac{1}{(1-x)^{k}}$, one sees again that

$$
\left.P(\underline{t})=\frac{1}{\left(1-\underline{t}^{\underline{v^{1}}}\right.}\right) \cdots\left(1-\underline{t}^{\underline{v_{s-1}}}\right)\left(1-\underline{t}_{\underline{v}}^{s}\right)^{k} .
$$

For the example given above the Poincaré series is then

$$
\frac{1}{\left(1-t_{1} t_{2} t_{3}^{2} t_{4} t_{5}^{2}\right)\left(1-t_{1} t_{2}^{2} t_{3} t_{4}^{3} t_{5}^{3}\right)\left(1-t_{1} t_{2}^{2} t_{3}^{2} t_{4}^{3} t_{5}^{4}\right)^{2}} .
$$

For curves, rational surface singularities and plane divisorial valuations, there exists a description of the Poincaré series at the level of the modification space. Let $\mathcal{D}=\bigcup_{j=1}^{r} E_{j}$ be the exceptional variety with irreducible components $E_{j}, j \in J$. We denote by $\stackrel{\circ}{E}_{j}$ the smooth part of the irreducible component E_{j}, i.e. without intersection points with all other components of the exceptional divisor. Let $M=-\left(E_{i} \circ E_{j}\right)$ be minus the intersection matrix of the components of the exceptional variety \mathcal{D}. Let ν_{j} be the discrete valuation on the local ring $\mathcal{O}_{X, o}$ induced by E_{j}. The semigroup of values $S:=\left\{\underline{\nu}(g) \mid g \in \mathcal{O}_{X, o}\right\}$ is exactly the set of vectors $\left\{\underline{v} \in \mathbb{Z}_{\geq 0}^{r} \mid \underline{v} M \geq \underline{0}\right\}$. For a topological space E, let $S^{n} E=E^{n} / S_{n}(n \geq 0)$ be the n-th symmetric power of the space E, i.e. the space of n-tuples of points of the space E ($S^{0} E$ is a point).
Campillo, Delgado and Gusein-Zade construct the space

$$
Y=\bigcup_{\{\underline{v} \in S\}}\left(\prod_{j=1}^{r} S^{n_{j}} \stackrel{\circ}{E}_{j}\right)
$$

where $\underline{v} M=\left(n_{1}, \cdots, n_{r}\right)=: \underline{n}(\underline{v})$. For $g \in \mathcal{O}_{X, o}, g \neq 0$ and $\underline{v}=\underline{\nu}(g)$, the number $n_{j}(\underline{v})$ is equal to the intersection number of the strict transform
of g with E_{j}. Let $Y_{\underline{v}}$ be the connected component $\prod_{j=1}^{r} S^{n_{j}} \stackrel{\circ}{E}_{j}$ of Y, where $\left(n_{1}, \cdots, n_{r}\right)=\underline{n}(\underline{v})$. They show that

$$
\begin{equation*}
P(\underline{t})=\sum_{\underline{v} \in \mathbb{Z}^{r}} \chi\left(Y_{\underline{v}}\right) \underline{\underline{v}} . \tag{1}
\end{equation*}
$$

In the case of curves and plane divisorial valuations, this description induces the elegant formula of the Poincaré series where the exponents can be written as the Euler characteristics of the smooth parts $\stackrel{\circ}{E}_{j}$.

In what follows we prove a generalized form of (1) for toric constellations. I want to thank Sabir Gusein-Zade for the very stimulating conversation about this subject.
For $j \in J$, let B_{j} be the projective ($d-1$)-dimensional exceptional variety that is created by blowing up the point Q_{j} in X_{j}. When we want to refer to the strict transform of B_{j} at some intermediate stadium, we also write E_{j}. If $g \in \mathcal{O}_{\mathbb{C}^{d}, o}$, then we write \hat{g} for the strict transform at the end of the process as well as for the strict transforms of g in the intermediate stadia. For $v \in \mathbb{Z}^{r}$, we define the set

$$
\begin{aligned}
D_{\underline{v}}:= & \left\{\{\hat{g}=0\} \cap \mathcal{D} \mid g \in \mathcal{O}_{\mathbb{C}^{d}, o}, \underline{\nu}(g)=\underline{v} \text { and }\{\hat{g}=0\}\right. \text { does not contain } \\
& \text { any non-empty intersection } \left.E_{a} \cap E_{b}, a, b \in J, a \neq b\right\} .
\end{aligned}
$$

Obviously to know $D_{\underline{v}}$ it is sufficient to consider the elements g in $\mathbb{P} F_{\underline{v}}$. We make a topological space of it as follows. We write $E_{\underline{v}}$ for the sum $\sum_{i=1}^{r} v_{i} \bar{E}_{i}$ and M for the line bundle associated to $E_{\underline{v}}$. The restriction R of $\mathcal{O}_{Z}\left(-E_{\underline{v}}\right) \otimes M^{-1}$ to \mathcal{D} is a line bundle and as \mathcal{D} is a projective variety, the global sections of R form a finite dimensional vector space. For $g \in F_{\underline{v}}$, the divisor $\hat{g} \cap \mathcal{D}$ is the divisor of zeroes of a global section of R. Then $D_{\underline{v}}$ can be seen as a subset of the projectivization of this vector space.

Theorem 2.- The Poincaré series $P(\underline{t})$ is equal to

$$
\sum_{\underline{v} \in \mathbb{Z}^{r}} \chi\left(D_{\underline{v}}\right) \underline{\underline{v}}^{\underline{v}} .
$$

To achieve the result we will construct a subspace $Z_{\underline{v}}$ of $\mathbb{P} F_{\underline{v}}$ that has the same Euler characteristic as $\mathbb{P} F_{\underline{v}}$ and such that there exists a homeomorphism of $Z_{\underline{v}}$ with $D_{\underline{v}}$. Then Theorem 2 will follow by Proposition 1.
The obvious candidate for the space $Z_{\underline{v}}$ is the set

$$
\begin{aligned}
Z_{\underline{v}}:= & \left\{g \in \mathbb{P} F_{\underline{v}} \mid\{\hat{g}=0\}\right. \text { does not contain any non-empty } \\
& \text { intersection } \left.E_{a} \cap E_{b}, a, b \in J, a \neq b\right\} .
\end{aligned}
$$

Lemma 1.-

$$
\chi\left(Z_{\underline{v}}\right)=\chi\left(\mathbb{P} F_{\underline{v}}\right) .
$$

Proof. Let $g=\sum_{i=1}^{s} \lambda_{i} m_{i}$ be in reduced form and suppose that $E_{a} \cap E_{b} \neq \emptyset$ for some a and b in $J, a \neq b$. If g contains $E_{a} \cap E_{b}$ then also $g_{\underline{\mu}}=\sum_{i=1}^{s} \mu_{i} m_{i}$ contains $E_{a} \cap E_{b}$, for all $\mu=\left(\mu_{1}, \cdots, \mu_{s}\right) \in \mathbb{C}^{* s}$. This yields that

$$
\begin{aligned}
\chi\left(Z_{\underline{v}}\right)= & \chi\left(\left\{g \in \mathbb{P} F_{\underline{v}} \mid g \text { a monomial and }\{\hat{g}=0\}\right.\right. \text { does not contain any } \\
& \text { non-empty intersection } \left.\left.E_{a} \cap E_{b}, a, b \in J, a \neq b\right\}\right) \\
= & \chi\left(\left\{g \in \mathbb{P} F_{\underline{v}} \mid g \text { a monomial }\right\}\right) \\
= & N(\underline{v}) \\
= & \chi\left(\mathbb{P} F_{\underline{v}}\right) .
\end{aligned}
$$

Now we investigate the map

$$
\begin{aligned}
\phi: Z_{\underline{v}} & \longrightarrow D_{\underline{v}} \\
g & \longmapsto\{\hat{g}=0\} \cap \mathcal{D} .
\end{aligned}
$$

The following lemma tells us how $\{\hat{g}=0\} \cap \mathcal{D}$ looks like.
Lemma 2.-Consider $g \in \mathbb{P} F_{\underline{v}}$, a function in reduced form, say $g=\sum_{i=1}^{s} \lambda_{i} m_{i}$. For $j \in J$, let $\Lambda_{g, j}$ be the set $\left\{m \in \operatorname{supp}(g) \mid \nu_{j}(m)=v_{j}\right\}$. Then the equation of $\{\hat{g}=0\} \cap E_{j}$ is $\sum_{m_{i} \in \Lambda_{g, j}} \lambda_{i} \hat{m}_{i}=0$ in every affine chart where the intersection $\{\hat{g}=0\} \cap E_{j}$ is visible.

Proof. When $\{\hat{g}=0\} \cap B_{j} \neq \emptyset$, then in an affine chart covering $B_{j} \cong \mathbb{P}^{d-1}$ it can be described by the equation $\sum_{i \in K_{j}} \lambda_{i} \hat{m}_{i}=0$ where

$$
\begin{aligned}
K_{j} & =\left\{i \mid \nu_{j}\left(m_{i}\right)=\min \left\{\nu_{j}(m) \mid m \in \operatorname{supp}(g)\right\}\right\} \\
& =\left\{i \mid \nu_{j}\left(m_{i}\right)=v_{j}\right\} \\
& =\Lambda_{g, j} .
\end{aligned}
$$

Now Lemma 2 follows directly.

Note that \hat{m} can be equal to 1 in some affine chart covering $E_{j}(j \in J)$. However, there exists always a $j \in J$ such that $\{\hat{m}=0\} \cap E_{j} \neq \emptyset$.

Let us have a look at the following example. Lemma 2 allows us to deduce quickly a necessary condition on a subset S of $\mathbb{P} F_{\underline{v}}$ for the sets $\{g \in S\}$ and $\{\{\hat{g}=0\} \cap \mathcal{D} \mid g \in S\}$ to be in $1-1$ correspondence.

Example (continued).-

Let \underline{v} be $(6,11,10,14,18)$. Take $g(x, y, z, u)=y^{2} z^{4}+x^{3} y^{4}+x^{14}$. The values of the monomials in the support of g are:

$$
\begin{gathered}
\nu\left(y^{2} z^{4}\right)=(6,12,10,18,22), \quad \nu\left(x^{3} y^{4}\right)=(7,11,10,15,18) \quad \text { and } \\
\nu\left(x^{14}\right)=(14,14,28,14,28) .
\end{gathered}
$$

Lemma 2 tells us that the equation of $\hat{g} \cap E_{1}$ in an affine chart where the intersection is visible, is $y^{2} \hat{z}^{4}$. For $\hat{g} \cap E_{2}$ it is $x^{\hat{3}} y^{4}$, for $\hat{g} \cap E_{3}$ it is $y^{2} z^{4}+x^{3} y^{4}$, for $\hat{g} \cap E_{4}$ it is x^{14} and for $\hat{g} \cap E_{5}$ it is $x^{3} y^{4}$. It follows that the strict transform of $h(x, y, z, u)=y^{2} z^{4}+x^{3} y^{4}+\mu x^{14}$, with $\mu \neq 0$, has the same intersection with \mathcal{D} as \hat{g}.

We formalize what the example shows. As in Proposition 1, write $\mathbb{P} F_{\underline{v}}$ as the disjoint union $\bigcup_{L \subset \mathcal{M}, \underline{\nu}(L)=\underline{v}} \Lambda_{L}$. Let L be a support appearing in this disjoint union. For $j \in J$, we define $\Lambda_{L, j}$ as the set of monomials m in L such that $\nu_{j}(m)=v_{j}$. The observation made in the example shows that the map

$$
\begin{aligned}
\phi_{L}:\left\{g \in \mathbb{P} F_{\underline{v}} \mid \operatorname{supp}(g)=L\right\} & \longrightarrow\left\{\{\hat{g}=0\} \cap \mathcal{D} \mid g \in \mathbb{P} F_{\underline{v}} \text { and } \operatorname{supp}(g)=L\right\} \\
g & \longmapsto\{\hat{g}=0\} \cap \mathcal{D}
\end{aligned}
$$

certainly can not be a bijection if there exists a subset D of J, with the following properties:

$$
\begin{equation*}
\exists a, b \in J: a \in D, \quad b \notin D, \quad\left(\cup_{d \in D} \Lambda_{L, d}\right) \cap\left(\cup_{d \notin D} \Lambda_{L, d}\right)=\emptyset . \tag{2}
\end{equation*}
$$

Indeed, if such a subset D exists, then write $g=g_{a}+g_{b}$ where $\operatorname{supp}\left(g_{a}\right)=$ $\cup_{d \in D} \Lambda_{L, d}$ and $\operatorname{supp}\left(g_{b}\right)=\cup_{d \notin D} \Lambda_{L, d}$. Then by Lemma 2 it follows that for $g_{\underline{\lambda}}=\lambda_{a} g_{a}+\lambda_{b} g_{b}$, the transforms $\left\{\hat{g_{\underline{\lambda}}}=0\right\}$ and $\{\hat{g}=0\}$ have the same intersection with \mathcal{D} for all $\underline{\lambda}=\left(\lambda_{a}, \lambda_{b}\right) \in \mathbb{C}^{* 2}$. We claim that also the converse is true.

Proposition 4.- Let $L \subset \mathcal{M}$ be as above. If for all $a, b \in J, a \neq b$, holds that there exists no subset D with $a \in D, b \notin D$ and $\left(\cup_{d \in D} \Lambda_{L, d}\right) \cap\left(\cup_{d \notin D} \Lambda_{L, d}\right)=\emptyset$, then the map ϕ_{L} is a bijection.

Proof.

1. First we show that for a monomial m in L, when given $\{\hat{m}=0\} \cap \mathcal{D}$, one can find m again. So suppose m in L. Take a $j \in J$ such that $\nu_{j}(m)=v_{j}$ and such that $\{\hat{m}=0\} \cap E_{j}$ is visible in an affine chart in the final stadium, say in the chart presented as $c_{1}-c_{2}-\cdots-c_{t}$. Take the subchain of the constellation with consecutive weights $c_{1}, c_{2}, \cdots, c_{t-1}$ and add an edge with weight c_{t} at the top. We call this new chain K. For $i \in\{1, \cdots, d\}$, let $Q_{K_{i}}$ be the point with maximal level of K for which the weight going out from $Q_{K_{i}}$ is i, if this point exists. If $m=x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{d}^{n_{d}}$, then the equation of \hat{m} in the considered chart is

$$
x_{1}^{f_{1}\left(n_{1}, \cdots, n_{d}\right)-h_{1}} x_{2}^{f_{2}\left(n_{1}, \cdots, n_{d}\right)-h_{2}} \cdots x_{d}^{f_{d}\left(n_{1}, \cdots, n_{d}\right)-h_{d}},
$$

where f_{i} is the left hand side of the linear equation induced by the point $Q_{K_{i}}$ in $\mathcal{L}(\mathcal{C})$ if $Q_{K_{i}}$ exists and $f_{i}\left(n_{1}, \cdots, n_{d}\right)=n_{i}$ if this point is not defined. The value h_{i} is equal to $v_{K_{i}}$ if $Q_{K_{i}}$ exists and else $h_{i}=0$.
Now suppose that $\hat{m} \cap E_{i}=x_{1}^{n_{1}^{\prime}} x_{2}^{n_{2}^{\prime}} \cdots x_{d}^{n_{d}^{\prime}}$ is given. When Q_{j} exists for every $j \in\{1, \cdots, d\}$, it follows from Proposition 3 that the linear system $\left\{f_{j}(\underline{n})-h_{j}=n_{j}^{\prime}\right\}_{1 \leq j \leq d}$ has a unique solution for \underline{n}. If not all points Q_{j} are defined, one also sees immediately that the linear system $\left\{f_{j}(\underline{n})-h_{j}=n_{j}^{\prime}\right\}_{1 \leq j \leq d}$ is regular.
2. Let g and h be two functions in $\mathbb{P} F_{\underline{v}}$ with the same support L. Write $g=\sum_{i=1}^{s} \lambda_{i} m_{i}$ and $h=\sum_{i=1}^{s} \mu_{i} m_{i}$, with λ_{i} and μ_{i} different from 0 $(1 \leq i \leq s)$. Suppose that $\{\hat{g}=0\} \cap \mathcal{D}=\{\hat{h}=0\} \cap \mathcal{D}$ and that $\lambda_{j} \neq \mu_{j}$. For lack of a subset D of J with property (2) and because of part 1 of the proof, it follows that $\lambda_{i} / \mu_{i}=\lambda_{j} / \mu_{j}$, for all $i \in J$ and so $g=h$.

The functions we are interested in are the functions g such that $\{\hat{g}=0\}$ does not contain any non-empty intersection $E_{a} \cap E_{b}$. They can be characterized as follows:

Lemma 3.-Let a and b be different elements of J such that $E_{a} \cap E_{b} \neq \emptyset$. Then

$$
\begin{gathered}
\qquad\{\hat{g}=0\} \text { contains } E_{a} \cap E_{b} \\
\hat{\imath} \\
\text { there is no } m \text { in } \operatorname{supp}(g) \text { for which } \nu_{a}(m)=v_{a} \text { and } \nu_{b}(m)=v_{b} .
\end{gathered}
$$

Proof.
Suppose that there is no m in $\operatorname{supp}(g)$ for which $\nu_{a}(m)=v_{a}$ and $\nu_{b}(m)=v_{b}$. In an affine chart where one sees $E_{a} \cap E_{b}$, one has

$$
\hat{g}=\hat{g_{a}}+\hat{g}_{b}+\hat{r}, \quad E_{a} \leftrightarrow x_{a}=0, \quad E_{b} \leftrightarrow x_{b}=0
$$

where g_{a} is the part of g with $\operatorname{supp}\left(g_{a}\right)=\left\{m \in \operatorname{supp}(g) \mid \nu_{a}(m)=\nu_{a}(g)\right\}$, g_{b} is the part of g with $\operatorname{supp}\left(g_{b}\right)=\left\{m \in \operatorname{supp}(g) \mid \nu_{b}(m)=\nu_{b}(g)\right\}$ and r is $g-g_{a}-g_{b}$. From Lemma 2 it follows that $\hat{g_{b}}+\hat{r} \in\left(x_{a}\right)$ and $\hat{g_{a}}+\hat{r} \in\left(x_{b}\right)$. Then also $\hat{g} \in\left(x_{a}, x_{b}\right)$ and hence $\{\hat{g}=0\}$ contains $E_{a} \cap E_{b}$.

When $\{\hat{g}=0\}$ contains $E_{a} \cap E_{b}$, there exists an affine chart in which one has

$$
\hat{g}=x_{a} g_{a}+x_{b} g_{b}+x_{a} x_{b} g_{r}, \quad E_{a} \leftrightarrow x_{a}=0, \quad E_{b} \leftrightarrow x_{b}=0,
$$

with $g_{a} \notin\left(x_{b}\right)$ and $g_{b} \notin\left(x_{a}\right)$. If $m \in \operatorname{supp}(g)$ such that $\nu_{a}(m)=v_{a}$ and $\nu_{b}(m)=$ v_{b}, Lemma 2 implies that $\hat{m} \in \operatorname{supp}\left(x_{a} g_{a}\right) \cap \operatorname{supp}\left(x_{b} g_{b}\right)$ what is impossible.

Now let $g \in \mathbb{P} F_{\underline{v}}$ and let L be the support of g. Taking the above characterization into account, we see that if \hat{g} does not contain $E_{a} \cap E_{b}$, then there exists no $D \subset J$ for which $a \in D, b \notin D$ and $\left(\cup_{d \in D} \Lambda_{L, d}\right) \cap\left(\cup_{d \notin D} \Lambda_{L, d}\right)=\emptyset$. Note that the other implication is false in general (see for example the constellation given above with $a=1$ and $b=2$).
We denote
$Z_{\underline{v}, L}:=\left\{g \in Z_{\underline{v}} \mid \operatorname{supp}(g)=L\right\}$ and $D_{\underline{v}, L}:=\left\{\{\hat{g}=0\} \cap \mathcal{D} \in D_{\underline{v}} \mid \operatorname{supp}(g)=L\right\}$.
Then we can write $Z_{\underline{v}}$ as a disjoint union $\cup_{L} Z_{\underline{v}, L}$ where for each L holds that there is no subset D of J satisfying condition (2). Proposition 4 tells us that the map

$$
\begin{aligned}
\psi_{L}: Z_{\underline{v}, L} & \longrightarrow D_{\underline{v}, L} \\
g & \longmapsto\{\hat{g}=0\} \cap \mathcal{D}
\end{aligned}
$$

is a bijection and then part 1 of the proof of Proposition 4 allows us to conclude that the map

$$
\begin{aligned}
\phi: Z_{\underline{v}} & \longrightarrow D_{\underline{v}} \\
g & \longmapsto\{\hat{g}=0\} \cap \mathcal{D}
\end{aligned}
$$

is bijective.
Now by Lemma 2 one can see that ϕ is a homeomorphism. Then we have that $\chi\left(Z_{\underline{v}}\right)=\chi\left(D_{\underline{v}}\right)$ which completes the proof of Theorem 2 .

Corollary.- Let $\underline{v}_{1}, \underline{v}_{2}, \cdots, \underline{v}_{s}$ be the different columns of the linear system determined by the constellation. Then

$$
P(\underline{t})=\frac{1}{\left(1-\underline{t}^{\underline{v_{1}}}\right)^{\chi\left(D_{\underline{v}_{1}}\right)} \cdots\left(1-\underline{t}_{s}\right)^{\chi\left(D_{\underline{v}_{s}}\right)}} .
$$

Proof. When the cone C associated to the linear system $\mathcal{L}(\mathcal{C})$ is non-degenerated, then one has for each $\underline{v}_{i}(1 \leq i \leq s)$ that $\chi\left(D_{\underline{v}_{i}}\right)=N\left(\underline{v}_{i}\right)=1$. If C is degenerated then we have for all but one $\underline{v}_{i}(1 \leq i \leq s)$ that $\chi\left(D_{\underline{v}_{i}}\right)=N\left(\underline{v}_{i}\right)=1$. For the column \underline{v} that appears more than once, one gets $\chi\left(D_{\underline{v}}\right)=N(\underline{v})=k$, with $k=d-s+1$.

As a consequence of Theorem 2 and the corollary, we obtain that the value $\chi\left(D_{\underline{v}}\right)$ can be calculated from the values $\chi\left(D_{\underline{v}_{1}}\right), \cdots, \chi\left(D_{\underline{v}_{s}}\right)$ and k.

References

[C,D,G-Z1] A. Campillo, F. Delgado, S.M. Gusein-Zade, The extended semigroup of a plane curve singularity, Proc. Steklov Institue Math. 221 (1998), 139-156.
[C,D,G-Z2] A. Campillo, F. Delgado, S.M. Gusein-Zade, The Alexander polynomial of a plane curve singularity via the ring of functions of it, Duke Math. J. 117 (2003), 125-156.
[C,D,G-Z3] A. Campillo, F. Delgado, S.M. Gusein-Zade, Integration with respect to the Euler characteristic over the projectivization of the space of functions and the Alexander polynomial of a plane curve singularity, Russ. Math. Surv. 55 (2000), 1148-1149.
[C,D,G-Z4] A. Campillo, F. Delgado, S.M. Gusein-Zade, Integrals with respect to the Euler characteristic over the space of functions and the Alexander polynomial, Proc. Steklov Inst. Math. 238 (2002), 134-147.
[C,D,G-Z5] A. Campillo, F. Delgado, S.M. Gusein-Zade, The Alexander polynomial of a plane curve singularity and integrals with respect to the Euler characteristic, Internat. J. Math. 14(1) (2003), 47-52.
[C,D,G-Z6] A. Campillo, F. Delgado, S.M. Gusein-Zade, Poincaré series of a rational surface singularity, Inv. Math. 155 (2004), 41-53.
[C,G-S,L-J] A. Campillo, G. Gonzalez-Sprinberg, M. Lejeune-Jalabert, Clusters of infinitely near points, Math. Ann. 306 (1996), 169-194.
[D,G-Z] F. Delgado, S.M. Gusein-Zade, Poincaré series for several plane divisorial valuations, Proc. Edinburgh Math. Soc. 46 (2003), 501-509.
[D,L] J. Denef, F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), 201-232.
[V] O.Y. Viro, Some integral calculus based on Euler characteristic, Topology and Geometry - Rohlin seminar. Lect. Notes Math. 1346, 127-138. Berlin, Heidelberg, New York: Springer 1988.

Ann Lemahieu, K.U.Leuven, Departement Wiskunde, Celestijnenlaan 200B, B-3001 Leuven, Belgium
E-mail address: ann.lemahieu@wis.kuleuven.be

[^0]: *Partially supported by the grants FWO G.0318.06, FWO V 4.034.06N and MEC PN I + D + I MTM2004-00958

