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Abstract

A 2-distance k-coloring of a graph G is a mapping from V (G) to the set of colors {1, . . . , k}
such that every two vertices at distance at most 2 receive distinct colors. The 2-distance
chromatic number χ2(G) of G is then the mallest k for which G admits a 2-distance k-coloring.
For any finite set of positive integers D = {d1, . . . , dk}, the integer distance graph G = G(D) is
the infinite graph defined by V (G) = Z and uv ∈ E(G) if and only if |v − u| ∈ D. We study
the 2-distance chromatic number of integer distance graphs for several types of sets D. In each
case, we provide exact values or upper bounds on this parameter and characterize those graphs
G(D) with χ2(G(D)) = ∆(G(D)) + 1.

Keywords: 2-distance coloring; Integer distance graph.
MSC 2010: 05C15, 05C12.

1 Introduction

All the graphs we consider in this paper are simple and loopless undirected graphs. We denote
by V (G) and E(G) the set of vertices and the set of edges of a graph G, respectively. For any
two vertices u and v of G, we denote by dG(u, v) the distance between u and v, that is the
length of a shortest path joining u and v. We denote by ∆(G) the maximum degree of G.

A (proper) k-coloring of a graph G is a mapping from V (G) to the set of colors {1, . . . , k}
such that every two adjacent vertices receive distinct colors. The smallest k for which G admits
a k-coloring is the chromatic number of G, denoted χ(G). A 2-distance k-coloring of a graph G
is a mapping from V (G) to the set of colors {1, . . . , k} such that every two vertices at distance at
most 2 receive distinct colors. 2-distance colorings are sometimes called L(1,1)-labelings (see [5]
for a survey on L(h, k)-labelings) or square colorings in the literature. The smallest k for which
G admits a 2-distance k-coloring is the 2-distance chromatic number of G, denoted χ2(G).

The square G2 of a graph G is the graph defined by V (G2) = V (G) and uv ∈ E(G2) if and
only if dG(u, v) ≤ 2. Clearly, a 2-distance coloring of a graph G is nothing but a proper coloring
of G2 and, therefore, χ2(G) = χ(G2) for every graph G.

The study of 2-distance colorings was initiated by Kramer and Kramer [7] (see also their
survey on general distance colorings in [8]). The case of planar graphs has attracted a lot of
attention in the literature (see e.g. [1, 2, 3, 4, 6, 9, 12]), due to the conjecture of Wegner that
suggests an upper bound on the 2-distance chromatic number of planar graphs depending on
their maximum degree (see [13] for more details).
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In this paper, we study 2-distance colorings of distance graphs. Although several coloring
problems have been considered for distance graphs (see [10] for a survey), it seems that 2-
distance colorings have not been considered yet. We present in Section 2 a few basic results on
the chromatic number of distance graphs. We then consider specific sets D, namely D = {1, a},
a ≥ 3 (in Section 3), D = {1, a, a + 1}, a ≥ 3 (in Section 4), and D = {1, . . . ,m, a}, 2 ≤ m < a
(in Section 5). We finally propose some open problems in Section 6.

2 Preliminaries

Let D = {d1, . . . , dk} be a finite set of positive integers. The integer distance graph (simply
called distance graph in the following) G = G(D) is the infinite graph defined by V (G) = Z and
uv ∈ E(G) if and only if |v − u| ∈ D.

If gcd({d1, . . . , dk}) = p > 1, the distance graph G(D) has p connected components, each of
them being isomorphic to the distance graph G(D′) with D′ = {d1/p, . . . , dk/p}. In that case,
we thus have χ2(G(D)) = χ2(G(D′)) so that we can always assume gcd(D) = 1.

It is easy to observe that the square of the distance graph G(D) is also a distance graph,
namely the distance graph G(D2) where

D2 = D ∪ {d+ d′ / d, d′ ∈ D} ∪ {d− d′ / d, d′ ∈ D, d > d′}.

For instance, for D = {1, 2, 5}, we get D2 = {1, 2, 3, 4, 5, 6, 7, 10}. Note that if D has cardinality
k, then D2 has cardinality at most k(k + 1).

As observed in the previous section, χ2(G) = χ(G2) for every graph G. Therefore, since
(G(D))2 = G(D2), determining the 2-distance chromatic number of the distance graph G(D)
reduces to determining the chromatic number of the distance graph G(D2). The problem
of determining the chromatic number of distance graphs has been extensively studied in the
literature. When |D| ≤ 2, this question is easily solved, thanks to the following general upper
bounds:

Proposition 1 (folklore) For every finite set of positive integers D = {d1, . . . , dk} and every
positive integer p such that di 6≡ 0 (mod p) for every i, 1 ≤ i ≤ k, χ(G(D)) ≤ p.

Proof. Let λ : V (G(D)) −→ {1, . . . , p} be the mapping defined by

λ(x) = 1 + (x mod p),

for every integer x ∈ Z. Since di 6≡ 0 (mod p) for every i, 1 ≤ i ≤ k, the mapping λ is clearly a
proper coloring of G(D). �

Theorem 2 (Walther [11]) For every finite set of positive integers D,

χ(G(D)) ≤ |D|+ 1.

Proof. A (|D|+1)-coloring ofG(D) can easily be produced using the First-Fit greedy algorithm,
starting from vertex 0, from left to right and then from right to left, since every vertex has exactly
|D| neighbors on its left and |D| neighbors on its right. �

Therefore, when |D| ≤ 2, χ(G(D)) = 2 if |D| = 1 or all elements in D are odd (since G(D)
is then bipartite), and χ(G(D)) = 3 otherwise (since G(D) then contains cycles of odd length).
The case |D| = 3 has been settled by Zhu [14]. Whenever |D| ≥ 4, only partial results have
been obtained, namely for sets D having specific properties.

A coloring λ of a distance graph G(D) is p-periodic, for some integer p ≥ 1, if λ(x+p) = λ(x)
for every x ∈ Z. Walther also proved the following:
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Theorem 3 (Walther [11]) For every finite set of positive integers D, if χ(G(D)) ≤ k then
G(D) admits a p-periodic k-coloring for some p.

The pattern of such a p-periodic coloring is defined as the sequence λ(x) . . . λ(x+ p− 1). In
particular, the coloring defined in the proof of Proposition 1 was p-periodic with pattern 12 . . . p.
In the following, we will describe such patterns using standard notation of Combinatorics on
words. For instance, the pattern 121212345 will be denoted (12)3345.

Finally, note that in any 2-distance coloring of a graph G, all vertices in the closed neigh-
borhood of any vertex must be assigned distinct colors. Therefore, we have the following:

Observation 4 For every graph G, χ2(G) ≥ ∆(G) + 1.

In particular, this bound is attained by the distance graph G(D) with D = {1, . . . , k}, k ≥ 2:

Proposition 5 For every k ≥ 2, χ2(G({1, . . . , k})) = 2k + 1 = ∆(G({1, . . . , k})) + 1.

Proof. It is easy to check that the mapping λ given by

λ(x) = 1 + (x mod 2k + 1)

for every x ∈ Z is a 2-distance (2k + 1)-coloring of G({1, . . . , k}). Equality then follows from
Observation 4. �

3 The case D = {1, a}, a ≥ 3

We study in this section the 2-distance chromatic number of distance graphs G(D) with D =
{1, a}, a ≥ 3 (note that the case a = 2 is already solved by Proposition 5).

When D = {1, a}, a ≥ 3, we have ∆(G(D)) = 4 and

D2 = {1, 2, a − 1, a, a + 1, 2a}.

The following theorem gives the 2-distance chromatic number of any such graph:

Theorem 6 For every integer a ≥ 3,

χ2(G({1, a})) =

{

5 if a ≡ 2 (mod 5), or a ≡ 3 (mod 5),
6 otherwise.

Proof. Since {1, a}2 = {1, 2, a − 1, a, a + 1, 2a}, we get d 6≡ 0 (mod 5) for every d ∈ {1, a}2

whenever a ≡ 2 (mod 5) or a ≡ 3 (mod 5) and thus, by Proposition 1 and Observation 4,
χ2(G({1, a})) = 5.

Note that for every x ∈ Z, the set of vertices

C(x) = {x− a, x− 1, x, x+ 1, x+ a}

induces a clique in G({1, a}2) (see Figure 1). We now claim that every 2-distance 5-coloring λ
of G({1, a}) is necessarily 5-periodic, that is λ(x+ 5) = λ(x) for every x ∈ Z. To show that, it
suffices to prove that any five consecutive vertices x, . . . , x+4 must be assigned distinct colors.
Assume to the contrary that this is not the case and, without loss of generality, let x = 0. Since
vertices 0, 1 and 2 necessarily get distinct colors, we only have two cases to consider:
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0 1 2 3 4

a 1+a 2+a 3+a 4+a

-a 1-a 2-a 3-a 4-a

. . . . . .

Figure 1: The distance graph G({1, a}), a ≥ 3

1. λ(0) = λ(3) = 1, λ(1) = 2, λ(2) = 3.
Since C(1) induces a clique in G({1, a}2) (depicted in bold in Figure 1), we have

{λ(1− a), λ(1 + a)} = {4, 5},

which implies
{λ(2− a), λ(2 + a)} = {4, 5}.

(More precisely, λ(2 − a) = 9 − λ(1 − a) and λ(2 + a) = 9 − λ(1 + a)). This implies
λ(3− a) = λ(3 + a) = 2, a contradiction since d(3 − a, 3 + a) = 2.

2. λ(0) = λ(4) = 1, λ(1) = 2, λ(2) = 3, λ(3) = 4.
As in the previous case we have

{λ(1− a), λ(1 + a)} = {4, 5},

which implies
{λ(2− a), λ(2 + a)} = {1, 5}.

We then get λ(3− a) = λ(3 + a) = 2, again a contradiction.

Therefore, χ2(G({1, a})) = 5 if and only if 5 do not divide any element of {1, a}2 = {1, 2, a−
1, a, a+ 1, 2a}. This is clearly the case if and only if a ≡ 2 (mod 5) or a ≡ 3 (mod 5).

We finally prove that there exists a 2-distance 6-coloring of G({1, a}) for any value of a. We
consider three cases, according to the value of (a mod 3):

1. a = 3k, k ≥ 1.
Let λ be the (2a− 1)-periodic mapping defined by the pattern

(123)k(456)k−145.

If λ(x) = λ(y) = c, 1 ≤ c ≤ 5, then

d(x, y) ∈ {3q, 0 ≤ q ≤ k − 1} ∪ {(2a− 1)p + 3q, p ≥ 1, 1− k ≤ q ≤ k − 1}.

If λ(x) = λ(y) = 6, then

d(x, y) ∈ {3q, 0 ≤ q ≤ k − 2} ∪ {(2a− 1)p + 3q, p ≥ 1, 2− k ≤ q ≤ k − 2}.

Therefore, in both cases, d(x, y) /∈ {1, 2, a − 1, a, a + 1, 2a}, and thus λ is a 2-distance
6-coloring of G({1, a}).
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2. a = 3k + 1, k ≥ 1.
Let λ be the (2a− 2)-periodic mapping defined by the pattern

(123)k(456)k .

If λ(x) = λ(y) = c, 1 ≤ c ≤ 6, then

d(x, y) ∈ {3q, 0 ≤ q ≤ k − 1} ∪ {(2a− 2)p + 3q, p ≥ 1, 1− k ≤ q ≤ k − 1}.

Therefore, d(x, y) /∈ {1, 2, a − 1, a, a + 1, 2a}, and thus λ is a 2-distance 6-coloring of
G({1, a}).

3. a = 3k + 2, k ≥ 1.
Let λ be the (2a+ 1)-periodic mapping defined by the pattern

(123)k+1(456)k45.

If λ(x) = λ(y) = c, 1 ≤ c ≤ 5, then

d(x, y) ∈ {3q, 0 ≤ q ≤ k} ∪ {(2a+ 1)p + 3q, p ≥ 1, −k ≤ q ≤ k}.

If λ(x) = λ(y) = 6, then

d(x, y) ∈ {3q, 0 ≤ q ≤ k − 1} ∪ {(2a+ 1)p + 3q, p ≥ 1, 1− k ≤ q ≤ k − 1}.

Therefore, in both cases, d(x, y) /∈ {1, 2, a − 1, a, a + 1, 2a}, and thus λ is a 2-distance
6-coloring of G({1, a}).

This concludes the proof. �

4 The case D = {1, a, a + 1}, a ≥ 3

We study in this section the 2-distance chromatic number of distance graphs G(D) with D =
{1, a, a + 1}, a ≥ 3 (note that the case a = 2 is already solved by Proposition 5).

When D = {1, a, a + 1}, a ≥ 3, we have ∆(G(D)) = 6 and

D2 = {1, 2, a − 1, a, a + 1, a+ 2, 2a, 2a + 1, 2a + 2}.

We first prove the following:

Theorem 7 For every integer a, a ≥ 3,

χ2(G({1, a, a + 1})) = 7 = ∆(G({1, a, a + 1})) + 1

if and only if a ≡ 2 (mod 7) or a ≡ 4 (mod 7).

Proof. Since {1, a, a+1}2 = {1, 2, a−1, a, a+1, a+2, 2a, 2a+1, 2a+2}, we get d 6≡ 0 (mod 7)
for every d ∈ {1, a, a+1}2 whenever a ≡ 2 (mod 7) or a ≡ 4 (mod 7) and thus, by Proposition 1
and Observation 4, χ2(G({1, a, a + 1})) = 7.

Note that for every x ∈ Z, the set of vertices

C(x) = {x− a− 1, x− a, x− 1, x, x+ 1, x+ a, x+ a+ 1}

induces a clique in G({1, a, a + 1}2). We now claim that every 2-distance 7-coloring λ of
G({1, a, a + 1}) is necessarily 7-periodic, that is λ(x + 7) = λ(x) for every x ∈ Z. To show
that, it suffices to prove that any 7 consecutive vertices x, . . . , x + 6 must be assigned distinct
colors. Assume to the contrary that this is not the case and, without loss of generality, let x = 0.
Since vertices 0, 1 and 2 necessarily get distinct colors, we only have four cases to consider (see
Figure 2):
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0 1 2 3 4 5

a 1+a 2+a 3+a 2+a 5+a

-a 1-a 2-a 3-a 4-a 5-a

. . . . . .

Figure 2: The distance graph G({1, a, a+ 1}), a ≥ 3

1. Vertices 0, 1, 2, 3 are colored with the colors 1, 2, 3 and 1, respectively.
We consider two subcases:

(a) λ(4) = 2.
Since C(1) induces a clique in G({1, a, a+1}2) (depicted in bold in Figure 2), we have

{λ(−a), λ(1 − a), λ(1 + a), λ(2 + a)} = {4, 5, 6, 7}.

For similar reasons, we also have

{λ(2 − a), λ(3 − a), λ(3 + a), λ(4 + a)} = {4, 5, 6, 7}.

This implies λ(−a) = λ(4 − a) or λ(1 + a) = λ(5 + a). Each of these cases thus
corresponds to case 2 below.

(b) λ(4) /∈ {1, 2, 3}.
Assume λ(4) = 4, without loss of generality. As in the previous subcase, we have

{λ(−a), λ(1 − a), λ(1 + a), λ(2 + a)} = {4, 5, 6, 7},

and, similarly,

{λ(1 − a), λ(2 − a), λ(2 + a), λ(3 + a)} = {4, 5, 6, 7}.

Moreover, since λ(4) = 4, we get

{λ(3 + a), λ(2 − a)} ⊆ {5, 6, 7}.

On the other hand, considering the clique S(3) in G({1, a, a + 1}2), we also get

{λ(4 + a), λ(3 − a)} ⊆ {5, 6, 7}.

We thus get a contradiction since we only have three available colors for the clique
induced by the four vertices 2− a, 3− a, a+ 3 and a+ 4 in G({1, a, a + 1}2).

2. Vertices 0, 1, 2, 3, 4 are colored with the colors 1, 2, 3, 4 and 1, respectively.
Again considering cliques C(2) and C(3) in G({1, a, a + 1}2), we get

{λ(1− a), λ(2 + a)} ⊆ {5, 6, 7},

and
{λ(2− a), λ(3 + a)} ⊆ {5, 6, 7},

a contradiction since vertices 1−a, 2−a, a+2 and a+3 induce a clique in G({1, a, a+1}2).
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3. Vertices 0, 1, 2, 3, 4, 5 are colored with the colors 1, 2, 3, 4, 5 and 1, respectively.
Considering the cliques C(1), C(2) and C(3) in G({1, a, a + 1}2), we get

{λ(−a), λ(1 − a), λ(1 + a), λ(2 + a)} = {4, 5, 6, 7},

{λ(2− a), λ(3 + a)} ⊆ {1, λ(−a), λ(1 + a)} \ {4, 5},

{λ(3− a), λ(4 + a)} ⊆ {2, λ(1 − a), λ(2 + a)} \ {4, 5},

and thus

{λ(2 − a), λ(3 + a)} ⊆ {1, 6, 7} and {λ(3 − a), λ(4 + a)} ⊆ {2, 6, 7}.

Assuming that none of cases 1 or 2 occurs, we have two subcases to consider:

(a) λ(6) = 2.
Considering the clique C(4) in G({1, a, a + 1}2), we get

{λ(4 − a), λ(5 + a)} ⊆ {3, λ(2 − a), λ(3 + a)} \ {1, 2} = {3, 6, 7}.

If {λ(4− a), λ(5 + a)} = {3, 6}, then

{λ(3− a), λ(4 + a)} = {2, 7},

{λ(2− a), λ(3 + a)} = {1, 6},

{λ(1− a), λ(2 + a)} = {5, 7}

and
{λ(−a), λ(1 + a)} = {4, 6}.

If λ(−a) = 6 then λ(2− a) = 1 and thus λ(4− a) = λ(−a) = 6 which corresponds to
subcase 2. If λ(1 + a) = 6 then λ(3 + a) = 1 and thus λ(5 + a) = λ(1 + a) = 6 which
again corresponds to subcase 2.
The case {λ(4− a), λ(5 + a)} = {3, 7} is similar and leads to the same conclusion.
Finally, if {λ(4− a), λ(5 + a)} = {6, 7} then λ(3− a) = λ(4 + a) = 1, a contradiction
since dG({1,a,a+1})(4− a, 5 + a) = 2.

(b) λ(6) = 6.
Considering the clique C(4) in G({1, a, a + 1}2), we get

{λ(4 − a), λ(5 + a)} ⊆ {3, λ(2 − a), λ(3 + a)} \ {1, 6} = {3, 7}.

This implies
{λ(3− a), λ(4 + a)} = {2, 6},

{λ(2− a), λ(3 + a)} = {1, 7},

{λ(1− a), λ(2 + a)} = {5, 6}

and
{λ(−a), λ(1 + a)} = {4, 7}.

If λ(−a) = 7 then λ(2− a) = 1 and thus λ(4− a) = λ(−a) = 7 which corresponds to
subcase 2. If λ(1 + a) = 7 then λ(3 + a) = 1 and thus λ(5 + a) = λ(1 + a) = 7 which
again corresponds to subcase 2.
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4. Vertices 0, 1, 2, 3, 4, 5, 6 are colored with the colors 1, 2, 3, 4, 5, 6 and 1, respectively.
Again considering the cliques C(1), C(2) and C(3) in G({1, a, a + 1}2), we get

{λ(−a), λ(1 − a), λ(1 + a), λ(2 + a)} = {4, 5, 6, 7},

{λ(2− a), λ(3 + a)} ⊆ {1, λ(−a), λ(1 + a)} \ {4, 5},

and thus

{λ(3 − a), λ(4 + a)} ⊆ {2, λ(1 − a), λ(2 + a)} \ {4, 5, 6} = {2, 7}.

This implies
{λ(2− a), λ(3 + a)} = {1, 6},

{λ(1 − a), λ(2 + a)} = {5, 7}

and
{λ(−a), λ(1 + a)} = {4, 6}.

Therefore,

{λ(4 − a), λ(5 + a)} ⊆ {3, λ(2 − a), λ(3 + a)} \ {1, 6} = {3},

a contradiction since dG({1,a,a+1})(4− a, 5 + a) = 2.

Therefore, every 2-distance 7-coloring λ of G({1, a, a+1}) is necessarily 7-periodic, and thus
χ2(G({1, a, a + 1})) = 7 if and only if 7 do not divide any element of {1, 2, a − 1, a, a + 1, a +
2, 2a, 2a + 1, 2a + 2}. This is clearly the case if and only if a ≡ 2 (mod 7) or a ≡ 4 (mod 7).

�

The following result provides an upper bound on χ2(G({1, a, a + 1})) for any value of a.

Theorem 8 For every integer a, a ≥ 3, χ2(G({1, a, a + 1})) ≤ 9 = ∆(G({1, a, a + 1})) + 3.

Proof. We consider three cases, according to the value of (a mod 3):

1. a = 3k, k ≥ 1.
Let λ be the 3a-periodic mapping defined by the pattern

(123)k(456)k(789)k .

If λ(x) = λ(y) = c, 1 ≤ c ≤ 9, then

d(x, y) ∈ {3q, 0 ≤ q ≤ k − 1} ∪ {3ap+ 3q, p ≥ 1, 1− k ≤ q ≤ k − 1}.

Therefore, d(x, y) 6∈ {1, 2, a−1, a, a+1, a+2, 2a, 2a+1, 2a+2}, and thus λ is a 2-distance
9-coloring of G({1, a, a + 1}).

2. a = 3k + 1, k ≥ 1.
Let λ be the (3a+ 2)-periodic mapping defined by the pattern

(123)k(456)k7123(789)k−14568.

If λ(x) = λ(y) = c, 1 ≤ c ≤ 6, then

d(x, y) ∈ {3q, 0 ≤ q ≤ k − 1}
∪ {3q + 2a− 1, 1− k ≤ q ≤ 0}
∪ {(3a+ 2)p + 2a− 1, p > 0}
∪ {(3a+ 2)p − 2a+ 1, p > 0}
∪ {(3a+ 2)p + 3q, p > 0, 1− k ≤ q < 0}
∪ {(3a+ 2)p + 3q + 2a− 1, p > 0, 1− k ≤ q < 0}
∪ {(3a+ 2)p + 3q, p > 0, 0 < q ≤ k − 1}
∪ {(3a+ 2)p + 3q − 2a+ 1, p > 0, 0 < q ≤ k − 1}.
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If λ(x) = λ(y) = 7, then

d(x, y) ∈ {3q, 0 ≤ q ≤ k − 2}
∪ {3q + 4, 0 ≤ q ≤ k − 2}
∪ {(3a+ 2)p + 3q − 4, p > 0, 2− k ≤ q ≤ 0}
∪ {(3a+ 2)p + 3q + 4, p > 0, 0 ≤ q ≤ k − 2}
∪ {(3a+ 2)p + 3q, p > 0, 2− k ≤ q ≤ k − 2}.

If λ(x) = λ(y) = 8, then

d(x, y) ∈ {3q, 0 ≤ q ≤ k − 2}
∪ {3q + a− 2, 2− k ≤ q ≤ 0}
∪ {(3a+ 2)p + a− 2, p > 0}
∪ {(3a+ 2)p − a+ 2, p > 0}
∪ {(3a+ 2)p + 3q, p > 0, 2− k ≤ q < 0}
∪ {(3a+ 2)p + 3q + a− 2, p > 0, 2− k ≤ q < 0}
∪ {(3a+ 2)p + 3q, p > 0, 0 < q ≤ k − 2}
∪ {(3a+ 2)p + 3q − a+ 2, p > 0, 0 < q ≤ k − 2}.

If λ(x) = λ(y) = 9, then

d(x, y) ∈ {3q, 0 ≤ q ≤ k − 2} ∪ {(3a+ 2)p + 3q, p ≥ 1, 2− k ≤ q ≤ k − 2}.

Therefore, in all these cases, d(x, y) 6∈ {1, 2, a − 1, a, a + 1, a + 2, 2a, 2a + 1, 2a + 2}, and
thus λ is a 2-distance 9-coloring of G({1, a, a + 1}).

3. a = 3k + 2, k ≥ 1.
Let λ be the (3a+ 1)-periodic mapping defined by the pattern

(123)k+1(456)k+1(789)k7.

If λ(x) = λ(y) = c, 1 ≤ c ≤ 7, then

d(x, y) ∈ {3q, 0 ≤ q ≤ k} ∪ {(3a+ 1)p + 3q, p ≥ 1, −k ≤ q ≤ k}.

If λ(x) = λ(y) = c, 8 ≤ c ≤ 9, then

d(x, y) ∈ {3q, 0 ≤ q ≤ k − 1} ∪ {(3a+ 1)p + 3q, p ≥ 1, 1− k ≤ q ≤ k − 1}.

Therefore, in both cases, d(x, y) 6∈ {1, 2, a − 1, a, a + 1, a+ 2, 2a, 2a + 1, 2a + 2}, and thus
λ is a 2-distance 9-coloring of G({1, a, a + 1}).

This concludes the proof. �

From Theorems 7 and 8, we thus get:

Corollary 9 For every integer a, a ≥ 3, a 6≡ 2, 4 (mod 7),

8 ≤ χ2(G({1, a, a + 1})) ≤ 9.

5 The case D = {1, . . . ,m, a}, 2 ≤ m < a

We study in this section the 2-distance chromatic number of distance graphs G(D) with D =
{1, . . . ,m, a}, 2 ≤ m < a (note that the case a = m+ 1 is already solved by Proposition 5).

When D = {1, . . . ,m, a}, we have ∆(G(D)) = 2m+ 2 and

D2 = {1, 2, . . . , 2m} ∪ {a−m,a−m+ 1, . . . , a+m} ∪ {2a}.

We first prove the following:
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Theorem 10 For all integers m and a, 2 ≤ m < a,

χ2(G({1, . . . ,m, a})) = 2m+ 3 = ∆(G({1, . . . ,m, a})) + 1

if and only if a ≡ m+ 1 (mod 2m+ 3) or a ≡ m+ 2 (mod 2m+ 3).

Proof. Since {1, . . . ,m, a}2 = {1, . . . , 2m} ∪ {a − m,a − m + 1, . . . , a + m} ∪ {2a}, d 6≡ 0
(mod 2m + 3) for every d ∈ {1, . . . ,m, a}2 whenever a ≡ m + 1 (mod 2m + 3) or a ≡ m + 2
(mod 2m+ 3), and thus, by Proposition 1 and Observation 4, χ2(G({1, . . . ,m, a})) = 2m+ 3.

We now claim that every 2-distance (2m + 3)-coloring λ of G({1, . . . ,m, a}) is necessarily
(2m + 3)-periodic, that is λ(x + 2m + 3) = λ(x) for every x ∈ Z. To show that, it suffices to
prove that any 2m+ 3 consecutive vertices x, . . . , x+ 2m+ 2 must be assigned distinct colors.
Assume to the contrary that this is not the case and, without loss of generality, let x = 0. Since
vertices 0, 1, . . . , 2m necessarily get distinct colors, we only have two cases to consider:

1. Vertices 0, 1, . . . , 2m+ 1 are colored with the colors 1, 2, . . . , 2m+ 1 and 1, respectively.
Note that vertices m− a and m+ a are both adjacent to all vertices 0, 1, . . . , 2m. Hence,

{λ(m− a), λ(m+ a)} = {2m+ 2, 2m+ 3},

which implies
{λ(m+ 1− a), λ(m + 1 + a)} = {2m+ 2, 2m+ 3}

(more precisely, λ(m+1−a) = 4m+5−λ(m−a) and λ(m+1+a) = 4m+5−λ(m+a)). This
implies λ(m+2−a) = λ(m+2+a) = 2, a contradiction since d(m+2−a,m+2+a) = 2.

2. Vertices 0, 1, . . . , 2m + 1, 2m + 2 are colored with the colors 1, 2, . . . , 2m + 1, 2m + 2 and
1, respectively.
As in the previous case we have

{λ(m− a), λ(m+ a)} = {2m+ 2, 2m+ 3},

which implies
{λ(m+ 1− a), λ(m+ 1 + a)} = {1, 2m+ 3}.

We thus get λ(m+ 2− a) = λ(m+ 2 + a) = 2, again a contradiction.

Therefore, every 2-distance (2m+ 3)-coloring λ of G({1, . . . ,m, a}) is necessarily (2m+ 3)-
periodic, and thus χ2(G({1, . . . ,m, a})) = 2m+3 if and only if 2m+3 do not divide any element
of {1, 2, . . . , 2m} ∪ {a−m,a−m+ 1, . . . , a+m} ∪ {2a}. This is clearly the case if and only
if a ≡ m+ 1 (mod 2m+ 3) or a ≡ m+ 2 (mod 2m+ 3).

�

For other values of a, we propose the following general upper bound on

Theorem 11 For all integers m and a, 2 ≤ m < a,

χ2(G({1, . . . ,m, a})) ≤ 4m+ 2 = 2∆(G({1, . . . ,m, a})) − 2.

Proof. Let a = (2m+1)k+ r, 0 ≤ r < 2m+1. We consider four cases, depending on the value
of r. In each case, we will provide a periodic 2-distance (4m+2)-coloring of the distance graph
G({1, . . . ,m, a}).
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1. r < m.
Let λ be the (2a− r −m)-periodic mapping defined by the pattern

[12 . . . (2m+ 1)]k[(2m+ 2)(2m + 1) . . . (4m+ 2)]k−1(2m+ 2)(2m + 3) . . . (3m+ r + 2).

If λ(x) = λ(y) = c, 1 ≤ c ≤ 3m+ r + 2, then

d(x, y) ∈ {q(2m+ 1), 0 ≤ q ≤ k − 1}
∪ {p(2a− r −m) + q(2m+ 1), p ≥ 1, 1− k ≤ q ≤ k − 1}.

If λ(x) = λ(y) = c, 3m+ r + 3 ≤ c ≤ 4m+ 2, then

d(x, y) ∈ {q(2m+ 1), 0 ≤ q ≤ k − 2}
∪ {p(2a− r −m) + q(2m+ 1), p ≥ 1, 2− k ≤ q ≤ k − 2}.

Therefore, in both cases, d(x, y) 6∈ {1, 2, . . . , 2m} ∪ {a−m,a−m+ 1, . . . , a+m} ∪ {2a},
and thus λ is a 2-distance (4m+ 2)-coloring of G({1, . . . ,m, a}).

2. r = m.
Let λ be the (2a− 2m)-periodic mapping defined by the pattern

[12 . . . (2m+ 1)]k[(2m+ 2)(2m + 1) . . . (4m+ 2)]k.

If λ(x) = λ(y) = c, 1 ≤ c ≤ 4m+ 2, then

d(x, y) ∈ {q(2m+ 1), 0 ≤ q ≤ k − 1}
∪ {p(2a − 2m) + q(2m+ 1), p ≥ 1, 1− k ≤ q ≤ k − 1}.

Therefore, d(x, y) 6∈ {1, 2, . . . , 2m} ∪ {a−m,a −m+ 1, . . . , a +m} ∪ {2a}, and thus λ is
a 2-distance (4m+ 2)-coloring of G({1, . . . ,m, a}).

3. r = m+ 1.
Let λ be the (2a+ 1)-periodic mapping defined by the pattern

[12 . . . (2m+ 1)]k+1[(2m+ 2)(2m + 1) . . . (4m+ 2)]k(2m+ 2)(2m+ 3).

If λ(x) = λ(y) = c, 1 ≤ c ≤ 2m+ 3, then

d(x, y) ∈ {q(2m + 1), 0 ≤ q ≤ k}
∪ {p(2a + 1) + q(2m+ 1), p ≥ 1, −k ≤ q ≤ k}.

If λ(x) = λ(y) = c, 2m+ 4 ≤ c ≤ 4m+ 2, then

d(x, y) ∈ {q(2m+ 1), 0 ≤ q ≤ k − 1}
∪ {p(2a+ 1) + q(2m+ 1), p ≥ 1, 1− k ≤ q ≤ k − 1}.

Therefore, in both cases, d(x, y) 6∈ {1, 2, . . . , 2m} ∪ {a−m,a−m+ 1, . . . , a+m} ∪ {2a},
and thus λ is a 2-distance (4m+ 2)-coloring of G({1, . . . ,m, a}).

4. m+ 2 ≤ r < 2m+ 1.
Let λ be the (2a− r +m+ 1)-periodic mapping defined by the pattern

[12 . . . (2m+ 1)]k+1[(2m+ 2)(2m+ 1) . . . (4m+ 2)]k(2m+ 2)(2m+ 3) . . . (m+ r + 1).

If λ(x) = λ(y) = c, 1 ≤ c ≤ m+ r + 1, then

d(x, y) ∈ {q(2m+ 1), 0 ≤ q ≤ k}
∪ {p(2a− r +m+ 1) + q(2m+ 1), p ≥ 1, −k ≤ q ≤ k}.

If λ(x) = λ(y) = c, m+ r + 2 ≤ c ≤ 4m+ 2, then

d(x, y) ∈ {q(2m + 1), 0 ≤ q ≤ k − 1}
∪ {p(2a − r +m+ 1) + q(2m+ 1), p ≥ 1, 1− k ≤ q ≤ k − 1}.

Therefore, in both cases, d(x, y) 6∈ {1, 2, . . . , 2m} ∪ {a−m,a−m+ 1, . . . , a+m} ∪ {2a},
and thus λ is a 2-distance (4m+ 2)-coloring of G({1, . . . ,m, a}).
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This concludes the proof. �

From Theorems 10 and 11, we thus get:

Corollary 12 For all integers m and a, 2 ≤ m < a, a 6≡ m+ 1,m+ 2 (mod 2m+ 3),

2m+ 4 ≤ χ2(G({1, . . . ,m, a})) ≤ 4m+ 2.

6 Discussion

In this paper, we studied 2-distance colorings of several types of distance graphs. In each
case, we characterized those distance graphs that admit an optimal 2-distance coloring, that is
distance graphs G(D) with χ2(G(D)) = ∆(G(D)) + 1. We also provided general upper bounds
for the 2-distance chromatic number of the considered graphs.

We leave as open problems the question of completely determining the 2-distance chromatic
number of distance graphsG(D) whenD = {1, a, a+1}, a ≥ 3, orD = {1, . . . ,m, a}, 2 ≤ m < a.

Considering other types of sets D would certainly be also an interesting direction for future
research.
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