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Introduction

All the graphs we consider in this paper are simple and loopless undirected graphs. We denote by V (G) and E(G) the set of vertices and the set of edges of a graph G, respectively. For any two vertices u and v of G, we denote by d G (u, v) the distance between u and v, that is the length of a shortest path joining u and v. We denote by ∆(G) the maximum degree of G.

A (proper) k-coloring of a graph G is a mapping from V (G) to the set of colors {1, . . . , k} such that every two adjacent vertices receive distinct colors. The smallest k for which G admits a k-coloring is the chromatic number of G, denoted χ(G). A 2-distance k-coloring of a graph G is a mapping from V (G) to the set of colors {1, . . . , k} such that every two vertices at distance at most 2 receive distinct colors. 2-distance colorings are sometimes called L(1,1)-labelings (see [START_REF] Calamoneri | The L(h, k)-labelling problem: An updated survey and annotated bibliography[END_REF] for a survey on L(h, k)-labelings) or square colorings in the literature. The smallest k for which G admits a 2-distance k-coloring is the 2-distance chromatic number of G, denoted χ 2 (G).

The square G 2 of a graph G is the graph defined by V (G 2 ) = V (G) and uv ∈ E(G 2 ) if and only if d G (u, v) ≤ 2. Clearly, a 2-distance coloring of a graph G is nothing but a proper coloring of G 2 and, therefore, χ 2 (G) = χ(G 2 ) for every graph G.

The study of 2-distance colorings was initiated by Kramer and Kramer [START_REF] Kramer | Un problème de coloration des sommets d'un graphe[END_REF] (see also their survey on general distance colorings in [START_REF] Kramer | A survey on the distance-coloring of graphs[END_REF]). The case of planar graphs has attracted a lot of attention in the literature (see e.g. [START_REF] Agnarsson | Coloring powers of planar graphs[END_REF]2,3,[START_REF] Borodin | 2-distance (∆ + 2)-coloring of planar graphs with girth six and ∆ ≥ 18[END_REF][START_REF] Dvořàk | Coloring squares of planar graphs with girth six[END_REF][START_REF] Lih | Coloring the square of an outerplanar graph[END_REF]12]), due to the conjecture of Wegner that suggests an upper bound on the 2-distance chromatic number of planar graphs depending on their maximum degree (see [START_REF] Wegner | Graphs with given diameter and a colouring problem[END_REF] for more details).

In this paper, we study 2-distance colorings of distance graphs. Although several coloring problems have been considered for distance graphs (see [START_REF] Liu | From rainbow to the lovely runner: A survey on coloring parameters of distance graphs[END_REF] for a survey), it seems that 2distance colorings have not been considered yet. We present in Section 2 a few basic results on the chromatic number of distance graphs. We then consider specific sets D, namely D = {1, a}, a ≥ 3 (in Section 3), D = {1, a, a + 1}, a ≥ 3 (in Section 4), and D = {1, . . . , m, a}, 2 ≤ m < a (in Section 5). We finally propose some open problems in Section 6. It is easy to observe that the square of the distance graph G(D) is also a distance graph, namely the distance graph G(D 2 ) where
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D 2 = D ∪ {d + d ′ / d, d ′ ∈ D} ∪ {d -d ′ / d, d ′ ∈ D, d > d ′ }.
For instance, for D = {1, 2, 5}, we get D 2 = {1, 2, 3, 4, 5, 6, 7, 10}. Note that if D has cardinality k, then D 2 has cardinality at most k(k + 1).

As observed in the previous section, χ 2 (G) = χ(G 2 ) for every graph G. Therefore, since (G(D)) 2 = G(D 2 ), determining the 2-distance chromatic number of the distance graph G(D) reduces to determining the chromatic number of the distance graph G(D 2 ). The problem of determining the chromatic number of distance graphs has been extensively studied in the literature. When |D| ≤ 2, this question is easily solved, thanks to the following general upper bounds:

Proposition 1 (folklore) For every finite set of positive integers D = {d 1 , . . . , d k } and every positive integer p such that d i ≡ 0 (mod p) for every i,

1 ≤ i ≤ k, χ(G(D)) ≤ p.
Proof. Let λ : V (G(D)) -→ {1, . . . , p} be the mapping defined by λ(x) = 1 + (x mod p), for every integer x ∈ Z. Since d i ≡ 0 (mod p) for every i, 1 ≤ i ≤ k, the mapping λ is clearly a proper coloring of G(D).

Theorem 2 (Walther [START_REF] Walther | Über eine spezielle Klasse unendlicher Graphen[END_REF]) For every finite set of positive integers D,

χ(G(D)) ≤ |D| + 1.
Proof. A (|D|+1)-coloring of G(D) can easily be produced using the First-Fit greedy algorithm, starting from vertex 0, from left to right and then from right to left, since every vertex has exactly |D| neighbors on its left and |D| neighbors on its right. Therefore, when |D| ≤ 2, χ(G(D)) = 2 if |D| = 1 or all elements in D are odd (since G(D) is then bipartite), and χ(G(D)) = 3 otherwise (since G(D) then contains cycles of odd length). The case |D| = 3 has been settled by Zhu [START_REF] Zhu | Circular chromatic number of distance graphs with distance sets of cardinality three[END_REF]. Whenever |D| ≥ 4, only partial results have been obtained, namely for sets D having specific properties.

A coloring λ of a distance graph G(D) is p-periodic, for some integer p ≥ 1, if λ(x+p) = λ(x) for every x ∈ Z. Walther also proved the following: Theorem 3 (Walther [START_REF] Walther | Über eine spezielle Klasse unendlicher Graphen[END_REF]) For every finite set of positive integers D, if χ(G(D)) ≤ k then G(D) admits a p-periodic k-coloring for some p.

The pattern of such a p-periodic coloring is defined as the sequence λ(x) . . . λ(x + p -1). In particular, the coloring defined in the proof of Proposition 1 was p-periodic with pattern 12 . . . p. In the following, we will describe such patterns using standard notation of Combinatorics on words. For instance, the pattern 121212345 will be denoted (12) 3 345.

Finally, note that in any 2-distance coloring of a graph G, all vertices in the closed neighborhood of any vertex must be assigned distinct colors. Therefore, we have the following:

Observation 4 For every graph G, χ 2 (G) ≥ ∆(G) + 1.
In particular, this bound is attained by the distance graph G(D) with D = {1, . . . , k}, k ≥ 2:

Proposition 5 For every k ≥ 2, χ 2 (G({1, . . . , k})) = 2k + 1 = ∆(G({1, . . . , k})) + 1.
Proof. It is easy to check that the mapping λ given by λ(x) = 1 + (x mod 2k + 1) for every x ∈ Z is a 2-distance (2k + 1)-coloring of G({1, . . . , k}). Equality then follows from Observation 4.

3 The case D = {1, a}, a ≥ 3

We study in this section the 2-distance chromatic number of distance graphs G(D) with D = {1, a}, a ≥ 3 (note that the case a = 2 is already solved by Proposition 5).

When D = {1, a}, a ≥ 3, we have ∆(G(D)) = 4 and

D 2 = {1, 2, a -1, a, a + 1, 2a}.
The following theorem gives the 2-distance chromatic number of any such graph:

Theorem 6 For every integer a ≥ 3,

χ 2 (G({1, a})) = 5 if a ≡ 2 (mod 5), or a ≡ 3 (mod 5), 6 otherwise. 
Proof. Since {1, a} 2 = {1, 2, a -1, a, a + 1, 2a}, we get d ≡ 0 (mod 5) for every d ∈ {1, a} 2 whenever a ≡ 2 (mod 5) or a ≡ 3 (mod 5) and thus, by Proposition 1 and Observation 4,

χ 2 (G({1, a})) = 5.
Note that for every x ∈ Z, the set of vertices

C(x) = {x -a, x -1, x, x + 1, x + a}
induces a clique in G({1, a} 2 ) (see Figure 1). We now claim that every 2-distance 5-coloring λ of G({1, a}) is necessarily 5-periodic, that is λ(x + 5) = λ(x) for every x ∈ Z. To show that, it suffices to prove that any five consecutive vertices x, . . . , x + 4 must be assigned distinct colors. Assume to the contrary that this is not the case and, without loss of generality, let x = 0. Since vertices 0, 1 and 2 necessarily get distinct colors, we only have two cases to consider:

0 1 2 3 4 a 1+a 2+a 3+a 4+a -a 1-a 2-a 3-a 4-a . . . . . . Figure 1: The distance graph G({1, a}), a ≥ 3 1. λ(0) = λ(3) = 1, λ(1) = 2, λ(2) = 3.
Since C(1) induces a clique in G({1, a} 2 ) (depicted in bold in Figure 1), we have

{λ(1 -a), λ(1 + a)} = {4, 5}, which implies {λ(2 -a), λ(2 + a)} = {4, 5}. (More precisely, λ(2 -a) = 9 -λ(1 -a) and λ(2 + a) = 9 -λ(1 + a)). This implies λ(3 -a) = λ(3 + a) = 2, a contradiction since d(3 -a, 3 + a) = 2. 2. λ(0) = λ(4) = 1, λ(1) = 2, λ(2) = 3, λ(3) = 4.
As in the previous case we have Therefore, χ 2 (G({1, a})) = 5 if and only if 5 do not divide any element of {1, a} 2 = {1, 2, a -1, a, a + 1, 2a}. This is clearly the case if and only if a ≡ 2 (mod 5) or a ≡ 3 (mod 5).

We finally prove that there exists a 2-distance 6-coloring of G({1, a}) for any value of a. We consider three cases, according to the value of (a mod 3):

1. a = 3k, k ≥ 1.
Let λ be the (2a -1)-periodic mapping defined by the pattern

(123) k (456) k-1 45. If λ(x) = λ(y) = c, 1 ≤ c ≤ 5, then d(x, y) ∈ {3q, 0 ≤ q ≤ k -1} ∪ {(2a -1)p + 3q, p ≥ 1, 1 -k ≤ q ≤ k -1}. If λ(x) = λ(y) = 6, then d(x, y) ∈ {3q, 0 ≤ q ≤ k -2} ∪ {(2a -1)p + 3q, p ≥ 1, 2 -k ≤ q ≤ k -2}.
Therefore, in both cases, d(x, y) / ∈ {1, 2, a -1, a, a + 1, 2a}, and thus λ is a 2-distance 6-coloring of G({1, a}).

2. a = 3k + 1, k ≥ 1.
Let λ be the (2a -2)-periodic mapping defined by the pattern

(123) k (456) k . If λ(x) = λ(y) = c, 1 ≤ c ≤ 6, then d(x, y) ∈ {3q, 0 ≤ q ≤ k -1} ∪ {(2a -2)p + 3q, p ≥ 1, 1 -k ≤ q ≤ k -1}.
Therefore, d(x, y) / ∈ {1, 2, a -1, a, a + 1, 2a}, and thus λ is a 2-distance 6-coloring of G({1, a}).

3. a = 3k + 2, k ≥ 1.
Let λ be the (2a + 1)-periodic mapping defined by the pattern

(123) k+1 (456) k 45. If λ(x) = λ(y) = c, 1 ≤ c ≤ 5, then d(x, y) ∈ {3q, 0 ≤ q ≤ k} ∪ {(2a + 1)p + 3q, p ≥ 1, -k ≤ q ≤ k}. If λ(x) = λ(y) = 6, then d(x, y) ∈ {3q, 0 ≤ q ≤ k -1} ∪ {(2a + 1)p + 3q, p ≥ 1, 1 -k ≤ q ≤ k -1}.
Therefore, in both cases, d(x, y) / ∈ {1, 2, a -1, a, a + 1, 2a}, and thus λ is a 2-distance 6-coloring of G({1, a}). This concludes the proof. [START_REF] Borodin | 2-distance (∆ + 2)-coloring of planar graphs with girth six and ∆ ≥ 18[END_REF] The case D = {1, a, a + 1}, a ≥ 3

We study in this section the 2-distance chromatic number of distance graphs G(D) with D = {1, a, a + 1}, a ≥ 3 (note that the case a = 2 is already solved by Proposition 5).

When D = {1, a, a + 1}, a ≥ 3, we have ∆(G(D)) = 6 and

D 2 = {1, 2, a -1, a, a + 1, a + 2, 2a, 2a + 1, 2a + 2}.
We first prove the following:

Theorem 7 For every integer a, a ≥ 3,

χ 2 (G({1, a, a + 1})) = 7 = ∆(G({1, a, a + 1})) + 1
if and only if a ≡ 2 (mod 7) or a ≡ 4 (mod 7).

Proof. Since {1, a, a + 1} 2 = {1, 2, a -1, a, a + 1, a + 2, 2a, 2a + 1, 2a + 2}, we get d ≡ 0 (mod 7) for every d ∈ {1, a, a+1} 2 whenever a ≡ 2 (mod 7) or a ≡ 4 (mod 7) and thus, by Proposition 1 and Observation 4, χ 2 (G({1, a, a + 1})) = 7. Note that for every x ∈ Z, the set of vertices

C(x) = {x -a -1, x -a, x -1, x, x + 1, x + a, x + a + 1}
induces a clique in G({1, a, a + 1} 2 ). We now claim that every 2-distance 7-coloring λ of G({1, a, a + 1}) is necessarily 7-periodic, that is λ(x + 7) = λ(x) for every x ∈ Z. To show that, it suffices to prove that any 7 consecutive vertices x, . . . , x + 6 must be assigned distinct colors. Assume to the contrary that this is not the case and, without loss of generality, let x = 0. Since vertices 0, 1 and 2 necessarily get distinct colors, we only have four cases to consider (see Figure 2): We thus get a contradiction since we only have three available colors for the clique induced by the four vertices 2 -a, 3 -a, a + 3 and a + 4 in G({1, a, a + 1} 2 ). Therefore,

{λ(4 -a), λ(5 + a)} ⊆ {3, λ(2 -a), λ(3 + a)} \ {1, 6} = {3}, a contradiction since d G({1,a,a+1}) (4 -a, 5 + a) = 2.
Therefore, every 2-distance 7-coloring λ of G({1, a, a + 1}) is necessarily 7-periodic, and thus χ 2 (G({1, a, a + 1})) = 7 if and only if 7 do not divide any element of {1, 2, a -1, a, a + 1, a + 2, 2a, 2a + 1, 2a + 2}. This is clearly the case if and only if a ≡ 2 (mod 7) or a ≡ 4 (mod 7).

The following result provides an upper bound on χ 2 (G({1, a, a + 1})) for any value of a.

Theorem 8 For every integer a, a ≥ 3, χ 2 (G({1, a, a + 1})) ≤ 9 = ∆(G({1, a, a + 1})) + 3.

Proof. We consider three cases, according to the value of (a mod 3):

1. a = 3k, k ≥ 1.
Let λ be the 3a-periodic mapping defined by the pattern

(123) k (456) k (789) k . If λ(x) = λ(y) = c, 1 ≤ c ≤ 9, then d(x, y) ∈ {3q, 0 ≤ q ≤ k -1} ∪ {3ap + 3q, p ≥ 1, 1 -k ≤ q ≤ k -1}. Therefore, d(x, y) ∈ {1, 2, a -1, a, a + 1, a + 2, 2a, 2a + 1, 2a + 2}, and thus λ is a 2-distance 9-coloring of G({1, a, a + 1}). 2. a = 3k + 1, k ≥ 1.
Let λ be the (3a + 2)-periodic mapping defined by the pattern

(123) k (456) k 7123(789) k-1 4568. If λ(x) = λ(y) = c, 1 ≤ c ≤ 6, then d(x, y) ∈ {3q, 0 ≤ q ≤ k -1} ∪ {3q + 2a -1, 1 -k ≤ q ≤ 0} ∪ {(3a + 2)p + 2a -1, p > 0} ∪ {(3a + 2)p -2a + 1, p > 0} ∪ {(3a + 2)p + 3q, p > 0, 1 -k ≤ q < 0} ∪ {(3a + 2)p + 3q + 2a -1, p > 0, 1 -k ≤ q < 0} ∪ {(3a + 2)p + 3q, p > 0, 0 < q ≤ k -1} ∪ {(3a + 2)p + 3q -2a + 1, p > 0, 0 < q ≤ k -1}. If λ(x) = λ(y) = 7, then d(x, y) ∈ {3q, 0 ≤ q ≤ k -2} ∪ {3q + 4, 0 ≤ q ≤ k -2} ∪ {(3a + 2)p + 3q -4, p > 0, 2 -k ≤ q ≤ 0} ∪ {(3a + 2)p + 3q + 4, p > 0, 0 ≤ q ≤ k -2} ∪ {(3a + 2)p + 3q, p > 0, 2 -k ≤ q ≤ k -2}. If λ(x) = λ(y) = 8, then d(x, y) ∈ {3q, 0 ≤ q ≤ k -2} ∪ {3q + a -2, 2 -k ≤ q ≤ 0} ∪ {(3a + 2)p + a -2, p > 0} ∪ {(3a + 2)p -a + 2, p > 0} ∪ {(3a + 2)p + 3q, p > 0, 2 -k ≤ q < 0} ∪ {(3a + 2)p + 3q + a -2, p > 0, 2 -k ≤ q < 0} ∪ {(3a + 2)p + 3q, p > 0, 0 < q ≤ k -2} ∪ {(3a + 2)p + 3q -a + 2, p > 0, 0 < q ≤ k -2}. If λ(x) = λ(y) = 9, then d(x, y) ∈ {3q, 0 ≤ q ≤ k -2} ∪ {(3a + 2)p + 3q, p ≥ 1, 2 -k ≤ q ≤ k -2}.
Therefore, in all these cases, d(x, y) ∈ {1, 2, a -1, a, a + 1, a + 2, 2a, 2a + 1, 2a + 2}, and thus λ is a 2-distance 9-coloring of G({1, a, a + 1}).

3. a = 3k + 2, k ≥ 1.

Let λ be the (3a + 1)-periodic mapping defined by the pattern (123) k+1 (456) k+1 (789) k 7.

If λ(x) = λ(y) = c, 1 ≤ c ≤ 7, then d(x, y) ∈ {3q, 0 ≤ q ≤ k} ∪ {(3a + 1)p + 3q, p ≥ 1, -k ≤ q ≤ k}.

If λ(x) = λ(y) = c, 8 ≤ c ≤ 9, then d(x, y) ∈ {3q, 0 ≤ q ≤ k -1} ∪ {(3a + 1)p + 3q, p ≥ 1, 1 -k ≤ q ≤ k -1}.
Therefore, in both cases, d(x, y) ∈ {1, 2, a -1, a, a + 1, a + 2, 2a, 2a + 1, 2a + 2}, and thus λ is a 2-distance 9-coloring of G({1, a, a + 1}).

This concludes the proof.

From Theorems 7 and 8, we thus get: We now claim that every 2-distance (2m + 3)-coloring λ of G({1, . . . , m, a}) is necessarily (2m + 3)-periodic, that is λ(x + 2m + 3) = λ(x) for every x ∈ Z. To show that, it suffices to prove that any 2m + 3 consecutive vertices x, . . . , x + 2m + 2 must be assigned distinct colors. Assume to the contrary that this is not the case and, without loss of generality, let x = 0. Since vertices 0, 1, . . . , 2m necessarily get distinct colors, we only have two cases to consider: Proof. Let a = (2m + 1)k + r, 0 ≤ r < 2m + 1. We consider four cases, depending on the value of r. In each case, we will provide a periodic 2-distance (4m + 2)-coloring of the distance graph G({1, . . . , m, a}).

This concludes the proof.

From Theorems 10 and 11, we thus get:

Corollary 12 For all integers m and a, 2 ≤ m < a, a ≡ m + 1, m + 2 (mod 2m + 3), 2m + 4 ≤ χ 2 (G({1, . . . , m, a})) ≤ 4m + 2.

Discussion

In this paper, we studied 2-distance colorings of several types of distance graphs. In each case, we characterized those distance graphs that admit an optimal 2-distance coloring, that is distance graphs G(D) with χ 2 (G(D)) = ∆(G(D)) + 1. We also provided general upper bounds for the 2-distance chromatic number of the considered graphs.

We leave as open problems the question of completely determining the 2-distance chromatic number of distance graphs G(D) when D = {1, a, a+1}, a ≥ 3, or D = {1, . . . , m, a}, 2 ≤ m < a.

Considering other types of sets D would certainly be also an interesting direction for future research.

Let D = {d 1

 1 , . . . , d k } be a finite set of positive integers. The integer distance graph (simply called distance graph in the following) G = G(D) is the infinite graph defined by V (G) = Z and uv ∈ E(G) if and only if |v -u| ∈ D. If gcd({d 1 , . . . , d k }) = p > 1, the distance graph G(D) has p connected components, each of them being isomorphic to the distance graph G(D ′ ) with D ′ = {d 1 /p, . . . , d k /p}. In that case, we thus have χ 2 (G(D)) = χ 2 (G(D ′ )) so that we can always assume gcd(D) = 1.

{λ( 1 -

 1 a), λ(1 + a)} = {4, 5}, which implies {λ(2 -a), λ(2 + a)} = {1, 5}. We then get λ(3 -a) = λ(3 + a) = 2, again a contradiction.

Figure 2 : 3 1.

 23 Figure 2: The distance graph G({1, a, a + 1}), a ≥ 3

2 .

 2 Vertices 0, 1, 2, 3, 4 are colored with the colors 1, 2, 3, 4 and 1, respectively. Again considering cliques C(2) and C(3) in G({1, a, a + 1} 2 ), we get {λ(1 -a), λ(2 + a)} ⊆ {5, 6, 7}, and {λ(2 -a), λ(3 + a)} ⊆ {5, 6, 7}, a contradiction since vertices 1-a, 2-a, a+2 and a+3 induce a clique in G({1, a, a+1} 2 ).

3 . 4 .

 34 Vertices 0, 1, 2, 3, 4, 5 are colored with the colors 1, 2, 3, 4, 5 and 1, respectively. Considering the cliques C(1), C(2) and C(3) in G({1, a, a + 1} 2 ), we get {λ(-a), λ(1 -a), λ(1 + a), λ(2 + a)} = {4, 5, 6, 7}, {λ(2 -a), λ(3 + a)} ⊆ {1, λ(-a), λ(1 + a)} \ {4, 5}, {λ(3 -a), λ(4 + a)} ⊆ {2, λ(1 -a), λ(2 + a)} \ {4, 5}, and thus {λ(2 -a), λ(3 + a)} ⊆ {1, 6, 7} and {λ(3 -a), λ(4 + a)} ⊆ {2, 6, 7}. Assuming that none of cases 1 or 2 occurs, we have two subcases to consider: (a) λ(6) = 2. Considering the clique C(4) in G({1, a, a + 1} 2 ), we get {λ(4 -a), λ(5 + a)} ⊆ {3, λ(2 -a), λ(3 + a)} \ {1, 2} = {3, 6, 7}. If {λ(4 -a), λ(5 + a)} = {3, 6}, then {λ(3 -a), λ(4 + a)} = {2, 7}, {λ(2 -a), λ(3 + a)} = {1, 6}, {λ(1 -a), λ(2 + a)} = {5, 7} and {λ(-a), λ(1 + a)} = {4, 6}. If λ(-a) = 6 then λ(2 -a) = 1 and thus λ(4 -a) = λ(-a) = 6 which corresponds to subcase 2. If λ(1 + a) = 6 then λ(3 + a) = 1 and thus λ(5 + a) = λ(1 + a) = 6 which again corresponds to subcase 2. The case {λ(4 -a), λ(5 + a)} = {3, 7} is similar and leads to the same conclusion. Finally, if {λ(4 -a), λ(5 + a)} = {6, 7} then λ(3 -a) = λ(4 + a) = 1, a contradiction since d G({1,a,a+1}) (4 -a, 5 + a) = 2. (b) λ(6) = 6. Considering the clique C(4) in G({1, a, a + 1} 2 ), we get {λ(4 -a), λ(5 + a)} ⊆ {3, λ(2 -a), λ(3 + a)} \ {1, 6} = {3, 7}. This implies {λ(3 -a), λ(4 + a)} = {2, 6}, {λ(2 -a), λ(3 + a)} = {1, 7}, {λ(1 -a), λ(2 + a)} = {5, 6} and {λ(-a), λ(1 + a)} = {4, 7}. If λ(-a) = 7 then λ(2 -a) = 1 and thus λ(4 -a) = λ(-a) = 7 which corresponds to subcase 2. If λ(1 + a) = 7 then λ(3 + a) = 1 and thus λ(5 + a) = λ(1 + a) = 7 which again corresponds to subcase 2. Vertices 0, 1, 2, 3, 4, 5, 6 are colored with the colors 1, 2, 3, 4, 5, 6 and 1, respectively. Again considering the cliques C(1), C(2) and C(3) in G({1, a, a + 1} 2 ), we get {λ(-a), λ(1 -a), λ(1 + a), λ(2 + a)} = {4, 5, 6, 7}, {λ(2 -a), λ(3 + a)} ⊆ {1, λ(-a), λ(1 + a)} \ {4, 5}, and thus {λ(3 -a), λ(4 + a)} ⊆ {2, λ(1 -a), λ(2 + a)} \ {4, 5, 6} = {2, 7}. This implies {λ(2 -a), λ(3 + a)} = {1, 6}, {λ(1 -a), λ(2 + a)} = {5, 7} and {λ(-a), λ(1 + a)} = {4, 6}.

Corollary 9

 9 For every integer a, a ≥ 3, a ≡ 2, 4 (mod 7), 8 ≤ χ 2 (G({1, a, a + 1})) ≤ 9. 5 The case D = {1, . . . , m, a}, 2 ≤ m < a We study in this section the 2-distance chromatic number of distance graphs G(D) with D = {1, . . . , m, a}, 2 ≤ m < a (note that the case a = m + 1 is already solved by Proposition 5). When D = {1, . . . , m, a}, we have ∆(G(D)) = 2m + 2 and D 2 = {1, 2, . . . , 2m} ∪ {a -m, a -m + 1, . . . , a + m} ∪ {2a}. We first prove the following: Theorem 10 For all integers m and a, 2 ≤ m < a, χ 2 (G({1, . . . , m, a})) = 2m + 3 = ∆(G({1, . . . , m, a})) + 1 if and only if a ≡ m + 1 (mod 2m + 3) or a ≡ m + 2 (mod 2m + 3). Proof. Since {1, . . . , m, a} 2 = {1, . . . , 2m} ∪ {a -m, a -m + 1, . . . , a + m} ∪ {2a}, d ≡ 0 (mod 2m + 3) for every d ∈ {1, . . . , m, a} 2 whenever a ≡ m + 1 (mod 2m + 3) or a ≡ m + 2 (mod 2m + 3), and thus, by Proposition 1 and Observation 4, χ 2 (G({1, . . . , m, a})) = 2m + 3.

1 . 2 .

 12 Vertices 0, 1, . . . , 2m + 1 are colored with the colors 1, 2, . . . , 2m + 1 and 1, respectively. Note that vertices m -a and m + a are both adjacent to all vertices 0, 1, . . . , 2m. Hence, {λ(m -a), λ(m + a)} = {2m + 2, 2m + 3}, which implies {λ(m + 1 -a), λ(m + 1 + a)} = {2m + 2, 2m + 3} (more precisely, λ(m+1-a) = 4m+5-λ(m-a) and λ(m+1+a) = 4m+5-λ(m+a)). This implies λ(m + 2 -a) = λ(m + 2 + a) = 2, a contradiction since d(m + 2 -a, m + 2 + a) = 2. Vertices 0, 1, . . . , 2m + 1, 2m + 2 are colored with the colors 1, 2, . . . , 2m + 1, 2m + 2 and 1, respectively. As in the previous case we have {λ(m -a), λ(m + a)} = {2m + 2, 2m + 3}, which implies {λ(m + 1 -a), λ(m + 1 + a)} = {1, 2m + 3}. We thus get λ(m + 2 -a) = λ(m + 2 + a) = 2, again a contradiction. Therefore, every 2-distance (2m + 3)-coloring λ of G({1, . . . , m, a}) is necessarily (2m + 3)periodic, and thus χ 2 (G({1, . . . , m, a})) = 2m+3 if and only if 2m+3 do not divide any element of {1, 2, . . . , 2m} ∪ {a -m, a -m + 1, . . . , a + m} ∪ {2a}. This is clearly the case if and only if a ≡ m + 1 (mod 2m + 3) or a ≡ m + 2 (mod 2m + 3). For other values of a, we propose the following general upper bound on Theorem 11 For all integers m and a, 2 ≤ m < a, χ 2 (G({1, . . . , m, a})) ≤ 4m + 2 = 2∆(G({1, . . . , m, a})) -2.
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