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SYMMETRIL MOULDS, GENERIC GROUP SCHEMES,
RESUMMATION OF MZVS

CLAUDIA MALVENUTO AND FREDERIC PATRAS

ABSTRACT. The present article deals with various generating series and group schemes
(not necessarily affine ones) associated with MZVs. Our developments are motivated
by Ecalle’s mould calculus approach to the latter. We propose in particular a Hopf
algebra—type encoding of symmetril moulds and introduce a new resummation process
for MZVs.

INTRODUCTION

Motivated by the study of multiple zeta values (MZVs), Jean Ecalle has introduced
various combinatorial notions such as the ones of “symmetral moulds”, “symmetrel
moulds”, “symmetril moulds” or “symmetrul moulds” |7, 4]. The first two are well-
understood classical objects: they are nothing but characters on the shuffle algebra,
resp. the quasi-shuffle algebra over the integers, both isomorphic to the algebra QSym
of Quasi-symmetric functions. These two notions are closely related to the interpretation
of properly regularized MZVs as real points of two prounipotent affine group schemes
(associated respectively to the integral and power series representations of MZVs), whose
interactions through double shuffle relations has given rise to the modern approach to
MZVs (by Zagier, Deligne, Thara, Racinet, Brown, Furusho and may others) [3, 10, 12, 20|

Although fairly natural from the point of view of MZVs (the resummation of MZVs info
suitable generating series gives rise to a symmetril mould), the notion of symmetrility is
more intriguing and harder to account for using classical combinatorial Hopf algebraic
tools.

The aim of this article is accordingly threefold. We first show that Ecalle’s mould cal-
culus can be interpreted globaly, beyond the cases of symmetral and symmetrel moulds,
as a rephrasing of the theory of MZVs into the framework of prounipotent groups. How-
ever, these not necessarily associated to affine group schemes (that is, to groups whose
elements are characters on suitable Hopf algebras), at least in our interpretation and
indeed, to account for symmetrility we introduce a new class of functors from commu-
tative algebras to groups refered to as generic group schemes (because the elements of
these groups are characters on suitably defined “generic” Hopf algebras). Second, we
focus on this notion of symmetrility, develop systematic foundations for the notion and
prove structure theorems for the corresponding algebraic structures. Third, we interpret
Ecalle’s resummation of MZVs by means of formal power series as the result of a prop-
erly defined Hopf algebra morphism. This construction is reminiscent in many aspects
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RESUMMATION OF MZVS 2

of the resummation of the various Green’s functions in the functional calculus approach
to quantum field theory or statistical physics, see e.g. [19]), This approach leads us to
introduce a new resummation process, different than Ecalle’s. The new process is more
complex combinatorially but more natural from the group and Lie theoretical point of
view: indeed, it encodes MZVs into new generating series that behave according to the
usual combinatorics of tensor bialgebras and their dual shuffle bialgebras.

In the process, we introduce various Hopf algebraic structures that, besides being
motivated by the mould calculus approach to MZVs, seem to be interesting on their own
from a combinatorial algebra point of view.

We refer the readers not acquainted with classical arguments on the theory of MZVs to
Cartier’s Bourbaki seminar [2] that provides a short and mostly self contained treatment
of the key notions.

ACKNOWLEDGEMENTS

The authors acknowledge support from ICMAT, Madrid, and from the grant CARMA,
ANR-12-BS01-0017.

1. HOPF ALGEBRAS

We recall first briefly the definition of a Hopf algebra and related notions. The reader
is refered to [2] for details. All the maps we will consider between vector spaces will be
assumed to be linear excepted if otherwise stated explicitely. We will be mostly interested
in graded or filtered connected Hopf algebras, and restrict therefore our presentation to
that case.

Let H = @, Hn be a graded vector space over a field &k of characteristic zero.

We will always assume that the H,, are finite dimensional. We write H<,, :== @ Hp,
m<n

H>, = @ H, and HT = @nEN* H,. The graded vector space H is said to be
m>n
connected if Hy 2 k.

An associative and unital product p : H ® H — H on H (also written h - h' :=
pu(h @ R')) with unit map n : k — Hy C H (so that for any h € H and n(1) =: 1 € Hy,
1-h=h-1=h) makes H a graded (resp. filtered) algebra if, for any integers n,m,
:u(Hn & Hm) C Hptm (resp. :u(Hn & Hm) C H§n+m)'

Dualizing, a coassociative and counital coproduct A : H — H ® H on H (also written
using the abusive but useful Sweedler notation A(h) = h) @ h(?)) with counit map
v: H — k (with v the null map on H") makes H a graded coalgebra if, for any integer
n, A(H,) C @ H,® H; =: (H® H),. The coproduct (resp. the coalgebra H) is

ptq=n
cocommutative if for any h € H, hY) @ h® = h @ ),

Recall that the category of associative unital algebras is monoidal: the tensor product
of two associative unital algebras is a unital associative algebra. Assume that (u,n) and
(A,v) equip H with the structure of an associative unital algebra and coassociative
counital coalgebra: they equip H with the structure of a bialgebra if furthermore A and
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v are maps of algebras (or equivalently p and 7 are map of coalgebras). The bialgebra
H is called a Hopf algebra if furthermore there exists a endomorphism S of H (called
the antipode) such that

(1.1) po(Id®@S)oA=po(S®@Id)oA=nov=:¢.

A bialgebra or a Hopf algebra is graded (resp. filtered) if it is a graded algebra and
coalgebra (resp. a filtered algebra and a graded coalgebra). Graded and filtered con-
nected bialgebras are automatically equipped with an antipode and are therefore Hopf
algebras, and the two notions of Hopf algebras and bialgebras identify in that case, see
e.g. |2] for the graded case, the filtered one being similar. This observation will apply
to the bialgebras we will consider.

Example 1. The first example of a bialgebra occuring in the theory of MZVs is QSym,
the quasi-shuffle bialgebra over the integers IN*. The underlying graded vector space is
the vector space over the sequences of integers (written as bracketed words) [nj...ng].
The bracket notation is assumed to behave multilinearly: for example, for two words
ni...ng, myi...my and two scalars A, 8

Ani...ng+Bmy...myl = A[ni...ngl+ Blmy...myl.

The words of lenght k& span the degree k component of QSym (another graduation
is obtained by defining the word [nj...nx| to be of degree ny + -+ + ng). The graded
coproduct is the deconcatenation coproduct:

k
A(fnang)) = [n1...n] @ [nig .. ngl.
=0
The unital “quasi-shuffle” product = is the filtered product defined inductively by (the
empty word identifies with the unit):

[ny..ngled [my . ..my] := [n1(no..npemy ..oy |+
[mi(ny..ngEme...my)] + [(n1 + my)(ne..npEme . ..my)].
For example,
[35] = [1] = [3(be 1) + 1(35) + 45] = [351] + [315] + [36] + [135] + [45].

Notice that, here and later on, we use in such formulas the shortcut notation [3(5tx1)]
for the concatenation of [3] with [5ud1].

Algebra characters on QSym (i.e. unital multiplicative maps from QSym to a com-
mutative unital algebra A) are called by Ecalle symmetrel moulds. The convolution
product of linear morphisms from QSym to A,

frgi=mao(f®@g)oA,
where m 4 stands for the product in A, equips the set Gqsym(A) of A-valued characters
with a group structure. Since QSym is a filtered connected commutative Hopf alge-

bra, the corresponding functor Gqsym is (by Cartier’s correspondence between group
schemes and commutative Hopf algebras over a field of characteristic 0) a prounipotent



RESUMMATION OF MZVS 4

affine group scheme. Properly regularized MZVs are real valued algebra characters on
QSym and probably the most important example of elements in Gqsym(R) [2].
The quasi-shuffle bialgebra QSh(B) over an arbitrary commutative algebra (B, x) is

defined similarly: the underlying vector space is T'(B) := @ B®", the coproduct is the
neN
deconcatenation coproduct and the product is defined recursively by (we use a bracketed

word notation for tensor products): [by...bg] := b1 ® ... ® by,
[bl ... bk] I [Cl ... Cl] = [bl(bg...bkl:lzlcl R Cl)]—l-
[Cl(bl...ka:I:ICQ ... Cl)] + [(bl X Cl)(bg...ka:I:ICQ ... Cl)].

Example 2. The second example arises from the integral representation of MZVs. The
corresponding graded vector space T'(z,y) is spanned by words in two variables = and y.
The lenght of a word defines the grading. The coproduct is again the deconcatenation
coproduct acting on words. The product LU is the shuffle product, defined inductively
on sequences by

aj...ap by ...b = al(ag...aku_lbl c. bl) + bl(al...akLleg c.. bl)

The Hopf algebra T'(z,y) is called the shuffle bialgebra over the set {x,y}. Properly
regularized MZVs are algebra characters on T'(x,y) (or on subalgebras thereof), but
the regularization process fails to preserve simultaneously the shuffle and quasi-shuffle
products [2].

Shuffle bialgebras over arbitrary sets X are defined similarly and denoted Sh(X) (see
[8]). In the mould calculus terminology, a character on Sh(X) is called a symmetral
mould. The shuffle bialgebra over N*, Sh(IN*), is written simply Sh and will be called
the integer shuffle bialgebra. It is isomorphic to QSym as a bialgebra [11].

Example 3. Rota-Bazter quasi-shuffle bialgebras. This third example departs from the
two previous ones in that it is not a classical one but already illustrates a leading idea
of mould calculus, namely: the application of fundamental identities of integral calculus
to word-indexed formal power series. We refer e.g. to [5] and to the survey [6] for an
overview of Rota—Baxter algebras and their relations to integral calculus and MZVs as
well as for their general properties.

Let A be a commutative Rota-Baxter algebra of weight 6, that is a commutative
algebra such that

Va,y € A, R(x)R(y) = R(R(z)y + zR(y) + Oxy).

The term R(z)y + zR(y) + Oxy =: z *p y defines a new commutative (and associa-
tive) product xr on A called the double Rota-Bazter product. We define the double
quasi-shuffle bialgebra over a Rota—Baxter algebra A, QShR(A), as the bialgebra which

identifies with T'(A) := @ A®™ as a vector space, equipped with the deconcatenation
neN
coproduct, and equipped with the following recursively defined product LU g:

Tl X WRYL Y i= 21 (T2 X W RY1- Y1) + Y1 (T1... 2k W RY2... Y1)+

(1171 *R y1)($2---$k|-URy2---yl)-
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The fact that QSh’(A) is indeed a bialgebra follows from the general definition of the
quasi-shuffle bialgebra over a commutative algebra A, see [11, 9.

Example 4. This fourth example (a particular case of the previous one) and the follow-
ing one are the first concrete examples of the kind of Hopf algebraic structure showing
up specifically in mould calculus. The definitions we introduce are inspired by the no-
tion of symmetrul mould [7, p. 418| of which they aim at capturing the underlying
combinatorial structure.

Let R[X] be equipped with the Riemann integral R := fOX viewed as a Rota—Baxter
operator of weight zero. With the notation a; := X*~!, i € N* we get: R(a;) := a‘T“
and o

a; *R aj = @CLH_T
)

This associative and commutative product gives rise to the following definition:

Definition 5. The bialgebra of quasi-symmetrul functions QSul is the quasi-shuffle
bialgebra over the linear span of the integers N* equipped with the product

. P PP
Proposition 6. The bialgebras QSym, Sh and QSul are isomorphic, the isomorphism
¢ from Sh to QSul is given by:

(b([nl nk]) o Z (TLl + .o+ "m) - (nM1+"'+Ni—1+l 44 an'f‘""HM) '
. p1pi=k m!...,ui!nl...nk
[nl +ot Mopyy oo Mpy o1 +1 + -+ "u1+~~~+m]'

The Theorem is an application of Hoffman’s structure theorems for quasi-shuffle bial-
gebras [11]. It also follows from the combinatorial analysis of quasi-shuffle bialgebras
understood as deformations of shuffle bialgebras in [9].

Example 7. The previous example gives the pattern for the notion of symmetrulity
(and gives an hint for its analytic meaning). Let now V be a vector space with a
distinghished basis B := (v;);e; and M a subsemigroup of R* ™, the strictly positive real
numbers. Let A be the linear span of M x B whose elements (m,v) are represented (T)
to stick to the “bimould” calculus notation [7]. We set:

mi . ma\ 1 /my+ mo 1 /my+ mo
U1 V2 o mo U1 my U2 '
Using the notation ("' 21”) for the tensor product of the (") in T'(A), equipped

vl ... 7
with the deconcatenation coproduct, the following recursively defined product defines a

bialgebra structure denoted QSul(M, V') on T'(A):

mi ... Mp P1 - Pk ma mo ... My P1 --- Pk
Ll = L
V1 ... Up w1 ... Wy U1 V2 ... Up w1 ... Wy
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_|_<p1> <<m1 mn> l-l-luz<p2 pk>>
w1 V1 ... Up w2 ... W
( 1 (ml +m2> 1 (ml +m2>> (mg mn> <p2 pk>
- = +— Lo .
mo V1 mq (%) V2 ... Up w2 ... W
The property follows from the associativity and commutativity of the * product, whose

proof is left to the reader.

Definition-Corollary 8. For B an arbitrary commutative algebra, writing Gqgui(ar,1)(B)
for the group of B-valued characters of QSul(M,V), the functor Gqguyar,y) i a
prounipotent affine group scheme whose points are called symmetrul moulds [7].

Let us write Sh(M, V') for the shuffle bialgebra over A, and Ggp(az,v) for the corre-
sponding prounipotent affine group scheme, we have:

Theorem 9. The prounipotent affine group schemes Gqsui(ar,v) and Gsnr,v) are iso-
morphic. The isomorphism is induced by the bialgebra isomorphism ¢ between Sh(M, V')
and QSul(M, V) defined by:

o) S

| |
[ — H1e ... e
i 1 <m1+~'+mm>
P} myp.. My 1Myp1 - .- My Vi

n

Z 1 My 4.y +1 T+ My
(%

=g 141 My 4oty +1 -+ - MG —1M4- 1« .. My,

The Theorem follows once again from Hoffman’s structure theorem for quasi-shuffle
algebras by identification of the coefficients of the exponential isomorphism in the par-
ticular case under consideration.

In Ecalle’s terminology, symmetrul moulds and symmetral moulds on M x V are
canonically in bijection. Notice that whereas the definition of symmetrul moulds as char-
acters on the Hopf algebra QSul(M, V') is essentially a group-theoretical interpretation
of the definitions given in [7], the equivalence between the two notions of symmetrulity
and symmetrality of Thm 9 (and therefore also the precise formula for the isomorphism)
is new at our best knowledge.

We do not insist further on the notion of symmetrulity that is relatively easy to handle
group-theoretically as we just have seen, and will focus preferably of the one of sym-
metrility whose signification for MZVs seems deeper and for which a group-theoretical
account is harder to obtain since it does not seem possible to interpret symmetril moulds
as elements of a prounipotent affine group scheme, but only as elements of a properly
defined prounipotent group scheme.
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2. GENERIC BIALGEBRAS

Symmetril moulds, of which a formal definition will be given later on, behave very
much as characters on QSym or T'(z,y). There are even some conversion rules to move
from one notion to the other, that we will explain later. Unfortunately, this notion of
symmetrility fails to be accounted for by using a naive theory of characters on a suitable
Hopf algebra. The aim of this section is to explain what has to be changed in the
classical theory of Hopf algebras to make sense of the notion.

The constructions in this section are motivated by the two notions of twisted bialge-
bras (also called Hopf species) explored in [16, 17, 18, 1| and the one of constructions
in the sense of Eilenberg and MacLane [15]. However, both the theory of constructions
and vector species are too functorial to account for the very specific combinatorics of
symmetrility, and we have to introduce for its proper understanding a different frame-
work. In view of the similarities with the theory of constructions, we decided to keep
however the terminology of “generic structures” used in [15].

Let X be a finite or countable alphabet, partitioned into subsets X = [[ X;. We say

i€l

that the partition is trivial if the X; are singletons. A word over X (possibly empty)
is said to be generic if it contains at most one letter in each X;. If the partition is
trivial, this means that no letter can appear twice. Similarly, tensor products of words
are generic if they contain overall at most one letter in each X;. Two generic tensor
products of words, w,w’, are said to be in generic position if w ® w' is again a generic
tensor product. Two linear combinations of generic tensor products of words ), A,w,
Y Aww’ are in generic position if all the pairs (w,w’) are. The underlying word wu(t)
of a tensor product t of words is the word obtained by concatenating its components:
u(r] @ roxy ® x3) = u(T1T2 ® Tex3) = T1T2x4T3, sO that u(t) is generic if and only if ¢
is generic.

Definition 10. The category Genx of generic expressions over X is the smallest linear
(i.e. such that Hom-sets are k-vector spaces) subcategory of the category of vector spaces
containing the null vector space and (examples refer to the case where X = {z;}ien-,
with the trivial partition)

e containing the one-dimensional vector spaces V; generated by generic tensor
products of words t,

e closed by direct sums (although this won’t be the case in the examples we will
consider, multiple copies of the V; can be allowed, the following rules are applied
to each of these copies)

and such that furthermore Hom sets contain:

e for ¢,t two generic tensors with w(t) = u(t’), the map from V; to Vs induced by
f):=t,

e the maps induced by substitutions of the letters inside the blocks Xj,

e the maps obtained by erasing letters in the tensor products (e.g. the map induced
by f(z1 ® xowy ® x3) = 1 ® 24).
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Most importantly for our purposes, Geny is equipped with a symmetric monoidal
category structure by the generic tensor product @ defined on the V; by V;&Vy := Vigy
if t ® ¢’ is generic, and := 0 else. The generic tensor product is extended to direct sums
by the rule (A® B)®(C @ D) = A®C & A®D & B&C & B&D. Notice, for further use,
the canonical embedding AQB — A ® B.

The reader familiar with homological algebra will have recognized the main ingredients
of the theory of constructions [15]. Generic algebras, coalgebras, Hopf algebras, Lie
algebras, and so on, are, by definition, algebras, coalgebras, Hopf algebras, Lie algebras,
and so on, in a given Geny. For example, a generic algebra A without unit is an object
of Geny equipped with an associative product map p from A®A to A. Notice that u
can be viewed alternatively as a partially defined product map on A (it is defined only
on elements in A ® A in generic position and linear combinations thereof).

We will study from now on only standard generic bialgebras H. By which it will be
meant that H is a generic bialgebra with product m and coproduct A such that

e H= P H,, where Hy = Vj is identified with the ground field k£ and () behaves

neN
as a unit/counit for the product and the coproduct,

e the coproduct is graded,
e the product satisfies the filtering condition: Vk,l > 0, m(Hx®H,;) C Do y<prs Hn-

These bialgebras behave as the analogous usual bialgebras (the same arguments and
proofs apply, we refer e.g. to [2]| for the classical case). In particular such a bialgebra
is equipped with a convolution product of linear endomorphims: for arbitrary f,g €
Homgeny (H, H), f*g:=mo(f®g)oA. The projection u from H to Hy orthogonally
to the H;, ¢ > 1 is a unit for . Convolution of linear forms on H is defined similarly.

The existence of an antipodal map, that is a convolution inverse S to the identity
map I follows from the identity

2.1) S=@+I—w) " =utd (1" -w)",
n>0

where the rightmost sum restricts to a finite sum when S is acting on a graded component
H,, since the coproduct is graded. In particular, a standard generic bialgebra H is
automatically a generic Hopf algebra.

Since A®B C A ® B, one can define morphisms from an algebra, bialgebra, Hopf
algebra... in Genxy to a classical algebra, bialgebra, Hopf algebra... We will call such
morphisms reqularizing morphisms. For example, a regularizing morphism between a
standard generic bialgebra H equipped with the product p and the coproduct A and
a graded Hopf algebra H’ equipped with the product g’ and the coproduct A’ is a
morphism of graded vector spaces f that maps the unit () of H to the unit 1 € H|, of H’
and such that, for any h, A’ in generic position in H,

Flu(hoh’)) = p'(f(h) @ f(h)), (f @ ) o A(h) = A'(f(h)).

Example 11. A first example of a standard generic bialgebra will look familiar to
readers familiar with the theory of free Lie algebras and Reutenauer’s monograph [21].
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Let X = [n] be equipped with the trivial partition. Then, let T} (X) be the linear span

of generic words of length k: T9(X) = € Tj7(X) is usually called the multilinear part
neN
of the tensor algebra over X in the literature. Concatenation of words defines a map
from T} (X)®T(X) to Ty, ,(X) and a generic algebra structure on 79(X) = @ T(X).
neN
Similarly, the usual unshuffling of words A (the coproduct dual to the one introduced

in example 2) defines, when restricted to generic words, a generic coalgebra structure,
and, together with the concatenation product, a standard generic bialgebra structure
on T9(X). The generic Lie algebra of primitive elements of T9(X), which is defined as
usual: Prim(T9(X)) :={w e T9(X),A(w) =w®1+1®w}, is simply the multilinear
part of the usual free Lie algebra over X.

Dually, the shuffle product and the deconcatenation product (as in Example 2) define
a (dual) standard generic bialgebra structure on 79(X), that will be named the generic

shuffle bialgebra over X and denoted Sh?(X). We write simply Sh? for Sh?(N*)

This example is particularly easy to understand: the embedding of 7Y9(X) into the
usual tensor algebra over X, T'(X), is a regularizing morphism, and all our assertions
are direct consequences of the behaviour of T'(X) as exponed e.g. in [21].

Definition 12. Let H be a standard generic bialgebra. For B an arbitrary commutative
algebra, a B-valued character on H is, by definition, a unital multiplicative map from
H to B, that is a map ¢ such that:

° o(0) =1,

e For any hy, ho in generic position, writing hy - he := m(h1®hs)

(2.2) ¢(h1 - ha) = ¢(h1)d(h2).

Proposition 13. Let H be a standard generic bialgebra. The set Gy (B) of B-valued
characters is equipped with a group structure by the convolution product x. The cor-
responding functor G from commutative algebras over the reference ground field k to
groups 1s called, by analogy with the classical case, a generic group scheme.

Indeed, we have, for any ¢,¢ € Gy (B), and any h,h' € H" := @ H, in generic
n>0
position:

¢+ ¢'(0) = ¢(0)¢'(0) =1,
G ¢ (h-h')=p(hM - W) (R?) . /)
= G(h D) (W) (D) (1)
=¢x ' (h) - ¢ (),
where we used a Sweedler-type notation A(h) = KN &),

Similarly, ¢ o S is the convolution inverse of ¢ since: ((¢o0.5)* ¢)(0) = ¢(0)? = 1 and,
for h as above,

((¢09) % §)(h) = (S(H))p(h®)) = $(S(hV) - h®)) = p o u(h) = 0.
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Notice that, contrary to the classical case, the identity ¢(S(hM))p(h?) = ¢(S(RM) -
h(z)) is not straightforward since identity 2.2 holds only under the asumption that hy, hs
are in generic position. Here, we can apply the identity because .S, in view of Eq. 2.1, can
be written on each graded component as a sum of convolution powers I** of the identity
map. It is then enough to check that, given h € H™T, I*k(h(l)) ® h?) can be written as a
linear combination of tensor products w ® w’, where w, w’ are in generic position, which
follows from the definition of the convolution product x and the coassociativity of A.

3. SYMMETRIL MOULDS AND GENERIC GROUP SCHEMES

We come now to the main examples of generic structures in view of the scope of the
present article —symmetrility properties. This section aims at abstracting the key com-
binatorial features of symmetrility in order to study them and link them with classical
combinatorial objects, such as quasi-symmetric functions. The next section will move
forward by sticking closer to Ecalle’s study of MZVs, linking symmetrility phenomena
to the resummation of MZVs.

Definition 14. Let X = N*, equipped with the trivial partition. We define the generic
divided quasi-shuffle bialgebra over N*, QShg, as the generic bialgebra which identi-
fies with T9(IN*) as a vector space, equipped with the deconcatenation coproduct, and
equipped with the following recursively defined product T (elements of T9(N*) are
written using a bracketed word notation):
[n1..ng| T [my...my] = [n1(no..ni Tmy...my)] + [mq(ny...ng me...my)]+
1 _ _

———A{[n1(ne...nxWma...my)] — [m1(na2...nWma...my)] }.

ny —m
The elements of the groups Gggpe (B) are called symmetril moulds (over N*).

Proving that QShZ is indeed a Hopf algebra in Genx is not entirely straightforward
and is better stated at a more general level, by mimicking for generic structures the
theory of quasi-shuffle algebras.

Definition-Proposition 15. Let X be a partitioned alphabet and assume that * equips
k < X >, the linear span of X, with the structure of a generic commutative algebra.
Then, the generic quasi-shuffle bialgebra denoted QSh?(X) over (k < X > %) is, by
definition, the generic bialgebra whose underlying generic coalgebra is T9(X) equipped
with the deconcatenation coproduct A, and whose commutative product is defined in-
ductively (for words satisfying the genericity conditions) by:

[n1..ng ] my..cmy] := [n1(ne..np@my...my)] + [mi(ny..npWme...my) |+
[(n1 *m1)(ng..npWms...my)].

The associativity of the product follows by induction on the total length k 4+ 1 + ¢
from the identity of the expansion:

[(n1...ngWmMy...my)TP1..pg) = [n1(N2..ngWMy...my W P1..Dg)]
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+[p1((n1(n2..nkWmy...my) ) Wp2..pg)] + [(n1 * p1)(ne..nk WMy ...myIpP1..pg)]
+[m1(ny...n Wma...myWp1..pg)] + [p1((m1(n1...nk TWmMa...my) )T P2..pg )]
+[(mq * p1)(n1..nWma...myWps...pg)] + [(n1 * m1)(ng...nEWma...my WP ..pg) |+
+[p1((n1*my)(ng..nkWma...my) ) TOP2..pg)| + [(n1 *my *p1)(ny...nE TWMa...my TPy ...pg )|
= [n1(ng..ngWmy..myWp1..pg)| + [m1(ny..ngWma...m T Pp;..pg)]
+[p1(ny..npWmy...myWps...pg)| + [(n1 * m1)(ne..ngWme...myLp1..pg)]
+[(n1 * p1)(ne..ngWmy..mWps...pg)] + [(m1 * p1)(n1...n WmMa...mTP2...pg )|

+[(n1 * my % p1)(ny..ngWMmg...my W pPa...pg)]

with the same symmetric expansion in the n;, m;, p; for [ny...nEW(my...myTWp;1...pg)].
The compatibility of the deconcatenation coproduct with the product is obtained
similarly and follows the same pattern than the proof that usual quasi-shuffle algebras
over commutative algebras are indeed equipped with a Hopf algebra structure by the
deconcatenation coproduct [11, 9|, and is omitted.
We can now conclude that QShZ is indeed a generic bialgebra from the Lemma:

Lemma 16. The product *,
) ] i= —— ([n] — [m})

n—m

equips k < N* > with the structure of a generic commutative algebra.

Indeed, for distinct m,n, p,

1 1
(08 m) 3] = ) = ) ) = s
1 1 1
T " T e ) T o ) P
- SR )+ ——

(n —m)(n —p) (m —n)(m —p) (p—n)(p—m
which is equal to the same symmetric expression for [n * (m * p)].
For later use, we also calculate iterated products in k£ < N* >.

Lemma 17. For distinct nq,...,ni € N* we have
(1] * - - % [na] :i%
— [l (ni —ny)

J#i
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Let us assume that the Lemma holds for & < p and prove it by induction. Since

the product * is commutative, it is enough to show that the coefficient of [n,41] in
[n1] % - * [np1] is given by 1;[ pri=ny)
=P

» [1(npr1 —mny)
J<p
Z ni) 1

=1 np+1

. Equivalently, we have to show that a = 1,

where

"p+1 —nj)
(n; —nj)

I M@

jséz',j<p ISP
Notice that the induction hypothesis amounts to assuming that the following two
equivalent identities hold for arbitrary distinct integers mq,...,m,

Sl (G Sl )

i=1 j#i,j<p—1 i= 1J7’517J<P

We get:
L (npy1 —ny) (npy1 —ny)
o= I Gt I e
= \djey (im0 j<pm1 (2= 15)
p—1 _ 11 1(np+1 —le) ’I’L
= (g1 = mi) + (i = mp) + [ 2=
_ [T (ni—mny) p—n])
=\ it J=pt
! (1 = ;)
:Z — | H (”p+1—”j)+z H —— =0+1=1,
i=1 [T (ni—ny) j<p—1 i=1 \j#i,j<p—1 (ni —nj)
J#4,§<p = J7LI=P

where the last identity follows from the induction hypothesis.

Theorem 18. The following map ¢ defines a linear embedding of QShY into Sh and
1 a reqularizing bialgebra map.

_1\k—i M1 N
([ ...ng)) = Z (=1) Z o [n;]

23T L7 (nj_nl)
= =1,
patui=k I=H#5,01<m

k
3 [n;]
Ittt e H1<I<E

In particular, the product and coproduct maps on QShg are mapped to the product and
coproduct on Sh.

(nj —mn)

The Theorem can be rephrased internally to the category Genpn- -this is because the
image of 1 identifies with the subspace TY9(IN*) of Sh (the latter identifying with 7'(IN*)
as a graded vector space).
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Corollary 19. The standard generic bialgebras QShY and Sh? are isomorphic under
1.

The theorem is an extension to the generic case of the Hoffman isomorphism between
shuffle and quasi-shuffle bialgebras. Following [11, 9], the proof of the isomorphism relies
only on the combinatorics of partitions and on a suitable lift to formal power series of
natural coalgebra endomorphisms of shuffle bialgebras (we refer to [9] for details). Let
us show here that these arguments still hold in the generic framework.

0 .
Let P(X) = > p;X" be a formal power series XQ[[X]]. This power series induces
i=1
a generic coalgebra endomorphism ¢p of T9(IN*) equipped with the deconcatenation
product: on an arbitrary generic tensor [nj ...ng] € T9(IN*) the action is given by
(3.1)

k
op([ny...ng)) :Z Z Piy-Dij (1] % % [04,]) @ oo @ ([Riy iy 1] * o [0]),

G=1i14..+i;=k

where we recall that [n]*[m] := =] \When py # 0, ¢p is bijective (by a triangularity

n—m
argument), and a coalgebra automorphism of 79(N*).
Let us show now that, for arbitrary P(X), Q(X) € XQ[[X]],

(3.2) PP 0 GQ = PpPoq;

where (P o @Q)(X) := P(Q(X)). We have indeed, for an arbitrary sequence of distinct
integers ni,...,ng:

¢p [¢) qSQ(nlnk) =

k
= ¢P(Z Z iy "'Qik(nl *"'*ni1)®"'®(ni1+---+ij71+1*"'*nk))
Jj=lii+--+ij=k

=> > > D Phuee Pl Qi (0% E Mg, )@

E g
=1 I=1 hy4-Ahy=j i1++ij=k

<

@ (Mg e ey 1 R T)

= op(@)(n1-..nk).
The proof of the theorem follows: ¢ = ¢,y has for inverse p = ¢erp which maps
isomorphically Sh? to QShg (Hoffman’s combinatorial argument in the classical case in
[11] applies mutatis mutandis when restricted to generic tensors).

4. RESUMMATION OF MZVSs

In order to resum MZVs into formal power series equipped with interesting group-
theoretical operations and structures, let us introduce first a formal analog of the stan-
dard generic bialgebra QShg studied previsouly. Here, "formal" means that numbers
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and sequences of numbers are replaced by formal power series and words over an alpha-
bet. Proofs of the properties and structure theorems are similar to the ones for QShg
and are omitted. Our definitions and constructions are motivated by [7].

Definition 20. Let V' = {v; }ien+, equipped with the trivial partition. We define the
generic divided quasi-shuffle bialgebra over V, QSh{(V), as the generic bialgebra defined
over ky := k((V)), the field of fractions of the ring of formal power series over V, which
identifies with T9(V') as a vector space, equipped with the deconcatenation coproduct,
and equipped with the following recursively defined product T (elements of T9(V') are
written using a bracketed word notation):

[vi ...vik]m[vikﬂ "‘Uik+l] = [vi, (vi, U, WG ---Uik+l)] + [vik+1 (vi, U TV Ly Vi )]+

1 - _
v — v {[Uil (Uiz’”vik LUUikJrz‘”vikH)] - [Uik+1 (Ui2”'vik LUUikJrz”'vikH)]}v
i1 Tkt
1

Vig ~Vig 1y

where [v;,..v;5,] and | | are in generic position (so that is well-

defined).
The elements of the groups GQShg(V)(B), where B runs over algebras over ky, asso-

Uik+1 ”'UikH

ciated to the generic group scheme GQShg(V) over ky are called symmetril moulds (over

V).

Let us denote Sh{, the generic shuffle bialgebra over V with ky as a field of coefficients.
Corollary 19 generalizes to QShg(V) and Shg/: the two generic bialgebras are isomorphic
under )y

1)k [ & v}
Yy ([or... o)) == Z ( ) - Z I [(v]j—vz)

=1 h
J l#JJS)u'l

[v)]
2 [1 (vj — )

J=pateetpi—1+l 1#g, 1+ +pi—1 +1<I<k

Let us denote now QSymy the completion (w.r. to the grading) of the bialge-
bra of quasi-symmetric functions over the base field k. Since properly regularized
MZVs at positive values are characters on QSym, generating series for MZVs such as

> 1)1”_1 e vZk_IC(nl, ...,ng) and the study of their algebraic structure can be

ni,...,Nip>1
lifted to QSymy,,. Let us show how this idea translates group-theoretically.
Theorem 21. The following morphism =y is a reqularizing bialgebra map from QShg(V)
to QSymy,:
Y([viy -+ v4,]) = Z UZI_l"'UZf—l g .ong).

ni,...ng>1
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Notice first that ~ is, by its very definition, multiplicative for the concatenation prod-
uct:

(4.1) V[ - vi]) = (i) - ([via - oi]) = v ([vir]) - A ([vis]) - ([ ]),

from which it follows that 7 is a coalgebra map (recall that the later is induced on
QSh(V) and QSym, by deconcatenation).
Let us prove that, for any vj,...v;, , vi, -

-Vj,,, In generic position, we have

7([”1'1 .- 'Uik]m[vikﬂ s Uik+l]) = 7([”@'1 .- "Uik])lil'y([vikﬂ ce Uik+l])

by induction on k + . So, let v;, an element of V' distinct from v;,, .. We get:

. Uik+l .
7([Ui0 R Uik]m[vikJrl .- 'UikJrl]) = 7([”% (Ui1’”vikmvik+1‘”vik+z)])

+7(['Uik+1 (Uio ...Uikmvik+2 “‘Uik+l)])

1

+7(f{[vio (Uil"‘Uikmvik+2"'vik+l)] - [Uik+1 (Uil"‘Uikmvik+2"'vik+l)]})‘
Vig = Vigyq

From Eqn 4.1 and the induction hypothesis, we get:
Y([vig (Viy 03, WG, v )] = Y ([Wig))Y([Vi 03, TV 05 0)])

= ’7([”2'0])/7([”2'1 s Uik])Hﬂ7([Uik+1 s Uik+l])
and similarly

’7([Uik+1 (Uio“‘vikmvik+2‘”vik+l)]) = ’7([Uik+1])(7([vio s Ulk]) H:"V([Uik+2 s Uik+z]))-

At last,
1 _
’Y(%[Uio - Uik+1][v’i1"'vik Luvik+2”'vik+1]) =
Vig = Vigqq
1 __

' ’Y([Uio - Uik“])’Y([Uh -+ Vi, '—'—'Uik+2”'vik+z])
— Vi
and, in view of the recursive definition of H, to conclude the proof it remains to show
that

Uiy

L (Wi = vin)) = 7([000]) © ([0 ])

0o Vigy
where, to avoid confusion with other already introduced symbols, ® denotes the product
of bracketed integers induced by the addition: [n] ® [m] = [n 4+ m)].

Indeed, we have:

[vig = vig, ) = Dot = o Hn) = > (o~ = o H[n],

n>1 n>2

vy

and

(Uio - Uik+1)7([vi0]) © 7([Uik+1]) = (Uio - Uik+1) Z UZ)_%Z:: [Tl + m]
n,m>1

=S v ) S el = S o)l

p>2 n,m>0,n+m=p—2 p=>2
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Corollary 22. Let V be an infinite alphabet. The regularizing morphism ~ induces,
for any commutative algebra B over a base field k a group map from Gqsym(B) to

GQShg(V) (B ®k kv)

In particular, regularized ¢ functions, viewed as a real-valued characters on QSym
give rise to symmetril R((V'))-valued moulds over V. More generally, symmetrel moulds
give rise to symmetril moulds by resummation |7, 4]-the very reason for the introduction
of the latter.

Let us mention that, when dealing with modular MZVs,

€.\
C<sl...sr> o Z

ni>->ng

e27rin151 o e27rinrer

nyt...ong” ’
where ¢; € Q/Z, a “bimould” version of the previous construction has to be used.

We only sketch the constructions in that case, they could be developed in more detail
following the previous ones in this section.

Definition 23. Let W := Q/Z x V, with V' = {v;};en+, equipped with the partition
W =1 Wi, W; :== Q/Zx{v;}. We define the generic divided quasi-shuffle bialgebra over
W, QShY(W), as the generic bialgebra defined over ky := k((V')), which identifies with
T9(W) as a vector space, equipped with the deconcatenation coproduct, and equipped
with the following recursively defined product T (elements of W are represented as
column vector):

<€1...6T >m<er+1...er+s> :: <€1> <<€2...6T >m<er+1...67+s>>
Uiy « - - Uy, ’L)Z'T,Jrl e ’L)Z'T,Jrs Vi Vig « - - Uy, ’L)Z'T,Jrl e Uir+s
+<Er+1> <<€1---Er >m<er+2---€r+s>>
Uir+1 Uiy - - Vg, ’L)Z’T,Jr2 .. .’L)Z’T,Jrs
1 €1+ €11 €...6 \__[ €19...€
+ T+ r 0 r+ r+s
Uiy — Vipyy Uiy Vig «+ - Vj,. Vipgo - Vipys
B 1 <€1+Er+l> <<€2---€r >m<€r+2---€r+s>>
'Uil_vir+1 ’UZ'T,Jr1 Vig «+ - Vj,. Uir+2"'vir+s

1

———— is well-defined).
k41

€1...€p €r41.--€r4s 4 : LI
where (v ) and ( ) are in generic position (so that Eae=

iy --Vip VipgqVipys
The elements of the groups GQShg(W)(B), where B runs over algebras over ky, as-
sociated to the generic group scheme GQShg(W) over ky are called symmetril moulds

(over W).

Symmetril moulds over W can be used to resum modular MZVs by the same process
that allows the resummation of usual MZVs by symmetril moulds over V', see [7].
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5. A NEW RESUMMATION PROCESS

In this last section, we introduce a new resummation process for MZVs, based on
Thm 18. Contrary to Ecalle’s resummation process, which maps a symmetrel mould
(a character on the algebra of quasi-symmetric functions) to a symmetril mould, the
new resummation is much more satisfactory in that it maps a symmetrel mould to a
character on Shg/7 so that calculus on MZVs and other characters on QSym can be
interpreted in terms of the usual rules of Lie calculus (recall that the set of primitive
elements in the dual of Sh*;]/ is simply the multilinear part of the free Lie algebra over
the integers, a well-known object whose study is even easier than the one of the usual
free Lie algebra).

Theorem 24. The inverse py of the standard generic bialgebra isomorphism 1y, between
QShY(V) and Shi, is given by

1 [v)]
pv([vr ... vg]) = L
v ([ k u1+--z+:m=k !l ! ]zz:l l;«éjE[Sm(Uj )
S o]
Yj
Z II (v; — )

= o e <1<k

The Theorem follows by adapting to 79(V') the correspondence between formal power
series in X Q[[X]] and generic coalgebra endomorphisms of 79(N*): with the same no-
tation than the ones used for T9(N*), each P € XQ[[X]] defines a generic coalgebra
endomorphism ¢p of T9(V). We have py = ¢eqp and vy = ®log, and the two mor-
phisms are mutually inverse.

Corollary 25. The morphism regy := « o py is a regularizing Hopf algebra morphism
from Sh{, to QSymy,. It induces, for any commutative algebra B over the base field k
a group map from GqQsym(B) to Gsn, (B @y ky).

Naming generic symmetral moulds the characters on Shg/, we get that this last map
resums symmetrel moulds (such as regularized MZVs at the positive integers) into generic
symmetral moulds. As announced, this approach should provide a new way to investigate
group-theoretically the properties of MZVs. Together with the study of the various
combinatorial structures introduced in the present article, this will the object of further
studies.

We conclude by illustrating the resummation process on low dimensional examples
that illustrate the behaviour of the map regy. We write ¢ for a character on QSym (a
symmetrel mould), having in mind the example of regularized multizetas. The morphism
regy is given in low degrees by:

regy (for]) = 7([v1]) = Y oo,

n>1
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1 V1| — |U2
regy ([v1, va]) = ¥([ve, v2] + 5%
1
= > e ]+ g > o]
n,m>1 (Ul - ’U2) n>1
1
Z oLy m]+§ Z vivd[n].
n,m>1 n>2,p+q=n—2
1 [/ |vivs| — |vaus V1V2| — |V1U3
regy (o1, vmyval) = ([, v o]+ (L1l 2zl [l 2 v

1 [v1] [v2] [v3]
G <<v1 ~ ) —v3> T oz —v1)(v2 —vs) (03— 01)(v3 —v2>>

§ : n—1 m 1 -1 1 § : P m—1
U1 [nv mvp] + 5( U1U2U3 [’I’L, m]+
n,m,p>1 n>2,p+q=n—2,m>1
1
n—1,p, q D,4,r
E v vy [n, m]) + 6 E vy vausn],
n>1,m>2 p+q=m—2 n>3, p+q+r=n—3

where we used the identity

(A ! vg_l vg_l

(v1 —v2)(v1 — v3) " (v2 —v1)(v2 — v3) " (v3 —v1)(vs — v2)

_ p,4,r
= E V1 V9 V3.

pt+qg+r=n—3
We get, for the C character:
Coregr(fowlal) = ¢ 3 vy (mem] + ma)) + > o))
n,m>1 n>2,p+q=n—2
= (( Z vy ! vy 1n|:|:l[m])
n,m>1

= (oregy([v1]) - Coregy([va]).

Coregy([vr,vo]wifuz]) = ¢ OTBQV([U1,U2,U3] + [v1,v3, v2] + [v3,v1,v2])

=¢( D AT Iy m] wip]+

n,m,p>1
1 1
S (Gt t oo g nm] + Gofoep o ] ) +
n>2,p+q=n—2,m>1
1
5> )

n>3, p+q+r=n—3

Zv"lmlnmh—% Z vivlln Zv [r])

n,m>1 n>2,p+q=n—2 r>1
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= (oregy([v1,v2]) - (o regy ([vs]).
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