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CONTROL OF THE EFFECTS OF REGULARIZATION ON

VARIATIONAL OPTIC FLOW COMPUTATIONS

Z. BELHACHMI AND F. HECHT

Abstract. We consider a variational model for the determination of
the optic-flow in a general setting of non-smooth domains. This problem
is ill-posed and its solution with PDE techniques includes a regulariza-
tion procedure. The goal of this paper is to study a method to solve
the optic flow problem and to control the effects of the regularization by
allowing, locally and adaptively the choice of its parameters. The regu-
larization in our approach is not controlled by a single parameter but by
a function of the space variable. This results in a dynamical selection of
the variational model which evolves with the variations of this function.
Such method consists of new adaptive finite element discretization and
an a posteriori strategy for the control of the regularization in order
to achieve a trade-off between the data and the smoothness terms in
the energy functional. We perform the convergence analysis and the
a posteriori analysis, and we prove that the error indicators provide,
as, a by-product, a confidence measure which shows the effects of regu-
larization and serves to compute sparse solutions. We perform several
numerical experiments, to show the efficiency and the reliability of the
method in the computations of optic flow, with high accuracy and of
low density.

1. Introduction

The computation of the displacement field between the subsequent frames
of an image sequence is a classical problem in image processing . This
displacement field is called the optic flow and is used in many applications
(medical imaging, video processing, . . . ). Moreover, it belongs to a family of
correspondence problems where one seeks a smooth mapping that maps the
features in one image to another one. Its reliable computation constitutes a
very challenging task in computer vision. Most of the methods to compute
the optic flow are based on constancy assumptions on image features such
as the gray levels, the brightness, . . . In general, these assumptions are not
sufficient for its determination and they allow only the estimation of the
component normal to the edges of the image, this is the so-called aperture
problem. It shows that the estimation of the optic flow is in fact an ill-posed
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2 Z. BELHACHMI AND F. HECHT

problem, we refer the reader to the reviews in [14, 36, 12] and the references
therein.

The optic flow problems have received much attention in the image anal-
ysis community (see [13, 14, 15, 1, 2, 10, 3, 26, 29, 30, 32, 33, 36, 18] and the
references therein). The variational methods are some of the most efficient
approaches for solving such problems [14, 15, 3, 4, 25, 46, 37]. They consist
in searching the solutions which are minimizers of suitable energy function-
als. Their success is mainly due to the fact that the functional to minimize
expresses the data constraints (constancy assumptions) and regularization
terms (smoothness) to cope with the aperture problem and to recover a fully
dense vector fields (defined in the entire domain). A major drawback of the
variational methods is the reliability of the computed fields in all locations
of the computational domain. While obtaining a dense vector fields is one
of the advantages of such methods (no need for extra interpolation proce-
dure), it is difficult to distinguish which parts of the estimated fields are due
only to the filling-in effect of the regularization. This reliability is of great
importance in many applications which use the optic flow techniques (for
instance, in medical imaging, the optic flow allows to measure some physical
quantities which are difficult to measure directly [38]).

To circumvent this difficulty, some confidence measures were proposed
earlier in the literature to assess the reliability and to sparsify the estimated
optic flow. The most widely used confidence measure is based on the mag-
nitude of the image gradients [8, 39], but is not efficient (see the discussion
in [13]. Recently, a local energy-based measure was introduced in [13], it
seems to give better results than the previous one, but its derivation as well
as its performances follow from heuristic considerations rather than by a
well founded mathematical arguments. In particular, the main question on
the reliability of the computations is clearly linked to a balance between
the two competing terms of the energy (data constraints versus regulariza-
tion) and not to the total energy. It turns out that building such confidence
measures should be considered in a more general setting on how to control
the regularization process (enforcing its effects only when and where it is
necessary).

Most methods for the choice of the regularization parameters obey to the
following paradigm [43, 21, 20]: Optimize, then discretize. Thus, the value
of the parameter (usually a real number) is fixed thanks to some a priori
estimates linking the noise magnitude and such value. This method is not
robust with respect to the variations of the discretization parameters. In
our case, to deal with a real valued function instead of a single parameter,
we invert the paradigm: we discretize, then we optimize. To this end we
use a sophisticated approach based on a posteriori estimates which allow to
measure both the discretization error and the model error [5, 11].

In this paper, starting with a variational model we propose a finite element
method for computing the optic flow which includes an implicit confidence
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measure. Our strategy is based on locally adaptive choice of the regulariza-
tion parameters which allows us to select and modify dynamically the initial
model. The adaptation process is completely a posteriori and uses only the
measure on the estimated optic flow, hence it differs from other approaches
like the image-driven or the flow-driven regularization methods [1, 3] (where
the models are given a priori) as well as from algorithmic approaches based
on the multigrid method [31, 42] (where there is one single parameter of
regularization and the number of cycles is fixed a priori). Moreover, even if
the procedure of selecting locally the parameters is nonlinear (i.e. belongs to
the nonlinear approximation theory), the variational model remains linear
which is an advantage when comparing to flow-driven models [4].

This new approach of the control of the regularization increases the effi-
ciency of most existing variational models currently used to solve problems
of image analysis and of computer vision. In fact, it should be considered as
a tool for selecting suited models by adjusting the influence of each term in
the energy functional where various constraints of the considered problem
are expressed. The selection is automatic and almost no hand tuning is re-
quired, which constitutes a promising method, in particular to design or to
simplify some nonlinear models. Moreover, the method introduced in this
paper, benefit from each improvement of the model (the energy functional)
with respect to the data.

The adaptivity process which allows the local choice of the parameters is
performed with a rigorous analysis of the residual error estimators. These
are error indicators which are equivalent to the discretization error in an
appropriate norm [44, 34, 9]. We use a modified energy norm depending
on the regularization parameters used as scaling factors in the error indica-
tors. Our goal is not only to provide an efficient method to solve optic flow
problems but also to show how this error indicators constitute a natural
confidence measure which yield a low density flow fields (i.e. achieve the
goal of sparsification of the computed vector fields). In addition we use the
error indicators to improve the computations results and to also build the
“best” mesh for the optic flow. The method is, from this point of view, self
contained and no extra confidence measures, nor sparsification process are
needed. The method should also work with the finite difference method but
our choice is related to the fact that the analysis and the adaptive process
are more usual in the framework of finite element methods. In addition,
this choice is enforced by the fact that well suited meshes for optic flow are
usually unstructured. The cost of the interpolation on structured meshes
where the images are given is low compared to cost of the computations in
such grids (which are very large, particularly for high resolution images).
Moreover, in many applications, the optic flow computations are used to
estimate some physical data (wavefront, velocity of the blood in vessels or
in the heart [38], . . . ). This data serve in other simulations in various finite
element codes.
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There exists a wide variety of variational models for optic flow determina-
tion [12, 45], linear, nonlinear, discontinuity-preserving, . . . In order to apply
our program and to show the reliability of the method, we will consider a
linear model introduced in [14, 15] called the CLG (Combined Local-Global)
approach which is representative of variational linear optic flow methods. In
a second part of this work (a forthcoming paper) we will present the method
for some nonlinear models.

The paper is organized as follows: In Section 2 we state the variational op-
tic flow model and we establish its principal properties. Section 3 is devoted
to the finite element discretization and the well posedness. In section 4, we
perform the a posteriori analysis and define the error indicators. In section
5, we discuss implementation issues. Numerical experiments are presented
in Section 6. In appendix A, we establish the convergence of the discrete
solutions and appendix B is devoted to the (rather) technical derivation of
the a posteriori error estimates which justify mathematically our approach
of the control of regularization.

2. Variational optic flow problem

Optic flow determination consists of finding a vector field (u1, u2) which
describes the “motion” in a given sequence of an image. Given a domain
Ω ∈ R2 and a function f : Ω × R −→ R modeling a sequence of frames of
an image, most models in optic flow problem are based on the constancy of
the grey level of pixels which reads:

(1) f(t, x1, x2) = f(t+ 1, x1 + u1, x2 + u2)

For small displacements, if we assume f ∈ C1([0,+∞[ ;R2), we are led
to consider the following problem: find the displacement field u1(x1, x2),
u2(x1, x2), such that

(2) ft + fx1u1 + fx2u2 = 0

The vector field (u1, u2) is called the optic flow.

Remark 2.1. The equivalence of (1) and (3) is still valid if we assume
f ∈ C0([0,+∞[ ;L1(R2)) the derivatives in this case are to be understood in
a weak sense.

The principle of the variational approach is to determine u = (u1, u2) as
the minimizer of a given energy functional. This functional is usually made
of two parts: a data term which expresses the optic flow constraint (3) and
a regularization term due to the fact that the first part does not yield a well
posed problem. We refer the reader to [14, 15, 12] and the references therein
for a complete review of the various models of functionals. In what follows,
we will consider a linear model called the CLG approach [15].
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We will denote by J% the matrix K% ∗ (grad f grad fT ), where we use the

spatial gradient ( ∂
∂x1

, ∂
∂x2

)T ,

J% =

(
K% ∗ f2

x1
K% ∗ fx1fx2

K% ∗ fx1fx2 K% ∗ f2
x2

)
,

and K%(x, y) is a Gaussian kernel with standard deviation %. Given a vector
field v, we denote by

grad (v) =

(
∂v1
∂x1

∂v1
∂x2

∂v2
∂x1

∂v2
∂x2

)
.

We also denote for v = (v1, v2)

∆v = (∆v1,∆v2),

where ∆v1 is the Laplacian of the scalar function v1. We introduce the
product

grad (u) : grad (v) =
2∑

i,j=1

∂ui
∂xj

∂vi
∂xj

.

We set f = −K% ∗ (fx1ft, fx2ft)
T , and u = (u1, u2)T , where fx1 , fx2 and ft

stand for the derivatives with respect to x1, x2 and t respectively. For the

sake of brevity we will denote by uTJ%u, J%u
2 or |J

1
2
% u|2 the product

(J%u,u),

where (., .) is the scalar product in R2. In the pioneering work of Lucas and
Kanade (1981) and Lucas (1984) proposed to solve (2) by minimizing the
energy K% ∗ (fx1u + fx2v + ft)

2). To obtain a dense flow estimates, Horn
and Schunck (1981) have proposed to recover the functions u(x1, x2, t) and
v(x1, x2, t) as minimizers of the global energy∫

Ω
((fx1u+ fx2v + ft)

2) + α(|gradu|2 + |grad v|2)) dx1dx2

The CLG method proposed by Bruhn and Weickert (2005) is a combination
of this two approaches. Our approach is a modification of this last model
where we allow α to be a function of (x1, x2).

In the rest of the paper we will denote by u a solution to the equation

(3) J%u = f .

which could be interpreted as a minimizer of the functional∫
Ω |J

1
2
% u− J−

1
2

% f |2 dx1dx2.
In general, in the estimation of the optic flow problem, it is always as-

sumed that the domain Ω is a smooth open set. This assumption becomes
a restriction if one wants to deal with some altered images (satelite images,
images with hidden part, . . . ) or for images with occlusions. We shall not
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make such an assumption at least for the analysis of the continuous prob-
lem. The general functional setting of the optic flow consists in the following
choice of the space

L1,2
% (Ω,R2) = L1,2

% (Ω) =

{
u ∈ L2

`oc(Ω); gradu ∈ L2(Ω),

∫
Ω
|J

1
2
% u|2 dx <∞

}
,

where the gradient is taken is the sense of distributions. We define the
equivalence relation:

uRv←→
∫

Ω
|grad (u− v)|2 dx +

∫
Ω
J%(u− v)2 dx = 0.

The quotient space (L1,2
% (Ω))/R = L1,2

% (Ω) is a Hilbert space for the scalar
product

(u,v)% =

∫
Ω

grad u : grad v dx +

∫
Ω
J%u · v dx.

equipped with the norm

‖u‖
L1,2
% (Ω)

= (u,u)
1
2
%

Note that if u, v belong to L1,2
% (Ω) and uRv then, for any connected com-

ponent ω ∈ Ω such that |ω ∩ {J% > 0} | = 0, we have u − v = constant. If
|ω ∩ {J% > 0} | > 0, then the constant is zero.

We consider the following energy functional associated with the optic flow
recovery by variational methods

(4) E(u) =

∫
Ω

(uTJ%u + α(x)|grad u|2) dx−
∫

Ω
f · u dx,

where α is a given , scalar, piecewise constant function on Ω. Accordingly,
we consider a disjoint partition into a finite number of subdomains Ω`, 1 ≤
` ≤ L, such that the function α is equal to α` on each Ω`. We denote
αm = min1≤`≤L α`, respectively αM = max1≤`≤L α`, and we assume that
αm > 0.

In order to handle easily the degeneracy of J% (i.e. the compatibility
condition on regions where J% is not definite) we will rewrite the datum

f , under the form f = J%h + g, where h is such that (J%)
1
2 h ∈ L2(Ω),

supp g ⊂ Ω and
∫
ω g dx = 0 for any connected component subset ω of Ω.

Such a decomposition follows from the compatibility condition on f to solve
the Neumann problem {

∆u + J%u = f in Ω,
∂u
∂n = 0 on ∂Ω.

The variational optic flow problem consists of finding u ∈ L1,2
% (Ω) such that

(5) E(u) = inf
v∈L1,2

% (Ω)
E(v).
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The existence of a weak solution uα of (5) follows from the Lax-Milgram
Lemma. The only point to check is the continuity of the linear form v 7→∫

Ω f · v dx. We have

|
∫

Ω
f · v dx| ≤

∫
Ω
|J%h · u| dx + |

∫
Ω

g u dx|

≤
(∫

Ω
J%h

2 dx

) 1
2
(∫

Ω
J%u

2 dx

) 1
2

+ C

(∫
ω
|grad u|2 dx

) 1
2
(∫

ω
|g|2 dx

) 1
2

≤ C‖u‖
L1,2
% (Ω)

,

where C is the Poincaré-Wirtinger inequality applied in H1(ω,R2) \R2 and
the smooth set ω is such that supp g ⊂ ω ⊂ Ω.

Proposition 2.2. Problem (5) admits a weak solution uα in L1,2
% (Ω).

When Ω, f , J% are sufficiently smooth, additional regularity could be
proved for the solution uα. For instance, with Ω Lipschitz-continuous, f ∈
L2(Ω) and J% ∈ L+∞(Ω), the following regularity result holds [6, Proposition
2.5]

Proposition 2.3. There exists a constant c only depending on the geometry
of Ω, such that a weak solution uα of problem (5) belongs to Hs+1(Ω), for
all real numbers s < s0, where s0 is given by

s0 = min

{
1

2
, c| log(1− αm

αM
)|
}

The Euler-Lagrange equations are given by:

(6)


div(α(x)gradu1)− (f2

x1
u1 + fx1fx2u2 + fx1ft) = 0, in Ω,

div(α(x)gradu2)− (fx1fx2u1 + f2
x2
u2 + fx2ft) = 0 in Ω,

∂u1
∂n = ∂u2

∂n = 0, on ∂Ω,

Remark 2.4.
If Ω is not smooth, the Neumann condition on the boundary should be un-
derstood in the weak sense.

The weak formulation of (6) reads

(7)

{
Find u ∈ L1,2

% (Ω), such that∫
Ω α(x)∇u : ∇v dx +

∫
Ω J%u · v dx =

∫
Ω f · v dx ∀v ∈ L1,2

% (Ω).

We introduce the notations: for u, v ∈ L1,2
% (Ω)

(8) aα(u,v) =

∫
Ω
α(x)gradu : gradv dx +

∫
Ω
J%u · v dx,

(f ,v) =

∫
Ω

f · v dx,

Thus, problem (7) consists of finding u ∈ L1,2
% (Ω), such that

aα(u,v) = (f ,v), ∀v ∈ L1,2
% (Ω).
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The equivalence of problem (7) and (6) follows by standard arguments.

2.1. Some useful inequalities. In order to obtain the error estimates with
constants independent of α, we introduce the norm

‖u‖2%,α = ‖α
1
2 grad u‖2L2(Ω) + ‖J

1
2
% u‖2L2(Ω).

For a posteriori analysis purposes, we will assume that the matrix J% is defi-
nite a.e. This assumption is not restrictive in the computer vision problems
because the data term is usually regularized.

In addition, to avoid inessential technicalities in the discretization we as-
sume that Ω is Lipschitz-continuous domain. In this case the space L1,2

% (Ω) =
H1(Ω) (see [23, Corollary 2.2]).

Remark 2.5. Note that for nonsmooth domains, we may proceed by ap-
proximation in the spirit of [7]. The nonsmooth parts are approximated by
smooth neighbourhoods on which the regularization parameter goes to zero.

We prove now the following estimate

Proposition 2.6. Let u ∈ H1(Ω) be a solution of problem (3). For α > 0,
the following estimates hold between u and the solution uα of problem (7)

(9) ‖uα‖%,α ≤ C‖J
1
2
% u‖L2(Ω),

and

(10) ‖u− uα‖%,α ≤ C(
αM
αm

)
1
2 ‖α

1
2 grad uα‖L2(Ω),

with the constant C independent of α.

Proof. We have from (7) and (3)∫
Ω
α(x)grad uα : grad v dx +

∫
Ω
J%uα · v dx =

∫
Ω
J%u · v dx ∀v ∈ H1(Ω).

Choosing v = uα, we obtain∫
Ω
α(x)|grad uα|2 dx =

∫
Ω
J% (u− uα) uα dx,∫

Ω
α(x)|grad uα|2 dx +

∫
Ω
J% u2

α dx =

∫
Ω
J% u · uα dx

≤ C‖J
1
2
% u‖L2(Ω) ‖J

1
2
% uα‖L2(Ω),

which yields the inequality (9).
Again choosing v = u− uα, we obtain∫

Ω
α(x)grad uα · grad (u− uα) dx =

∫
Ω
J%(u− uα) (u− uα) dx

=

∫
Ω
J%(u− uα)2 dx.
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Adding and subtracting the quantity
∫

Ω α(x)grad u : grad (u−uα) and the
Cauchy-Schwarz inequality yields, for any ε > 0∫

Ω
α(x)grad (u− uα)2 dx +

∫
Ω
J%(u− uα)2 dx =

∫
Ω
α(x)grad u : grad (u− uα) dx

≤ αM‖grad u‖2L2(Ω) + α1+2ε
M ‖grad u‖2L2(Ω)

+
αM
αm

α−2ε
M ‖α

1
2 grad uα‖2L2(Ω).

which yields (10) �

Note that we are only interested here in the behaviour of (uα) as the ratio
αM
αm

is large because we intend to adapt locally the choice of the regular-

ization parameters α. The bound (10) will be used to complete the error
indicator to obtain a confidence measure allowing as well for a good choice
of α, and to build an adapted mesh for the optic flow.

It follows from proposition 2.3 that uα isH1(Ω). While, there is a priori no
reason that u a solution of (3) belongs to H1(Ω). A reasonable assumption
on the regularity for a solution of (3) is to be in the space BV , but for
the discretization purpose we prefere to work in the Hilbertian framework.
Therefore an appropriate choice is the space

X =
{
v ∈ L2(Ω); v|Ω`

∈ H1(Ω`), 1 ≤ ` ≤ L
}
,

which allows for jumps across the boundaries of the subdomains Ω`. The
results of proposition 2.6 extend to this case by replacing the norm with the
broken one

‖u‖X = (

L∑
`=1

α
1
2
` ‖grad u‖2L2(Ω`)

+ ‖J
1
2
% u‖2L2(Ω))

1
2 .

For simplicity we will assume that we have a solution u in H1(Ω).

3. Discrete problem

We assume that the domain Ω is polygonal. We consider a regular family
of triangulations (Th)h made of elements which are triangles (or quadrilater-
als) with a maximum size h, satisfying the usual admissibility assumptions,
i.e. the intersection of two different elements is either empty, a vertex, or a
whole edge. The ratio of the diameter of any element T ∈ Th to the diameter
of its largest inscribed ball is bounded by a constant σ independent of T and
h.

We introduce the following discrete space: for h > 0

Vh =
{
vh ∈ C(Ω), vh|T ∈ P1(T )2

}
.
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We denote by J%,h a finite element approximation of the matrix J% obtained
as follows: for any K ∈ Th we denote by J%,h,K the matrix where the coeffi-
cients

(J%,h,K)i,j =
1

|K|

∫
K

(J%)i,j dx, 1 ≤ i, j ≤ 2,

are the mean values of the coefficients of J% on K. The matrix J%,h is the
piecewise constant matrix which takes the value J%,h,K on the element K.

We denote by aα,h, the bilinear form aα, where J% is replaced by J%,h.
The discrete problem reads

(11)

{
finduα,h ∈ Vh, such that
aα,h(uα,h,vh) = (f ,vh), ∀vh ∈ Vh,

Under the assumption of the definiteness of J%, the ellipticity of the bilinear
form a(., .)α,h holds. Applying the Lax-Milgram Lemma, we have

Proposition 3.1. For any α > 0 there exists a unique solution uα,h of the
discrete problem (11).

4. The confidence measure by residual error indicator

For the a posteriori error estimates we assume that f ∈ L2(Ω)2 and we
fix fh a finite element approximation of it associated with Th. We also fix

a finite element approximation J̃%,h of J%. For K ∈ Th, we denote by EK
the set of its edges not contained in the boundary ∂Ω. The union of all EK ,
K ∈ Th is denoted by Eh. With each edge e ∈ Eh, we associate a unit vector
ne normal to e and we denote by [ϕ]e the jump of the piecewise continuous
(vector valued) function ϕ across e in the direction ne. For each K ∈ Th
we denote by hK the diameter of K and we denote by he the diameter of e,
e ∈ EK .

We define the residual error indicators [44] as follows: For each element
K ∈ Th, we set
(12)

ηK = α
− 1

2
K hK‖fh+αK∆(uα,h)+J̃%,huα,h‖L2(K)2+

1

2

∑
e∈EK

α
− 1

2
e h

1
2
e ‖[αgrad (uα,h) ne]e‖L2(e)2 ,

where αe = max(αK1 , αK2), K1 and K2 being the two elements adjacent to
e.

Theorem 4.1. There exists a constant C which is independent of h and α
such that the following estimate holds

(13) ‖uα − uα,h‖%,α ≤ C(1 +
αM
αm

)
1
2 (
∑
K∈Th

η2
K + h2

Kα
−1
K ‖f − fh‖2L2(K))

1
2 .

Combining (13) and (10) we obtain
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Corollary 4.2. Let u be a solution of problem (3). There exists a constant
C which is independent of h and α such that the following estimate holds
(14)

‖u−uα,h‖%,α ≤ C(1+
αM
αm

)
1
2
( ∑
K∈Th

η2
K+h2

Kα
−1
K ‖f−fh‖2L2(K)+αK‖graduα‖2L2(K)

) 1
2 .

Note that in the last term in (14) the continuous solution uα appears. thus
the inequality is not fully an posteriori estimate. However, the local finite
element error, which is high order (for piecewise affine element O(h2

K)),
allows us to replace in this term uα by its discrete counterpart uα,h. In
this case, the meaning of inequality (14) is the following: For each element
K ∈ Th, we have a new error indicator

(15) η̃K = ηK + α
1
2
K‖grad uα,h‖L2(K)

This indicator gives an error map which shows both the finite elements error
and the error on the model. Thus we have an upper bound for the error
between an H1(Ω) solution of the initial problem (without regularization)
and the discrete regularized solution. This upper bound provides a natural
confidence measure, completely computable from the discrete solution, and
allows for an optimal locally adaptive choice of α. Figure 2(a)-Figure 2(f)
show the maps given by the error indicator ηK and αK |grad uα,h|2L2(K), as

well as the angular error (17) (see the next section for the definition) in the
first and the final iterations. The graphs show the isovalues (Large values
are in dark color and the low values in clear color).

In case we use an affine finite element discretization as in this paper, the

new term α
1
2 ‖grad uα,h‖L2(K) behaves like α

1
2hK , is of the same order, and

is consistent with ηK as shown by the figures.
For the angular error, since we decrease the values of α near the edges of

the optic flow (to have less regularization), this increases its maximum values
(localized on some small parts of the edges) but the average is decreasing
(see the convergence curve Figure 10(a)).
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(a) frame 151 of the new mar-
ble sequence

(b) time derivative f1-f2

Figure 1. New marble sequence (data)
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(a) error indicator ηK at iterarion k=1 (b) error indicator η̃K − ηK at k=1

(c) error indicator ηK at k=18 (d) error indicator η̃K − ηK , k=18

(e) the angular error at iterarion k=1 (f) the angular error k=18

Figure 2. New marble sequence



14 Z. BELHACHMI AND F. HECHT

5. Adaptive strategy and numerical experiments

All numerical experiments are carried out with FreeFem++ [24]. We did
not perform any optimization of the CPU time in our computations. The
computational efficiency is no problem for variational methods when state-
of-the-art numerical methods are used (see [45]). The computation of the
matrix J%,h is performed by using a P1 approximation with mass lumping
which is known to be a stable and accurate method. We do not smooth much
the initial image and its gradient because we are mainly interested at this
stage to show how our strategy works. Further efforts and improvements in
the implementation issues are to be considered later.

5.1. Adaptive strategy. The adaptive process developed in this paper
differs from the usual mesh adaptation because the geometric domain is
given as the domain of definition of the image and it is usually not useful
to refine it more. The adapted mesh for the optic flow computations is
obtained by formally coarsening the initial grid. The algorithm reads:

(1) We start with the cartesian grid T 0
h corresponding to the image.

(2) adaptivity steps
• Compute uα0,h on T 0

h with α = α0 a large constant.
• We build an adapted isotropic mesh T 1

h (in the sense of the
finite element method, i.e. with respect to the parameter h)
with the metric error indicator which is well suited for the flow
uα0,h.
• We perform the local adaptive choice of α(x) on T 1

h and obtain
a new function α1(x).

(3) Go to step 2 and compute uα1,h on T 1
h

Let us give more details on the implementation of this algorithm. On the
triangulation Th,n, we compute the solution uαn,h of problem (11), the cor-
responding error indicators as defined in (12) In addition to the standard
information on the error distribution on the computations of uαn,h, the error
indicators act as a confidence measure locating regions of large errors on the
gradients (edges).

Note that all meshes Tnh are obtained by mesh adaptivity such that the
minimal mesh sizes are greater than 1 which is the size of a pixel.

The principle of the adaptive regularization process is to decrease the val-
ues of α in regions where the error indicator is large (edges) and to increase
the values in the complementary regions. However, for stability reasons we
start with a relatively high initial guess and during the adaptive process α
decreases following the formula:: for each triangle K

(16) αn+1
K = max(

αnK
1 + κ ∗ (( ηK

‖η‖∞ )− 0.1)+
, αtrh).

where αtrh is a treshold and κ is a coefficient chosen for the control the rate
of decreasing of α, (u)+ = max(u, 0), and ‖η‖∞ = maxK(ηK).
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This formula could be explained as follows: first we normalize ηK (∈
(0, 1)) and if it is greater to 10% then we decrease the value of α. The value
10% as well as the choice of κ are chosen experimentally (Typical κ are 5 or
10 in our examples) .

Remark 5.1. i) In these formulas we make the choice of taking α,
more or less, constant in regions where the flow is smooth and the
error indicator is small.

ii) When some a priori information on regions of uncertainities or dam-
aged regions in the image are avalaible, we may keep the value of α
very small (in these regions) which allows us to approximate correctly
the Neumann boundary conditions in such nonsmooth situations.

The adaptive strategy is performed either for a fixed (small) number of
iterations or until the angular error increases. We note that the convergence
is fast which is expected from the fact that the mesh T 1

h corresponds, already,
to sparse optic flow with a reasonably small angular error.

Thus, the adaptivity gives rise to sparse optic flow and an active control
of the regularization effects. The algorithm is efficient in the sense that we
obtain the regularized optic flow with a few elements (computational effi-
ciency) and a map (the graph of α(x)) which constitute a natural confidence
measure.

In the following examples we give an illustration of our adaptive approach
to the optic flow determination.

5.2. Example of the new marble. As a first example we consider the
New Marble (introduced in the previous section), which is taken from
http://i21www.ira.uk.de/image/sequences. We have sequences of 512 x 384
color images (polyhedral scene with two moving marbled blocks and station-
ary camera), Figure 1(a)-Figure 1(b). We give the evolution of the meshes
for some iterations. It can be noted that the meshes are progressively sparsi-
fied (see also the tables given at the end of the section). Of course we do not
plot the mesh T 0

h which is the regular grid corresponding to the image (with
196608 elements). We also give the distribution of log(α) and the modulus
of the optic flow, Figure 3(a)-Figure 3(d) and Figure 4(a)-Figure 4(d) (for
log(α), large values are represented by dark colors and low values are in
clear colors, for the modulus of the optic flow, the color map is inverted -for
a technical reason in the software-).
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(a) the mesh at iteration k=1 (b) the mesh at iteration k=6

(c) the mesh at iteration k=12 (d) the mesh at (final) iteration k=19

Figure 3. Evolution of the meshes (New marble sequence)
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(a) The distribution of log(α), k=1 (b) The distribution of log(α), k=19

(c) The modulus of optic flow, k=1 (d) The modulus of optic flow, k=19

Figure 4. New marble.
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(a) frame 1 of the office se-
quences

(b) time derivative f1-f2

Figure 5. Office sequence (data)

(a) the adapted mesh at iteration k=1 (b) the adapted mesh at iteration k=2

(c) the adapted mesh at iteration k=3

Figure 6. Meshes for the office sequence

5.3. Example of the office sequence. In this example of the office se-
quence taken from http://www.cs.otago.ac.nz/research/vision. We have 20
frames of color images. We represent the same quantities as in the previous
example for the initial and the final iterations. The results are plotted in
Figure 6(a)-Figure 6(c) and Figure 7(a)-Figure 7(d)
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(a) map of log(α), k=1 (b) map of log(α), k=3

(c) the modulus of the computed flow mag-
nitude, k=1

(d) the modulus of the computed flow mag-
nitude, k=3

Figure 7. Office sequence
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(a) frame 1 of trafic intersection (b) time derivative f1-f2

Figure 8. Trafic sequence (Data)

5.4. Example of traffic intersection. In this last example we have a traf-
fic intersection sequence recorded at the Ettlinger-Tor in Karlsruhe by a sta-
tionary camera: 512 x 512 grayvalue images (http://i21www.ira.uk.de/image/-
sequences). Figure 8(a)-Figure 8(b). We only give the meshes and the
modulus of the optic flow in the case of this complex motion in Figure 9(a)-
Figure 9(d).
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(a) mesh at iteration k=1 (b) mesh at iteration k=9

(c) The modulus of the optic flow, k=1 (d) The modulus of the optic flow, k=9

Figure 9. Trafic sequence
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In order to show how our algorithm works quantitatively, we give the
tables of the number of elements at each iteration (tables below) in the
examples new marble and the office. We give also in tables 1 and 2, the evo-
lution of the angular error and the number of degrees of freedom during the
iterations. All these results show that the number of elements decreases very
quickly at the first iteration, then more slowly to improve the sparsification
by adjusting α. The values of α decrease, only on (some parts of) edges
of the computed optic flow. Hence allowing to obtain sharp edges and less
regularization (smoothing) at these locations. The coarsening of the mesh
occurs far from these locations where increasing the regularization effects,
allows for the reduction of the degrees of freedom.

Recall that the angular error is given by the formula

(17) arccos
ucue + vcve + 1√

(u2
c + v2

c + 1)(u2
e + v2

e + 1)
,

where (uc, vc) denotes the correct flow and (ue, ve) the estimated one.
We end this section by giving the average of the angular error AAE, the

number of degrees of freedom and the standard deviation at each iteration in
the examples of new marble and of the office sequences. It can be seen from
the tables 1 and 2, that the error decreases almost during the adaptivity
process as well as the number of degrees of freedom (implying the sparsifica-
tion of the flow). The angular error at iteration 0 is only depending on the
initial guess α0, so it has already a reasonable value if α0 is well chosen. In
the algorithm, we start with large α0 (a lot of smoothing) and we decrease
the amount of the regularization in regions where it is necessary. We reach
the convergence of the algorithm in a few iterations. The angular error and
the density of the flow, decrease jointly. We stop when the AAE, start to
increase. This is shown in two results of convergence in Figure 10(a) for the
angular error and Figure 10(b) for the number of degrees of freedom. These
curves show how the algorithm works: after the first iteration we obtain a
“good” mesh for the optic flow, so that the discretization error is already
small, the remaining iterations consists in adapting the values of α at edges.

Finally, we add two results of convergence in Figure 10(a) for the angular
error and Figure 10(b) for the number of degrees of freedom. These curves
show how the algorithmg works: after the first iteration we obtain a “good”
mesh for the optic flow, so that the discretization error is already small, the
remaining iterations consists in adapting the values of α at edges.



VARIATIONAL OPTIC FLOW COMPUTATIONS 23

iteration nb vertices AAE Standard deviation
0 196608 2.9188 6.43791
1 33410 2.91485 6.43287
2 31687 2.90543 6.41461
3 31199 2.90111 6.40858
4 31074 2.89477 6.3947
5 30976 2.89341 6.39048
6 30906 2.89302 6.39158
7 30900 2.88896 6.38469
8 30599 2.88565 6.38095
9 30571 2.88393 6.37929
10 30535 2.88014 6.37313
11 30461 2.87483 6.36764
12 29308 2.87271 6.36766
13 28358 2.8673 6.36289
14 28044 2.86223 6.36047
15 26881 2.86009 6.36584
16 25723 2.85655 6.37016
17 24928 2.85721 6.37458
18 23073 2.85383 6.37729
19 21902 2.85606 6.38546

Table 1. Angular error for the marble example (α0 = 1000)

iteration nb vertices AAE Standard deviation
0 40000 7.41066 4.65239
1 19424 7.43836 4.6439
2 19379 7.45966 4.63404

Table 2. Angular error for the office example (α0 = 2000)
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(a) Angular error (b) Degrees of freedom

Figure 10. Convergence results

6. Conclusions

We have proposed a new a posteriori strategy to control the effects of
the regularization of ill-posed problems. It allows locally adaptive choice
of the regularization parameters which is very promising for an efficient
and automatic model selection. This approach applied to the optical flow
estimation yields a low density field with good accuracy. The method is not a
new model to compute the optic flow but should be seen as a tool to enhance
the existing variational methods [45], allowing the dynamical selection of the
model by adaptive changes in the energy functional. This approach is at the
beginning, and many improvements should be worked out, for example to
go towards real time computations, . . . . It should also be used with the
more sophisticated models proposed currently in the literature for its full
validation. We restricted ourselves to simple models in order to focus on
the main ideas but much remains to be done for improvements. Finally
note that in the image analysis problems, nonlinear regularization methods,
such as BV -regularization, are more suitable to preserve edges. The use of
our method in this last case is under consideration. We believe, that the
combination of our method and existing regularization techniques, image-
driven, flow-driven, and multigrid methods, is a challenging and promising
direction of research to solve ill-posed problems.

Appendix A

In this appendix we prove the following convergence result

Theorem 6.1. Assume that the solution uα of (7) belongs to (
⋃L
`=1H

2(Ω`))∩
H1(Ω). There exists a constant C, which depends neither on h nor on α,
such the following estimate holds

(18) ‖uα − uα,h‖%,α ≤ C
L∑
`=1

√
α`h`‖uα‖H2(Ω`)
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The starting point for the convergence analysis is the abstract error esti-
mate which follows from the so called Cea’s lemma [17]

(19) ‖uα − uα,h‖%,α ≤ C
(

inf
vh∈Vh

‖uα − vh‖α

+ sup
wh∈Vh

(aα − aα,h)(vh,wh)

‖wh‖%,α
)

We denote by Πα
h the orthogonal projection from H1(Ω) onto Vh for the

norm ‖.‖%,α.

Proposition 6.2. For any real number s, with 1 ≤ s ≤ 2, there exists
a constant C, which depends neither on h nor on α, such that for any
v ∈ (

⋃L
`=1H

s(Ω`)) ∩H1(Ω), the following estimate holds

(20) ‖v −Πα
hv‖%,α ≤ C

L∑
`=1

√
α`h

(s−1)
` ‖grad v‖Hs−1(Ω`).

Proof. Let us start with s = 2, then

‖v −Πα
hv‖%,α ≤ ‖v − Ihv‖%,α,

where Ih denotes the Lagrange interpolation operator at the vertices of the
elements in Th. The standard estimate [17, Thm 16.1], for each 1 ≤ ` ≤ L

|v − Ihv|H1(Ω`) ≤ c h` ‖grad v‖H1(Ω`),

yields the result. Next for s = 1 the inequality (20) follows from the defini-
tion of Πα

h . A standard Hilbertian interpolation argument yields the general
result. �

In order to estimate the second term of the error, we note that

(aα − aα,h)(vh,wh) =
∑
K∈Th

|
∫
K

(J% − J%,h) vh ·wh dx|

≤
∑
K∈Th

|J% − J%,h|L∞(K)‖vh‖L2(K)‖wh‖L2(K)

≤
∑
K∈Th

λ
− 1

2

min(J%)
|J% − J%,h|L∞(K)‖J

1
2
% vh‖L2(K)‖J

1
2
% wh‖L2(K).

Using the inequality [19, Thm 7.1]: for all v ∈W 1,∞(K),

inf
q∈P0

|v − q|L∞(K) ≤ chK |v|W 1,∞(K),

we obtain

(21) |(aα − aα,h)(vh,wh)| ≤ Cλ−
1
2

min(J%)
|J%|W 1,∞(Ω))h‖vh‖%,α‖wh‖%,α

Assembling these estimates yields (18)
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Appendix B

In this appendix we perform the a posteriori analysis which is the math-
ematical jusitification of our adaptive strategy. These analysis consists in
proving that the error indicators introduced in (12) and (15) are equiva-
lent locally to the discretization error and the model error. The proofs are
rather technical because there are several nonconformities, we refere the un-
familiar readers to the monograph [44] for a complete and comprehensive
introduction to the fields of a posteriori analysis.

6.1. An upper bound for the error. From the ellipticity of aα(., .) and
Vh ⊂ H1(Ω), we have

‖uα − uα,h‖2%,α = aα(uα − uα,h,uα − uα,h).

Choosing v ∈ Vh in (8) and subtracting from (11), we obtain

(22) eaα(uα,v) = aα,h(uα,h,v) ∀v ∈ Vh.

We set v = J
− 1

2
% (uα−uα,h) and we will denote by vh a given approximation

of J
1
2
% v in Vh. The approximation vh will be defined later. Thus, we have

‖uα − uα,h‖%,α = aα(uα − uα,h, J
1
2
% v − vh) + aα(vh,uα − uα,h)

= aα(uα − uα,h, J
1
2
% v − vh) + (aα,h − aα)(vh,uα,h)
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We integrate by parts the first term on the right-hand side in each element
K ∈ Th. This leads to

aα(u− uα,h, J
1
2
% v − vh) =

∑
K∈Th

αK

∫
K

grad (uα − uα,h) : grad (J
1
2
% v − vh)+∫

K
J%(uα − uα,h) · (J

1
2
% v − vh) dx

=
∑
K∈Th

αK

∫
K

(−∆uα + ∆uα,h) · (J
1
2
% v − vh) dx

+

∫
∂K

αKgrad (uα − uα,h) n · (J
1
2
% v − vh) dσ +

∫
K
J%(uα − uα,h) · (J

1
2
% v − vh) dx

=
∑
K∈Th

∫
K

(f + αK∆uα,h − J%uα,h) · (J
1
2
% v − vh) dx

+
1

2

∑
e∈EK

∫
e
[αgrad (uα − uα,h) n · (J

1
2
% v − vh)] dσ

=
∑
K∈Th

∫
K

(fh + αK∆uα,h − J̃%,huα,h) · (J
1
2
% v − vh) dx +

∫
K

(f − fh) · (J
1
2
% v − vh) dx

+

∫
K

(J% − J̃%,h) · (J
1
2
% v − vh) dx +

1

2

∑
e∈EK

∫
e
[αgrad (uα − uα,h) ne · (J

1
2
% v − vh)] dσ

=
∑
K∈Th

∫
K

(fh + αK∆uα,h − J̃%,huα,h) · (J
1
2
% v − vh) dx +

∫
K

(f − fh) · (J
1
2
% v − vh) dx

+

∫
K

(J% − J̃%,h) · (J
1
2
% v − vh) dx− 1

2

∑
e∈EK

∫
e
[αgrad uα,h] ne · (J

1
2
% v − vh) dσ

Thus, using the Cauchy-Schwarz inequality, we obtain
(23)

‖uα − uα,h‖%,α ≤ C
(∑

K∈Th(‖fh + αK∆uα,h − J%uα,h‖L2(K)

‖J
1
2
% v − vh‖L2(K)

‖v‖%,α

+‖f − fh‖L2(K)

‖J
1
2
% v − vh‖L2(K)

‖v‖%,α
) + hK‖J% − J̃%,h‖L∞(K)

‖J
1
2
% v − vh‖L2(K)

‖v‖%,α

+1
2

∑
e∈EK ‖[αgrad uα,h] ne‖L2(e)

‖J
1
2
% v − vh‖L2(e)

‖v‖%,α
+
|(aα,h − aα)(vα,h,uα,h)|

‖v‖%,α
)
.

ForK ∈ Th we denote byN (K) the set of its vertices. LetNh = ∪K∈ThN (K)
be the set of all vertices in Th. We denote by Nh,Ω, resp. Nh,∂Ω, the set
of all vertices in Ω, resp. on ∂Ω. For any K ∈ Th, e ∈ Eh and x ∈ Nh we
denote by

ωK the union of all elements sharing an edge e with K,
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ω̃K the union of all elements sharing at least a vertex e with K,
ωe the union of all elements having e as an edge,
ω̃e the union of all elements sharing at least one vertex with e,
ωx the union of all elements having x as a vertex.

We define the quasi-interpolation operator of Clement type Ih by

Ihϕ =
∑

x∈Nh,Ω∪Nh,∂Ω

πxϕλx

where

πxϕ =
1

|ωx|

∫
ωx

ϕdx,

is the mean value of ϕ on ωx and λx the barycentric coordinate associated
to x. For vector-valued functions, Ih is defined by applying it to the com-
ponents of the function. In particular, Ihv ∈ Vh for all v ∈ L2(Ω). For
any v ∈ H1(Ω), K ∈ Th and e ∈ Eh, adapting the argument of [44], we can
prove the following interpolation error estimates

(24)
‖v − Ihv‖L2(K) ≤ c1hK α

− 1
2

K ‖v‖α,ω̃K
,

‖v − Ihv‖L2(e) ≤ c2h
1
2
e α
− 1

2
e ‖v‖α,ω̃e

,

where c1, c2 are constants depending only on the shape parameter.

Proposition 6.3. For all K ∈ Th, e ∈ Eh and for all v ∈ V%, there exist
vh ∈ Vh and constants c and c′, independent of hK and α such that the
following estimates hold

(25)
‖J

1
2
% v − vh‖L2(K) ≤ chK α

− 1
2

K ‖v‖α,ω̃K
,

‖J
1
2
% v − vh‖L2(e) ≤ c′h

1
2
e α
− 1

2
e ‖v‖α,ω̃e

.

The constants c, c′ depend on λmin(J
1
2
% ) the lowest eigenvalue of J

1
2
% and

maxijk |(J
1
2
% )ij,k| where we denote by (J

1
2
% )ij,k the derivative of the coefficient

(J
1
2
% )ij with respect to the variable xk, k = 1, 2.

Proof. Taking vh = Ih(J
1
2
% v) and applying the estimates (24), yields

‖J
1
2
% v − vh‖L2(K) ≤ c1hK α

− 1
2 ‖J

1
2
% v‖α,ω̃K

,

‖J
1
2
% v − vh‖L2(e) ≤ c2h

1
2
e α
− 1

2 ‖J
1
2
% v‖α,ω̃e

.

Since grad (J
1
2
% v) = J

1
2
% : grad v + Qv, where Q is a third order tensor

Qijk = (J
1
2
% )ij,k, we can write

|grad (J
1
2
% v)|1,ω̃K

≤ λmax(J
1
2
% )|grad v|+max

ijk
|(J

1
2
% )ij,k|λmin(J

1
2
% )−1‖J

1
2
% v‖L2(K).

which yields the result. �
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Using the inequality [19, Thm7.1]: for all v ∈W 2,∞(K),

inf
q∈P1

|v − q|L∞(K) ≤ ch2
K |v|W 2,∞(K),

we obtain

‖J% − J̃%,h‖L∞(K)

‖J
1
2
% v − vh‖L2(K)

‖v‖%,α
= O(α

− 1
2

K h3
K).

For the term
|(aα,h − aα)(vh,uh)|

‖v‖%,α
we proceed as in (21), that is,

(aα − aα,h)(vh,uα,h) =
∑
K∈Th

∫
K

(J% − J%,h) vh · uα,h dx

≤
∑
K∈Th

|J% − J%,h|L∞(K) ‖vh‖L2(K)‖uα,h‖L2(K)

≤ C
∑
K∈Th

λ
− 1

2

min(J%)
hK |J%|W 1,∞(K)‖vh‖L2(K)‖J

1
2
% uh‖L2(K)

≤ Cλ−
1
2

min(J%)
|J%|W 1,∞(Ω)(

∑
K∈Th

‖vh‖2L2(K))
1
2 (
∑
K∈Th

h2
K‖J

1
2
% uα,h‖2L2(K))

1
2 .

From (22) and an integration by parts, and by adding and subtracting suited
terms, we obtain∫

Ω
J%uα,h uα,h dx =

1

2

∫
Ω
J%uα,h uα,h dx+

1

2

∑
K∈Th

(

∫
K

(fh+αK∆uα,h−J̃%,huα,h) dx+

∑
e∈EK

∫
e
αgrad uα,h ·n dσ+

∫
K

(f − fh) dx) +
1

2

∫
Ω

(J̃%,h− J%)uα,h uα,h dx,

thus, using the definition of ηK (12) and Cauchy-Sscwartz inequality, we
deduce

(
∑
K∈Th

h2
K‖J

1
2
% uα,h‖2L2(K)) ≤

1

2

∑
K∈Th

αK(η2
K + h2

Kα
−1
K ‖f − fh‖2L2(K)) + h.o.t.

(h.o.t means a high order term).
From the continuity of the interpolation operator, we have

‖vh‖2L2(K)) ≤ C‖v‖L2(ω̃K).

Assembling all these estimates yield the proof of (4.1).

6.2. An upper bound for the indicator. We take as a test function
w ∈ V% in (7)∫

Ω
α(x) grad (uα−uα,h) : grad w dx =

∫
Ω

f ·w dx−
∫

Ω
α(x) grad uα,h : grad w dx−

∫
Ω
J%uα,h·w dx.
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Integrating by parts yields∫
Ω
α(x) grad (uα − uα,h) : grad w dx +

∫
Ω
J%(uα − uα,h) ·w dx =∑

K∈Th

(

∫
K

(f + αK∆uα,h + J%uα,h) ·w dx +

∫
∂K

grad uα,h n ·w dτ)

and

(26)

∫
Ω
α(x) grad (uα − uα,h) : grad w dx +

∫
Ω
J%(uα − uα,h) ·w dx =∑

K∈Th

(

∫
K

(f +αKJ%∆uα,h +J%uα,h) ·w dx− 1

2

∑
e∈EK

∫
e
[αK grad uα,h n] ·w dτ

+

∫
K

(f − fh) ·w dx +

∫
K

(J% − J̃%,h)uα,h ·w dx).

We will obtain the estimates by appropriate choices of the function w in
(26)

With each K ∈ Th we associate the bubble function ψK equal to the
product of the barycentric coordinates on K. For each edge e ∈ EK we
associate the bubble function ψe equal to the product of the barycentric
coordinates on e.

Proposition 6.4. There exists a constant c independent of h and α such
that the following estimate holds for all K ∈ Th

(27) ηK ≤ c‖uα − uα,h‖α,ωK + c(
∑

K′∈ωK

h2
K′α

−1
K′‖f − fh‖2L2(K′)

+ h2
K′α

−1
K′‖(J% − J̃%,h)

1
2 uα,h‖2L2(K)).

Note that the term h2
K′α

−1
K′‖(J% − J̃%,h)

1
2 uα,h‖2L2(K) is of high order and

could be dropped from the estimate (27).

Proof. The proof is performed in two steps.

(1) We take w in (26) equal to

w =

{
(fh + αK∆uα,h + J̃%,huα,h)ψK on K,
0 elsewhere.

Since ψK vanishes on ∂K, this yields

‖(fh+αK∆uα,h+J̃%,huα,h)ψ
1
2
K‖

2
L2(K) =

∫
K

grad (uα−uα,h) : grad ((fh+αK∆uα,h+J̃%,huα,h)ψK)dx

−
∫
K

(f − fh)(fh+αK∆uα,h+ J̃%,huα,h) ·ψKdx−
∫
K

(J%− J̃%,h)uα,h ·ψK dx
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It then follows that

‖(fh+αK∆uα,h+J̃%,h)uα,h)ψ
1
2
K‖

2
L2(K) ≤ ‖uα−uα,h‖α,K |α

1
2
K(fh+αK∆uα,h+J̃%,huα,h)ψK)|H1(K)

+ ‖f − fh‖L2(K)‖(fh + αK∆uα,h + J̃%,h)uα,h)ψK‖L2(K)

+ ‖(J% − J̃%,h)
1
2 uα,h‖L2(K)‖(fh + αK∆uα,h + J̃%,h)uα,h)ψK‖L2(K).

By going to the reference element, it can be verified that for any
polynomial ϕ of degree at most k the following inequalities hold

‖ϕ‖L2(K) ≤ c‖ϕψ
1
2
K‖L2(K), |ϕψK |H1(K) ≤ ch−1

K ‖ϕ‖L2(K),

with the constants depending only on the degree k of the polynomial
and on the shape parameter of K. Observing also that ψK is ≤ 1,
we obtain

(28) hKα
− 1

2
K ‖(fh + α∆uα,h + J̃%,h)uα,h‖L2(K) ≤

C
(
‖uα−uα,h‖α,K+hKα

− 1
2

K ‖f−fh‖L2(K))+hKα
− 1

2
K ‖(J%−J̃%,h)

1
2 uα,h‖L2(K)

)
.

(2) Let us denote by e an edge of EK , where e is a common edge to two
elements K and K ′. We take w in (26) equal to

w =

 PK,e([α(x)grad uα,h n]ψe) on K,
PK′,e([α(x)grad uα,h n]ψe) on K ′,
0 elsewhere.

This yields

‖[αgrad uα,h n]ψ
1
2
e ‖L2(e) ≤

∑
κ∈(K,K′) ‖uα − uα,h‖α,κ|α

1
2
κPκ,e([αgrad uα,h n]ψe|H1(K)

+
(
‖fh + ακ∆uα,h + J̃%,huα,h‖L2(κ) + ‖f − fh‖L2(κ)

+‖(J% − J̃%,h)
1
2 uα,h‖L2(κ)

)
‖Pκ,e([αgrad uα,h n]ψe)‖L2(κ).

The following inequalities, obtained by going to the reference element hold

‖[αgrad uα,h n]‖L2(e) ≤ c‖[αgrad uα,h n]ψ
1
2
e ‖L2(e),

|α
1
2
κPκ,e([αgrad uα,h n]ψe)|H1(κ) ≤ ch

− 1
2

e α
1
2
κ ‖[αgrad uα,h n]‖L2(e),

h−1
e ‖Pκ,e([αgrad uα,h n]ψe)‖L2(κ) ≤ ch

− 1
2

e ‖[αgrad uα,h n]‖L2(e).

Observing that chκ ≤ he ≤ hκ, we obtain

(29)

h
1
2
e α
− 1

2
e ‖[αgrad uα,h n]‖L2(e) ≤ c

∑
κ∈(K,K′)

(
‖uα−uα,h‖α,κ+heα

− 1
2

e (‖fh+ακ∆uα,h+J̃%,h‖L2(κ)

+ ‖f − fh‖L2(κ) + ‖(J% − J̃%,h)
1
2 uα,h‖L2(K))

)
.

Combining (28) and (29) yields the result.
�
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