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Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance signal as a structure prior, and transfers the structure of the guidance signal to an input image, restoring noisy or altered image structure. The main drawbacks of such a data-dependent framework are that it does not consider structural differences between guidance and input images, and that it is not robust to outliers. We propose a novel SD (for static/dynamic) filter to address these problems in a unified framework, and jointly leverage structural information from guidance and input images. Guided image filtering is formulated as a nonconvex optimization problem, which is solved by the majorize-minimization algorithm. The proposed algorithm converges quickly while guaranteeing a local minimum. The SD filter effectively controls the underlying image structure at different scales, and can handle a variety of types of data from different sensors. It is robust to outliers and other artifacts such as gradient reversal and global intensity shift, and has good edge-preserving smoothing properties. We demonstrate the flexibility and effectiveness of the proposed SD filter in a variety of applications, including depth upsampling, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR denoising.

INTRODUCTION

M ANY tasks in computer vision and computational photog- raphy can be formulated as ill-posed inverse problems, and thus theoretically and practically require filtering and regularization to obtain a smoothly varying solution and/or ensure stability [START_REF] Charbonnier | Deterministic edge-preserving regularization in computed imaging[END_REF]. Image filtering is used to suppress noise and/or extract structural information in many applications such as image restoration, boundary detection, and feature extraction. In this setting, an image is convolved with a spatially invariant or variant kernel. Linear translation invariant (LTI) filtering uses spatially invariant kernels such as Gaussian and Laplacian ones. Spatially invariant kernels enable an efficient filtering process, but do not consider the image content, smoothing or enhancing both noise and image structure evenly.

Recent work on joint image filtering (or guided image filtering) [START_REF] He | Guided image filtering[END_REF], [START_REF] Kopf | Joint bilateral upsampling[END_REF], [START_REF] Yan | Crossfield joint image restoration via scale map[END_REF] uses an additional guidance image to construct a spatially variant kernel. The basic idea is that the structural information of the guidance image can be transferred to an input image, e.g., for preserving salient features such as corners and boundaries while suppressing noise. This provides a new perspective on the filtering process, with a great variety of applications including stereo correspondence [START_REF] Hosni | Fast costvolume filtering for visual correspondence and beyond[END_REF], [START_REF] Yoon | Adaptive support-weight approach for correspondence search[END_REF], optical flow [START_REF] Hosni | Fast costvolume filtering for visual correspondence and beyond[END_REF], [START_REF] Revaud | EpicFlow: Edge-preserving interpolation of correspondences for optical flow[END_REF], semantic flow [START_REF] Ham | Proposal flow[END_REF], [START_REF] Zhou | FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF], joint upsampling [START_REF] Kopf | Joint bilateral upsampling[END_REF], [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF], [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF], [START_REF] Park | High quality depth map upsampling for 3D-TOF cameras[END_REF], dehazing [START_REF] He | Guided image filtering[END_REF], noise reduction [START_REF] Yan | Crossfield joint image restoration via scale map[END_REF], [START_REF] Petschnigg | Digital photography with flash and no-flash image pairs[END_REF], and texture removal [START_REF] Karacan | Structure-preserving image smoothing via region covariances[END_REF], [START_REF] Xu | Structure extraction from texture via relative total variation[END_REF], [START_REF] Zhang | Rolling guidance filter[END_REF].

Joint image filtering has been used with either static or dynamic guidance images. Static guidance filtering (e.g., [START_REF] He | Guided image filtering[END_REF]) modulates the input image with a weight function depending only on features of the guidance image, as in the blue box of Fig. 1.

Fig. 1. SD filtering for depth upsampling: Static guidance filtering convolves an input image (a low-resolution depth image) with a weight function computed from a fixed guidance signal (a high-resolution color image), as in the blue box. Dynamic guidance filtering uses weight functions that are repeatedly obtained from filtered input images, as in the red box. We have observed that static and dynamic guidance complement each other, and exploiting only one of them is problematic, especially in the case of data from different sensors (e.g., depth and color images). The SD filter takes advantage of both, and addresses the problems of current joint image filtering. (Best viewed in colour.)

This guidance signal is fixed during the optimization. It can reflect internal properties of the input image itself, e.g., its gradients [START_REF] Kopf | Joint bilateral upsampling[END_REF], [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF], or be another signal aligned with the input image, e.g., a near infrared (NIR) image [START_REF] Yan | Crossfield joint image restoration via scale map[END_REF]. This approach assumes the structure of the input and guidance images to be consistent with each other, and does not consider structural (or statistical) dependencies and inconsistencies between them. This is problematic, especially in the case of data from different sensors (e.g., depth and color images). Dynamic guidance filtering (e.g., [START_REF] Zhang | Rolling guidance filter[END_REF]) uses weight functions that are repeatedly obtained from filtered input images, as in the red box of Fig. 1. It is assumed that the weight between neighboring pixels can be determined more accurately from the filtered input image than from the initial one itself [START_REF] Zhang | Rolling guidance filter[END_REF], [START_REF] Brox | Efficient nonlocal means for denoising of textural patterns[END_REF]. This method is inherently iterative, and the dynamic guidance signal (the filtered input image, i.e., a potential output image) is updated at every step until convergence. Dynamic guidance filtering takes into account the properties of the input image, but ignores the additional information available in the static guidance image, which can be used to impose image structures lost in the input data, e.g., in joint upsampling [START_REF] Kopf | Joint bilateral upsampling[END_REF], [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF], [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF], [START_REF] Park | High quality depth map upsampling for 3D-TOF cameras[END_REF].

We present in this paper a unified framework for joint image filtering taking advantage of both static and dynamic guidance, called the SD filter (Fig. 1). We address the aforementioned problems by adaptively fusing data from the static and dynamic guidance signals, rather than unilaterally transferring the structure of the guidance image to the input one. To this end, we combine static guidance image weighting with a nonconvex penalty on the gradients of dynamic guidance, which makes joint image filtering robust to outliers. The SD filter has several advantages over current joint image filters: First, it effectively controls image structures at different scales, and can handle a variety of types of data from different sensors. Second, it has good edge-preserving properties, and is robust to artifacts, such as gradient reversal and global intensity shift [START_REF] He | Guided image filtering[END_REF].

Contributions. The main contributions of this paper can be summarized as follows:

• We formulate joint image filtering as a nonconvex optimization problem, where Welsch's function [START_REF] Holland | Robust regression using iteratively reweighted least-squares[END_REF] (or correntropy [START_REF] Liu | Correntropy: Properties and applications in non-Gaussian signal processing[END_REF]) is used for a nonconvex regularizer. We solve this problem by the majorize-minimization algorithm, and propose to use an l 1 regularizer to compute an initial solution of our solver, which accelerates the convergence speed (Section 3).

• We analyze several properties of the SD filter including scale adjustment, runtime, filtering behavior, and its connection to other filters (Section 4). • We demonstrate the flexibility and effectiveness of the SD filter in several computer vision and computational photography applications including depth upsampling, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR denoising (Section 5).

A preliminary version of this work appeared in [START_REF] Ham | Robust image filtering using joint static and dynamic guidance[END_REF]. This version adds (1) an in-depth presentation of the SD filter; (2) a discussion on its connection to other filtering methods; (3) an analysis of runtime; (4) an extensive experimental evaluation and comparison of the SD filter with several state-of-the-art methods; and (5) an evaluation on the localization accuracy of depth edges for depth upsampling. To encourage comparison and future work, the source code of the SD filter is available at our project webpage: http://www.di.ens.fr/willow/research/sdfilter.

RELATED WORK

Image filtering and joint image filtering

Joint image filters can be derived from minimizing an objective function that usually involves a fidelity term (e.g., [START_REF] He | Guided image filtering[END_REF], [START_REF] Kopf | Joint bilateral upsampling[END_REF], [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF]), a prior smoothness (regularization) term (e.g., [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF]), or both (e,g., [START_REF] Xu | Structure extraction from texture via relative total variation[END_REF], [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF], [START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF]). Regularization is implicitly imposed on the objective function with the fidelity term only. The smoothness term encodes an explicit regularization process into the objective function. We further categorize joint image filtering (static or dynamic guidance filtering) into implicit and explicit regularization methods. The SD filter belongs to the explicit regularization that takes advantage of both static and dynamic guidance.

Implicit regularization stems from a local filtering framework. The input image is filtered using a weight function that depends on the similarity of features within a local window in the guidance image [START_REF] Kopf | Joint bilateral upsampling[END_REF], allowing the structure of the guidance image to be transferred to the input image. The bilateral filter (BF) [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF], guided filter (GF) [START_REF] He | Guided image filtering[END_REF], weighted median filter (WMF) [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF], and weighted mode filter (WModF) [START_REF] Min | Depth video enhancement based on weighted mode filtering[END_REF] are well-known implicit regularization methods, and they have been successfully adapted to static guidance filtering. They regularize images through a weighted averaging process [START_REF] He | Guided image filtering[END_REF], [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF], a weighted median process [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF], or a weighted mode process [START_REF] Min | Depth video enhancement based on weighted mode filtering[END_REF]. Two representative filtering methods using dynamic guidance are iterative nonlocal means (INM) [START_REF] Brox | Efficient nonlocal means for denoising of textural patterns[END_REF] and the rolling-guidance filter (RGF) [START_REF] Zhang | Rolling guidance filter[END_REF]. These methods share the same filtering framework, but differ in that INM aims at preserving textures during noise reduction, while RGF aims at removing them through scale-space filtering. The implicit regularization involved is simple and easy to implement, but it has some drawbacks. For example, it has difficulties handling sparse input data (e.g., in image colorization [START_REF] Levin | Colorization using optimization[END_REF]), and often introduces artifacts (e.g., halos and gradient reversal [START_REF] He | Guided image filtering[END_REF]) due to its local nature. Accordingly, implicit regularization has mainly been applied in highly controlled conditions, and is typically used as pre-and/or post-processing for further applications [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF], [START_REF] Lang | Practical temporal consistency for image-based graphics applications[END_REF].

An alternative approach is to explicitly encode the regularization process into the objective function, while taking advantage of the guidance image. The weighted least-squares (WLS) framework [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] is the most popular explicit regularization method in static guidance filtering [START_REF] Park | High quality depth map upsampling for 3D-TOF cameras[END_REF]. The objective function typically consists of two parts: A fidelity term captures the consistency between input and output images, and a regularization term, modeled using a weighted l 2 norm [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF], encourages the output image to have a similar structure to the guidance one. Many other regularization terms, e.g., l 1 norm in total generalized variation (TGV) [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF], l 0 norm in l 0 norm minimization [START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF], or relative total variation (RTV) [START_REF] Xu | Structure extraction from texture via relative total variation[END_REF], have also been employed, so that the filtered image is forced to have statistical properties similar to those of the desired solution. Anisotropic diffusion (AD) [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF] is an explicit regularization framework using dynamic guidance. In contrast to INM [START_REF] Brox | Efficient nonlocal means for denoising of textural patterns[END_REF] and RGF [START_REF] Zhang | Rolling guidance filter[END_REF], AD updates both input and guidance images at every step. Filtering is performed iteratively with the filtered input and updated guidance images. This explicit regularization enables formulating a task-specific model, with more flexibility than implicit regularization. Furthermore, it overcomes several limitations of implicit regularization, such as halos and gradient reversal for example, at the cost of global intensity shift [START_REF] He | Guided image filtering[END_REF], [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF].

Existing image filtering methods typically apply to a limited range of applications and suffer from various artifacts: For example, RGF is applicable to scale-space filtering only, and suffers from poor edge localization [START_REF] Zhang | Rolling guidance filter[END_REF]. In contrast, our approach provides a unified model for many applications, gracefully handles most artifacts, and outperforms the state of the art in all the applications considered in the paper. Although the proposed model is superficially similar to WLS [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] and RGF [START_REF] Zhang | Rolling guidance filter[END_REF], our nonconvex objective function requires a different solver, which gives theoretical reasoning for RGF. Our model is also related to a diffusion-reaction equation [START_REF] Weickert | A review of nonlinear diffusion filtering[END_REF], the steady-state solution of which has a similar form to the SD filter. However, the SD filter has an additional weight function using static guidance, as described (e) Our model. Fig. 2. Comparison of static and dynamic guidance filtering methods. Given (a) a high-resolution color image, (b) a low-resolution depth image is upsampled (×8) by our model in (1) using (c) static guidance only (e.g., [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF]), (d) dynamic guidance only (e.g., [START_REF] Zhang | Rolling guidance filter[END_REF]), and (e) joint static and dynamic guidance. Static guidance filtering restores smoothed depth edges, as in the red boxes of (c). However, this method transfers all the structural information of the color image to the depth image, such as the weak color edges between the board and background and the color stripes on the tablecloth in the blue boxes of (c). Dynamic guidance filtering avoids this problem, as in the blue boxes of (d), but this method does not use the structural information of the high-resolution color image, smoothing or even eliminating depth edges as in the red boxes of (d). The SD filter jointly uses the structure of color and depth images, and does not suffer from these problems as in the blue and red boxes of (e). See Section 5.1 for details. (Best viewed in colour.) in Section 4.4 in detail. While Badri et al. [START_REF] Badri | Fast edge-aware processing via first order proximal approximation[END_REF] used a similar nonconvex objective function for image smoothing, our model provides a more generalized objective for joint image filtering. Shen et al. [START_REF] Shen | Mutual-structure for joint filtering[END_REF] used the common structure in input and guidance images, but the local filtering formulation of the filter introduces halo artifacts and limits the applicability. The closest work to ours is a recently introduced a learning-based joint filter [START_REF] Li | Deep joint image filtering[END_REF] using convolutional neural networks (CNNs). This deep joint filter considers the structures of both input and guidance images, but requires a large number of annotated images for training the deep model for each task.

Joint image filtering for high-level vision

Joint image filtering has shown great success in low-level vision tasks, but little attention has been paid to applying it to highlevel vision problems. Motivated by the fact that contrast-sensitive potentials [START_REF] Kohli | Robust higher order potentials for enforcing label consistency[END_REF] typically used in conditional random fields (CRFs) have a similar role to static guidance image weighting (e.g., see [START_REF] Hosni | Fast costvolume filtering for visual correspondence and beyond[END_REF] in [START_REF] Kohli | Robust higher order potentials for enforcing label consistency[END_REF]), Krähenbühl and Koltun [START_REF] Krähenbühl | Efficient inference in fully connected CRFs with Gaussian edge potentials[END_REF] used joint image filtering for an efficient message passing scheme, enabling an approximate inference algorithm for fully connected CRF models. In a similar manner that joint image filtering is used for many applications (e.g., joint upsampling), the CRF model has been widely used to refine low-resolution CNN outputs, e.g., in semantic segmentation [START_REF] Liang-Chieh | Semantic image segmentation with deep convolutional nets and fully connected CRFs[END_REF], [START_REF] Zheng | Conditional random fields as recurrent neural networks[END_REF]. Recent works [START_REF] Barron | The fast bilateral solver[END_REF], [START_REF] Chen | Semantic image segmentation with task-specific edge detection using CNNs and a discriminatively trained domain transform[END_REF] learn parameters of both a joint image filter and a CNN model in an end-to-end manner to upsample low-resolution network outputs. As in existing joint image filters, however, the refinement methods use the structure of high-resolution color images (static guidance) only, while ignoring additional information available in the CNN outputs. We believe that using the SD filter will improve the refinement by considering the structures of both inputs and outputs of the CNN in the endto-end learning.

PROPOSED APPROACH

Motivation and problem statement

There are pros and cons in filtering images under static or dynamic guidance. Let us take the example of depth upsampling in Fig. 2, where a high-resolution color image (the guidance image) in (a) is used to upsample (×8) an input low-resolution depth image in (b). Static guidance filtering reconstructs destroyed depth edges using the color image with high signal-to-noise ratio (SNR) [START_REF] Kopf | Joint bilateral upsampling[END_REF], [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF], as in the red boxes of (c). However, this approach does not handle differences in structure between depth and color images, transferring all the structural information of the color image to the depth image, as in the blue boxes of (c). For regions of highcontrast in the color image, the depth image is altered according to the texture pattern, resulting in texture-copying artifacts [START_REF] Chan | A noise-aware filter for real-time depth upsampling[END_REF]. Similarly, depth edges are smoothed in low-contrast regions on the color image (e.g., weak color edges), causing jagged artifacts in scene reconstruction [START_REF] Mac Aodha | Patch based synthesis for single depth image super-resolution[END_REF]. Dynamic guidance filtering utilizes the content of the depth image 1 , avoiding the drawbacks of static guidance filtering, as in the blue boxes of (d). The depth edges are preserved, and unwanted structures are not transferred, but dynamic guidance does not take full advantage of the abundant structural information in the color image. Thus, depth edges are smoothed, and even eliminated for regions of low-contrast in the depth image, as in the red boxes of (d).

This example illustrates the fact that static and dynamic guidance complement each other, and exploiting only one of them is not sufficient to infer high-quality structural information from the input image. This problem becomes even worse when input and guidance images come from different data with different statistical characteristics. The SD filter proposed in this paper jointly leverages the structure of static (color) and dynamic (depth) guidance, taking advantage of both, as shown in (e).

1. Dynamic guidance is initialized with the interpolated depth image using static guidance as shown in Fig. 2(c), not with the low-resolution depth image itself.

Model

Given the input image f , the static guidance g, and the output image u (dynamic guidance), we denote by f i , g i , and u i the corresponding image values at pixel i, with i ranging over the image domain I ⊂ N 2 . Our objective is to infer the structure of the input image by jointly using static and dynamic guidance, and to make joint image filtering robust to outliers in a unified framework. The influence of the guidance images on the input image varies spatially, and is controlled by weight functions that measure the similarity between adjacent pixels in the guidance images. Various features (e.g., spatial location, intensity, and texture [START_REF] Park | High quality depth map upsampling for 3D-TOF cameras[END_REF], [START_REF] Isola | Crisp boundary detection using pointwise mutual information[END_REF]) and metrics (e.g., Euclidian and geodesic distances [START_REF] Revaud | EpicFlow: Edge-preserving interpolation of correspondences for optical flow[END_REF], [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF]) can be used to represent distinctive characteristics of pixels on images and measure their similarities.

We minimize an objective function of the form:

E(u) = i c i (u i -f i ) 2 + λΩ(u, g), (1) 
which consists of fidelity and regularization terms, balanced by the regularization parameter λ. The first (fidelity) term helps the solution u to harmonize well with the input image f with confidence c i ≥ 0. The regularization term makes the solution u smooth while preserving salient features (e.g., boundaries). We propose the following regularizer:

Ω(u, g) = i,j∈N φ µ (g i -g j )ψ ν (u i -u j ), (2) 
where

ψ ν (x) = (1 -φ ν (x))/ν, (3) and φ 
(x) = exp(-x 2 ). (4) 
Here, µ and ν control the smoothness bandwidth, and N is the set of image adjacencies, defined in our implementation on a local 8-neighborhood system. The first term, φ µ in the regularizer is a weight function using intensity difference between adjacent pixels in the guidance g. This function approaches to zero as the gradient of the guidance g becomes larger (e.g., at the discontinuities of g), preventing smoothing the output image u in those regions. That is, the weight function φ µ transfers image structures from the static guidance g to the output image u. The second one ψ ν , called Welsch's function [START_REF] Holland | Robust regression using iteratively reweighted least-squares[END_REF], regularizes the output image u, and makes joint filtering robust to outliers, due to its nonconvex shape and the fact that it saturates at 1 (Fig. 4). Note that convex potentials in existing joint image filters regularize the structure of the output image u and bring the structure through static guidance image weighting φ µ . In contrast, the nonconvex potential ψ ν penalizes large gradients of the output image u (dynamic guidance) less than a convex one during filtering [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF], [START_REF] Durand | Fast bilateral filtering for the display of highdynamic-range images[END_REF], [START_REF] Hampel | Robust statistics: The approach based on influence functions[END_REF], and preserves features having high-frequency structures (e.g., edges and corners) better. This means the use of nonconvex potentials relax the strict dependence of the existing joint image filters on the static guidance g, and allows to leverage the structure of the dynamic guidance u as well. Accordingly, by combining static guidance image weighting φ µ with the nonconvex penalty ψ ν on the gradients of the dynamic guidance u, the SD filter adaptively fuses data from the static and dynamic guidances. This effectively reflects structural differences between guidance and input images, and makes joint image filtering robust to outliers. Although nonconvex potentials preserve some noise, the static guidance g with high SNR in our model alleviates this problem. Note that in order to

E(u) Q k (u) u k u k+1 Fig. 3. Sketch of the majorize-minimization algorithm. At step k, a surrogate function Q k is constructed given some estimate u k of the minimum of E, such that Q k (u k ) = E(u k ) and Q k (u) ≥ E(u). At step k + 1, the next estimate u k+1 is obtained by minimizing Q k . These two steps are repeated until convergence.
adaptively fuse data from the static and dynamic guidances, one might attempt to add a weight function φ ν using the dynamic guidance u in the regularizer as follows:

Ω(u, g) = i,j φ µ (g i -g j )φ ν (u i -u j )ψ ν (u i -u j ). (5) 
This regularizer, however, is hard to optimize and may be unstable.

Optimization algorithm

Let f = [f i ] N ×1 , g = [g i ] N ×1 , and u = [u i ] N ×1 denote
vectors representing the input image, static guidance and the output image (or dynamic guidance), respectively, where

N = |I| is the size of the images. Let W g = [φ µ (g i -g j )] N ×N , W u = [φ ν (u i -u j )] N ×N , and C = diag ([c 1 , . . . , c N ]
). W g and W u denote weight matrices of the 8-neighborhood system for static and dynamic guidances, respectively. We can rewrite our objective function in matrix/vector form as:

E(u) = (u -f ) T C (u -f ) + λ ν 1 T (W g -W) 1, (6) 
where W = W g • W u , and • denotes the Hadamard product of the matrices defined as the element-wise multiplication of their elements. 1 is a N × 1 vector, where all the entries are 1. The diagonal entries c i of C are confidence values for the pixels i in the input image.

The majorize-minimization algorithm

Our objective function is not convex, and thus it is non-trivial to minimize the objective function of [START_REF] Yoon | Adaptive support-weight approach for correspondence search[END_REF]. In this work, we compute a local minimum of ( 6) by iteratively computing a convex upper bound (surrogate function) and solving the corresponding convex optimization problems. Concretely, we use the majorizeminimization algorithm (Fig. 3) [START_REF] Lanckriet | On the convergence of the concave-convex procedure[END_REF], [START_REF]Incremental majorization-minimization optimization with application to large-scale machine learning[END_REF], [START_REF] Zhang | Surrogate maximization/minimization algorithms for adaboost and the logistic regression model[END_REF], which guarantees convergence to a local minimum of the nonconvex objective function [START_REF] Wu | On the convergence properties of the EM algorithm[END_REF]. This algorithm consists of two repeated steps: In the majorization step, given some estimate u k of the minimum of

E at step k, a convex surrogate function Q k is constructed, such that ∀ u Q k (u k ) = E(u k ) Q k (u) ≥ E(u) . (7) 
In the minimization step, the next estimate u k+1 is then computed by minimizing Q k . These steps are repeated until convergence. 

Implementation details

The nonconvexity of our objective function comes from Welsch's function ψ ν . As shown in Appendix A, a convex surrogate function Ψ y ν for ψ ν , such that ∀x, y,

Ψ y ν (y) = ψ ν (y) Ψ y ν (x) ≥ ψ ν (x) , (8) 
is given by

Ψ y ν (x) = ψ ν (y) + (x 2 -y 2 )(1 -νψ ν (y)). (9) 
The surrogate function Ψ y ν (x) is an upper bound on ψ ν (x) and coincides with ψ ν (x) only when x is equal to y (Fig. 4).

Majorization step: Let us now use this result to compute the surrogate function Q k for E by substituting ψ ν with Ψ y ν in (2) as follows:

Q k (u) = u T C + λL k u -2f T Cu + f T Cf (10) -λu kT L k u k + λ ν 1 T W g -W k 1. L k = D k -W k is a dynamic Laplacian matrix at step k, where W k = W g • W u k and D k = diag d k 1 , . . . , d k N where d k i = N j=1 φ µ (g i -g j )φ ν (u k i -u k j ).

Minimization step:

We then obtain the next estimate u k+1 by minimizing the surrogate function Q k w.r.t. u as follows 2 :

u k+1 = arg min u Q k (u) = (C + λL k ) -1 Cf . ( 11 
)
The above iterative scheme decreases the value of E monotonically in each step, i.e.,

E(u k+1 ) ≤ Q k (u k+1 ) ≤ Q k (u k ) = E(u k ), (12) 
where the first and the second inequalities follow from ( 7) and [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF], respectively, and converges to a local minimum of E [START_REF] Wu | On the convergence properties of the EM algorithm[END_REF]. The static guidance affinity matrix W g is fixed regardless of steps, while the dynamic guidance matrix W u k is iteratively updated. Thus, we jointly use the structure of static and dynamic guidance to compute the solution u. Note that all previous joint image filters (e.g., [START_REF] He | Guided image filtering[END_REF], [START_REF] Kopf | Joint bilateral upsampling[END_REF], [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF], [START_REF] Min | Depth video enhancement based on weighted mode filtering[END_REF]) except recently proposed ones [START_REF] Shen | Mutual-structure for joint filtering[END_REF], [START_REF] Li | Deep joint image filtering[END_REF] determine the structure of the output image by the weight function of the static guidance image (W g ) only. We overcome this limitation by using an additional weight function of the dynamic guidance image (W u k ) in each round of an intermediate output u k , thus reflecting the structures of both static and dynamic guidance images simultaneously during the optimization process. The majorize-minimization algorithm generalizes other wellknown optimization methods [START_REF] Hunter | A tutorial on MM algorithms[END_REF], e.g., the expectationmaximization (EM) algorithm [START_REF] Mclachlan | The EM algorithm and extensions[END_REF], iteratively reweighted leastsquares (IRLS) [START_REF] Daubechies | Iteratively reweighted least-squares minimization for sparse recovery[END_REF], the Weiszfeld's method [START_REF] Chandrasekaran | Open questions concerning Weiszfeld's algorithm for the fermat-weber location problem[END_REF], and the halfquadratic (HQ) minimization [START_REF] Geman | Constrained restoration and the recovery of discontinuities[END_REF], [START_REF] Nikolova | Analysis of half-quadratic minimization methods for signal and image recovery[END_REF]. Nikolova and Chan [START_REF] Nikolova | The equivalence of half-quadratic minimization and the gradient linearization iteration[END_REF] have shown that the method where the solution of the objective function is computed by iteratively solving linear systems at each step as in our solver is equivalent to the HQ minimization (of multiplicative form). That is, both methods give exactly the same iterations. Thus, our solver gives an identical solution to the HQ minimization (of multiplicative form) for ( 6), if initializations are the same.

Algorithm 1 summarizes the optimization procedure.

Algorithm 1 The SD filter. 1: Input: f (an input image); g (a static guidance image); u 0 (an initial estimate for a dynamic guidance image). 2: Parameters: µ (a bandwidth parameter for g); ν (a bandwidth parameter for u); λ (a regularization parameter); K (the maximum number of steps). Compute an affinity matrix for the dynamic guidance image

u k , W u k = φ ν (u k i -u k j ) N ×N . 7:
Compute a dynamic Laplacian matrix

L k = D k -W k where W k = W g • W u k and D k = diag d k 1 , . . . , d k N where d k i = N j=1 φ µ (g i -g j )φ ν (u k i -u k j ). 8:
Update u k+1 by solving (C + λL k )u k+1 = Cf . 9: end for 10: Output: u K (a final estimate).

Initialization

Our solver finds a local minimum, and thus different initializations for u 0 (dynamic guidance at k = 0) may give different solutions. In this work, we compute the initial estimate u 0 by minimizing the objective function of (1) and using an upper bound on Welsch's function in the regularizer (Fig. 5). Two functions are used for initialization. l 2 initialization. Welsch's function is upper bounded by an l 2 regularizer, i.e., ∀x, x 2 ≥ ψ ν (x). This can be easily shown by using the inequality exp(x) ≥ 1 + x. The initial estimate u 0 is computed by minimizing the objective function in [START_REF] Charbonnier | Deterministic edge-preserving regularization in computed imaging[END_REF] with a weighted l 2 norm as a regularizer, i.e., using the WLS framework [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF]:

Ω l2 (u, g) = i,j∈N φ µ (g i -g j )(u i -u j ) 2 . ( 13 
)
x The l 2 initialization is simple, but may yield a slow convergence rate as illustrated by Fig. 6(a). l 1 initialization. A good initial solution accelerates the convergence of our solver. We propose to use the following regularizer to compute the initial estimate u 0 :

Ω l1 (u, g) = i,j∈N φ µ (g i -g j )α|u i -u j |, ( 14 
)
where α is set to a positive constant, chosen so α|x| is a much tighter upper bound on Welsch's function than the l 2 regularizer, as shown in Fig. 5. This regularizer is convex, and thus the global minimum 3 is guaranteed [START_REF] Daubechies | Iteratively reweighted least-squares minimization for sparse recovery[END_REF].

ANALYSIS

In this section, we analyze the properties of the SD filter, including runtime and scale adjustment, and illustrate its convergence rate and filtering behavior with different initializations. A connection to other filtering methods is also presented.

Runtime

The major computational cost of the SD filter comes from solving the linear system of (11) repeatedly. We use a local 8neighborhood system, resulting in the sparse matrix (C + λL k ). This matrix has a positive diagonal and four sub-diagonals on each side. These sub-diagonals are not adjacent, and their separation is proportional to the image width. It is therefore not banded with a fixed bandwidth. Yet, it is sparse and positive semidefinite, thus (11) can be solved efficiently using sparse Cholesky factorization. We use the CHOLMOD solver [START_REF] Chen | Algorithm 887: Cholmod, supernodal sparse Cholesky factorization and update/downdate[END_REF] of MATLAB in our implementation. Running k = 5 steps of our algorithm from an l 1 or l 2 initialization takes about 2.5 seconds for an image of size 500 × 300 on a 4.0GHz CPU 4 . The l 1 and l 2 initializations take about 1.2 and 0.4 seconds, respectively, on average for the same image size. 

Number of Steps

Sum of Intensity Differences Between Steps

u 0 = ul 2 u 0 = ul 1 (b) (c) Input image. (d) u 0 = u l 2 , k = 30.
(e) u 0 = u l 1 , k = 7.

(f) u 0 = u l 1 , k = 30. Fig. 6. Examples of (a) energy evolution of (6) and (b) a sum of intensity difference between successive steps (i.e., u ku k+1 1 ), given (c) the input image. Our solver converges in fewer steps with the l 1 initialization (u 0 = u l 1 ) than with the l 2 one (u 0 = u l 2 ), with faster overall speed. In contrast to most filtering methods, it does not give a constant-value image in the steady-state: (d) u 0 = u l 2 , k = 30, (e) u 0 = u l 1 , k = 7, and (f) u 0 = u l 1 , k = 30. In this example, for removing textures, static guidance is set to the Gaussian filtered version (standard deviation, 1) of the input image (λ = 50, µ = 5, ν = 40). See Section 5.2 for details.

Influence of initialization

As explained earlier, the majorize-minimization algorithm is guaranteed to converge to a local minimum of E in (6) [START_REF] Wu | On the convergence properties of the EM algorithm[END_REF]. In this section, we show the convergence rate of (11) as the step index k increases, and observe its behavior with different initializations, using u l2 and u l1 , the global minima of (1) using Ω l2 and Ω l1 as regularizers, respectively. Figure 6 shows how (a) the energy E of ( 6) and (b) the intensity differences (i.e., u ku k+1 1 ) evolve over steps for a sample input image (Fig. 6(c)). In this example, our solver converges in fewer steps with the l 1 initialization (u 0 = u l1 ) than with the l 2 one (u 0 = u l2 ), with faster overall speed, despite the overhead of the l 1 minimization: Our solver with the l 2 and l 1 initializations converges in 30 and 7 steps (Fig. 6(d) and (e)), taking 45 and 20 seconds (including initialization), respectively. Although our solver with the l 2 initialization converges more slowly, the per-pixel intensity difference still decreases monotonically in (b). Note that after few steps (typically from 5), the solver gives almost the same filtering results. For example, after 5 steps, the average and maximum values of the per-pixel intensity difference are 9.4×10 -5 and 1.7×10 -3 , respectively, with the l 2 initialization, and 4.3×10 -5 and 8.7×10 -4 with the l 1 initialization 5 . It should also be noted that most filtering methods, except the recently proposed RGF [START_REF] Zhang | Rolling guidance filter[END_REF], eventually give a constant-value image, if they are performed repeatedly, regardless of whether the filters have implicit or explicit forms (e.g., BF [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF] and AD [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF]). In contrast, the SD filter does not give such an image no matter how many steps are performed (Fig. 6(e) and (f)).

Scale adjustment

There are two approaches to incorporating scale information in image filtering [START_REF] Zhang | Rolling guidance filter[END_REF], [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF], [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF]. In implicit regularization methods, an intuitive way to adjust the degree of smoothing is to use an isotropic Gaussian kernel. Due to the spatially invariant properties of the kernel, this approach regularizes both noise and features evenly without considering image structure [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF]. RGF addresses this problem in two phases: Small-scale structures are removed by the Gaussian kernel, and large-scale ones are then recovered [START_REF] Zhang | Rolling guidance filter[END_REF]. Since RGF [START_REF] Zhang | Rolling guidance filter[END_REF] is based on the Gaussian kernel, it inherits its limitations. This leads to poor edge localization at coarse scales, with rounded corners and shifted boundaries. The regularization parameter is empirically used to adjust scales in explicit regularization methods [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF]. It balances the degree of influence between fidelity and regularization terms in such a way that a large value leads to more regularized results than a small one. Now, we will show how the regularization parameter λ controls scales in the SD filter. It follows from [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF] that

(C + λD k )u k+1 -λW k u k+1 = Cf . ( 15 
)
Let us define diagonal matrices A and A as

A = (C + λD k ) -1 C, (16) 
and

A = λ(C + λD k ) -1 D k , (17) 
such that A + A = I. By multiplying the left-and right-hand sides of ( 15) by (C + λD k ) -1 , we obtain

u k+1 = (I -λ(C + λD k ) -1 D k A P k ) -1 (C + λD k ) -1 C A=I-A f (18) 
= A(I -A P k ) -1 f , where P k = (D k ) -1 W k . Note that this gives the exact same form as random walk with restart [START_REF] Kim | Generative image segmentation using random walks with restart[END_REF], [START_REF] Pan | Automatic multimedia cross-modal correlation discovery[END_REF], [START_REF] Tong | Fast random walk with restart and its applications[END_REF], except that P k is updated at every step in our case. It has been shown that the restarting probability A controls the extent of smoothing in different scales in the image [START_REF] Kim | Generative image segmentation using random walks with restart[END_REF]. In our case, the regularization parameter λ determines the restarting probability, which shows that by varying this parameter, we can adjust the degree of smoothing.

5. We normalize the intensity range to [0, 1].

Connections with other filters

Let us consider the objective function of ( 1), but without the regularization term. We can implicitly impose joint regularization on the objective function by introducing a spatial weight function φ s and static guidance weighting φ µ to the fidelity term. The objective function is then

E(u) = i j∈η φ s (i -j)φ µ (g i -g j )(u i -f j ) 2 , ( 19 
)
where s is a spatial bandwidth parameter and η is the local neighborhood of the pixel i. The solution of this objective function can be computed as follows:

u k+1 i = j∈η φ s (i -j)φ µ (g i -g j )f j j∈η φ s (i -j)φ µ (g i -g j ) . ( 20 
)
This becomes equivalent to the joint BF [START_REF] Kopf | Joint bilateral upsampling[END_REF] (or BF [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF] by setting g = f ). By further introducing Welsch's function ψ ν to [START_REF] Holland | Robust regression using iteratively reweighted least-squares[END_REF], we obtain the following objective function:

E(u) = i j∈η φ s (i -j)φ µ (g i -g j )ψ ν (u i -f j ), (21) 
We can compute a local minimum of this objective function by the majorize-minimization algorithm as follows (see Appendix B):

u k+1 i = j∈η φ s (i -j)φ µ (g i -g j )φ ν (u k i -f j )f j j∈η φ s (i -j)φ µ (g i -g j )φ ν (u k i -f j ) . ( 22 
)
This again becomes the joint BF [START_REF] Kopf | Joint bilateral upsampling[END_REF] with φ ν (x) = 1. A variant of RGF [START_REF] Zhang | Rolling guidance filter[END_REF] can be derived by setting φ µ (x) = 1.

Let us now consider the case when f , g, and u are continuous functions over a continuous domain. A continuous form of the objective function of (1) can then be written as [START_REF] Black | Robust anisotropic diffusion[END_REF]:

J c i (u i -f i ) 2 + λφ µ ( ∇g ) ψ ν ( ∇u ) dJ , (23) 
where J ⊂ R 2 + and ∇ denotes the gradient operator. This function can be minimized via gradient descent using the calculus of variations [START_REF] Black | Robust anisotropic diffusion[END_REF] as follows:

∂u ∂k = c i (u i -f i ) + λdiv [φ µ ( ∇g ) φ ν ( ∇u ) ∇u] , (24) 
where ∂k and div represent a partial derivative w.r.t. k and the divergence operator, respectively. This is a variant of the diffusionreaction equation [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF], [START_REF] Weickert | A review of nonlinear diffusion filtering[END_REF] with an additional term φ µ ( ∇g ) involving the static guidance g. The result of the SD filter is a steady-state solution of this scheme. Note that while being widely used in image filtering, nonconvex potentials have never been implemented before in the context of joint image filtering to the best of our knowledge. In our approach, nonconvex potentials make joint image filtering robust to outliers by effectively exploiting structural information from both guidance and input images. If one uses [START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF] with φ ν (x) = 1 (i.e., without dynamic guidance), the steady-state solution of (24) can be found in closed form, and is exactly same as the result obtained by the WLS framework [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF]. With φ µ (x) = 1 (i.e., without static guidance), the steady-state solution of ( 24) is found by solving the following equation [START_REF] Weickert | A review of nonlinear diffusion filtering[END_REF]:

0 = c i (u i -f i ) + λ∇ • [φ ν ( ∇u ) ∇u] . (25) 
In this case, the solution cannot be computed in closed form, but it can be obtained by repeatedly solving [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF] with

W k = W u k .
This corresponds to a variant of RGF [START_REF] Zhang | Rolling guidance filter[END_REF] with the fidelity term. (a) Middlebury dataset [START_REF] Scharstein | A taxonomy and evaluation of dense twoframe stereo correspondence algorithms[END_REF]. Average PBP (δ = 1) on the Middlebury dataset [START_REF] Scharstein | A taxonomy and evaluation of dense twoframe stereo correspondence algorithms[END_REF] with varying the regularization parameter λ. PBP is defined as the percentage of bad pixels for all regions as in [START_REF] Levin | Colorization using optimization[END_REF]. 
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APPLICATIONS

We apply the SD filter to depth upsampling, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR denoising. In each application, we compare the SD filter to the state of the art. The results for the comparison have been obtained from source codes provided by the authors, and all the parameters for all compared methods have been empirically set to yield the best average performance through extensive experiments.

Depth upsampling

Acquiring range data through an active sensor has been a popular alternative to passive stereo vision. Active sensors capture dense range data in dynamic conditions at video rate, but the acquired depth image may have low resolution, and be degraded by noise.

These problems can be addressed by exploiting a registered highresolution RGB image as a depth cue [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF], [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF], [START_REF] Park | High quality depth map upsampling for 3D-TOF cameras[END_REF], [START_REF] Min | Depth video enhancement based on weighted mode filtering[END_REF], [START_REF] Liu | Joint geodesic upsampling of depth images[END_REF], [START_REF] Ham | A generalized random walk with restart and its application in depth up-sampling and interactive segmentation[END_REF]. We apply the SD filter to this task. We will show that, contrary to existing methods, the robust and nonconvex regularizer in the SD filter avoids smoothing depth edges, and gives a sharp depth transition at depth discontinuities.

Parameter settings. In our model, input and guidance images (f and g) are set to sparse depth and dense color (or intensity) high-resolution images, respectively, and c i is set to 1 if the pixel i of the sparse depth image f has valid data, and 0 otherwise. The bandwidths, µ and ν, and the step index k are fixed to 60, 30, and 10, respectively, in all experiments, unless otherwise specified. The regularization parameter λ is set to 0.1 for synthetic examples, and is set to 5 for real-world examples due to the huge amount of noise. For the quantitative comparison, we measure the percentage of bad matching pixels for all regions (PBP) defined as follows:

PBP = 1 N i u i -u gt i > δ , ( 26 
)
where δ is a depth error tolerance [START_REF] Scharstein | A taxonomy and evaluation of dense twoframe stereo correspondence algorithms[END_REF]. [•] is the Iverson bracket where it is 1 if the condition is true, and 0 otherwise. u i and u gt i represent upsampled and ground-truth depth images at the pixel i, respectively. We also measure the percentage of bad matching pixels near depth discontinuities (PBP ) using a ground-truth index map for discontinuous regions, provided by [START_REF] Scharstein | A taxonomy and evaluation of dense twoframe stereo correspondence algorithms[END_REF]. PBP is measured only when the index map is available.

Synthetic data

We synthesize a low-resolution depth image by downsampling (×8) ground-truth data from the Middlebury benchmark dataset [START_REF] Scharstein | A taxonomy and evaluation of dense twoframe stereo correspondence algorithms[END_REF]: Tsukuba, venus, teddy, cones, art, books, dolls, laundry, moebius, and reindeer, and use the corresponding color image as static guidance.

Performance evaluation. We compare the average PBP (δ = 1) of the results obtained by the SD filter with the l 2 and l 1 initializations and the corresponding initial estimates (u l2 and u l1 ) while varying the regularization parameter λ in Table 1. A first important conclusion is that the nonconvex regularizer in the SD filter shows a better performance than the convex ones. The table also shows that the results of the l 1 regularizer are strongly influenced by the regularization parameter, whereas the SD filter gives almost the same PBP regardless of the initialization. For example, when λ is set to 10, the SD filter reduces the average PBP from 16.8 and 35.0 for u l2 and u l1 , respectively, to 10.3. Table 2 compares the average PBP (δ = 1) and processing time (d) GF [START_REF] He | Guided image filtering[END_REF].

(e) RWR [START_REF] Ham | A generalized random walk with restart and its application in depth up-sampling and interactive segmentation[END_REF]. (f) Park et al. [START_REF] Park | High quality depth map upsampling for 3D-TOF cameras[END_REF]. (g) TGV [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF].

(h) WMF [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF].

(i) WModF [START_REF] Min | Depth video enhancement based on weighted mode filtering[END_REF].

(j) u l 2 .

(k) u l 1 .

(l) SD filter. Fig. 8. Visual comparison of upsampled depth images on a snippet of the books sequence in the Middlebury dataset [START_REF] Scharstein | A taxonomy and evaluation of dense twoframe stereo correspondence algorithms[END_REF]: (a) A high-resolution color image, (b) a ground-truth depth image, (c) bilinear interpolation, (d) GF [START_REF] He | Guided image filtering[END_REF], (e) RWR [START_REF] Ham | A generalized random walk with restart and its application in depth up-sampling and interactive segmentation[END_REF], (f) Park et al. [START_REF] Park | High quality depth map upsampling for 3D-TOF cameras[END_REF], (g) TGV [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF], (h) WMF [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF], (i) WModF [START_REF] Min | Depth video enhancement based on weighted mode filtering[END_REF], (j) u l 2 , (k) u l 1 , and (l) SD filter (u 0 = u l 1 ). In contrast to the static guidance filters such as GF [START_REF] He | Guided image filtering[END_REF] and WMF [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF], the SD filter interpolates the low-resolution depth image using the structure of both color and depth images, preserving sharp depth edges.

of the SD filter with the l 2 and l 1 initializations while varying the number of steps k. This table shows that the results obtained by the l 1 initialization converges faster than with the l 2 one. The l 1 and l 2 initializations converge in 5 and 35 steps, respectively. Both initializations give almost the same error at the convergence, but the l 1 initialization takes less time (7s) until convergence than the l 2 one (18s). We fix the step index k to 10, regardless of the initialization.

Comparison with the state of the art. We compare the average PBP (δ = 1) of the SD filter and the state of the art in Table 3. Superscripts indicate the rank of each method in each column. This table shows that WMF [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF] and WModF [START_REF] Min | Depth video enhancement based on weighted mode filtering[END_REF] give better quantitative results than other state-of-the-art methods, but that the SD filter outperforms all methods on average, regardless of the initialization. Figure 7(a) shows the variation of the average PBP as a function of the depth error tolerance δ. The SD filter outperforms other methods until the error tolerance δ reaches around 4, and after that all methods show the similar PBP performance. Figure 8 shows a visual comparison of the upsampled depth images on a snippet of the books sequence, and it clearly shows the different behavior of static guidance and joint static/dynamic guidance models: The upsampled depth image has a gradient similar to that of the color image in static guidance methods such as GF [START_REF] He | Guided image filtering[END_REF] and WMF [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF], which smooths depth edges and causes jagged artifacts in scene reconstruction (Fig. 9). In contrast, the SD filter interpolates the low-resolution depth image using joint static and dynamic guidance, and provides a sharp depth transition by considering the structure of both color and depth images (Fig. 8(l)). The upsampled depth image of u l1 also preserves depth discontinuities, since the l 1 regularizer is robust to outliers. The l 1 regularizer, however, favors a piecewise constant solution. This is problematic in regions that violate the fronto-parallel surface assumption (e.g., a slanted surface), and every pixel in this surface has the same depth value (Fig. 8(k)). TGV [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF] addresses this problem using a piecewise linear model, but this approach still smooths depth edges in low-contrast regions on the color image (Fig. 8(g)). Note that bilinear interpolation gives better quantitative results (Table 3) than the GF [START_REF] He | Guided image filtering[END_REF] and RWR [START_REF] Ham | A generalized random walk with restart and its application in depth up-sampling and interactive segmentation[END_REF], although its subjective quality looks worse than these methods (e.g., depth edges in Fig. 8(c-e)). This is because PBP does not differentiate depth discontinuities from other regions. Table 4 shows the average PBP (δ = 1) measured near depth discontinuities, and it clearly shows the superior performance of the SD filter around these discontinuities. This can be further verified by observing the statistical distribution of the upsampled depth image as shown in Fig. 10. Bilinear interpolation loses most (d) TGV [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF].

(e) WMF [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF].

(f) SD filter. Fig. 9. Examples of (top) point cloud scene reconstruction using (bottom) depth images computed by (a) the ground truth, (b) bilinear interpolation, (c) GF [START_REF] He | Guided image filtering[END_REF], (d) TGV [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF], (e) WMF [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF], and (f) SD filter (u 0 = u l 2 ). Current depth upsampling methods smooth depth edges, causing jagged artifacts.

Difference in depth between adjacent pixels. The Kullback-Leibler divergence between the normalized histograms of depth gradients computed from the ground-truth and upsampled depth images.

Bilinear Int. 230.73 10 GF [START_REF] He | Guided image filtering[END_REF] 108.19 9 RWR [START_REF] Ham | A generalized random walk with restart and its application in depth up-sampling and interactive segmentation[END_REF] 96.43 8 TGV [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF] 22.43 5 WMF [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF] 86.33 7 WModF [START_REF] Min | Depth video enhancement based on weighted mode filtering[END_REF] 13.11 4 u l 2 25.36 6 u l 1 9.72 3
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4.63 2 of the high-frequency information. Static guidance filtering methods show different statistical distributions from the ground-truth depth image. In contrast, the SD filter considers characteristics of depths as well, and delivers almost the same distribution as the ground truth depths. For evaluating this quantitatively, we also measure the Kullback-Leibler divergence between the statistical distributions of depth gradients obtained from the ground-truth and upsampled depth images in Table 5. From this table, we can see that the methods using a robust convex regularizer such as TGV [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF] give better quantitative results than other methods, and the SD filter outperforms all methods. This verifies once more the importance of using a robust nonconvex regularizer and using both static and dynamic guidance in joint image filtering. (d) GF [START_REF] He | Guided image filtering[END_REF].

(e) RWR [START_REF] Ham | A generalized random walk with restart and its application in depth up-sampling and interactive segmentation[END_REF].

(f) TGV [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF].

(g) WMF [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF].

(h) WModF [START_REF] Min | Depth video enhancement based on weighted mode filtering[END_REF].

(i) u l 2 .

(j) u l 1 .

(k) SD filter (u l 2 ). (l) SD filter (u l 1 ). Fig. 11. Visual comparison of upsampled depth images on a snippet of the shark sequence in the Graz dataset [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF]: (a) A high-resolution intensity image, (b) a ground-truth depth image, (c) bilinear interpolation, (d) GF [START_REF] He | Guided image filtering[END_REF], (e) RWR [START_REF] Ham | A generalized random walk with restart and its application in depth up-sampling and interactive segmentation[END_REF], (f) TGV [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF], (g) WMF [START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF], (h) WModF [START_REF] Min | Depth video enhancement based on weighted mode filtering[END_REF], (i) u l 2 , (j) u l 1 , (k) SD filter (u 0 = u l 2 ), and (l) SD filter (u 0 = u l 1 ). Note that the l 1 regularizer in (j) favors a piecewise constant solution, and this is problematic in a slanted surface. TGV denotes the results provided by the authors of [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF].

Real data

Recently, Ferstl et al. [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF] have introduced a benchmark dataset that provides both low-resolution depth images captured by a ToF camera and highly accurate ground-truth depth images acquired λ = 5 λ = 20 with structured light. We have performed a quantitative evaluation using this dataset [START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF] in Fig. 7(b): We measure the average PBP of upsampled depth images with varying the depth error tolerance δ. This shows that the SD filter outperforms all methods for all ranges of δ, regardless of the initialization. A qualitative comparison can be found in Fig. 11. Although most methods reduce sensor noise relatively well, they smooth depth edges as well. In contrast, the SD filter preserves sharp depth discontinuities, while suppressing sensor noise. The amount of noise in low-resolution depth images may change. We can deal with this by adjusting the regularization parameter that determines the degree of smoothing in the upsampled depth image, as shown in Fig. 12.

Scale-space filtering and texture removal

In natural scenes, various objects appear in different sizes and scales [START_REF] Van De Sande | Segmentation as selective search for object recognition[END_REF], and they contain a diversity of structural information from small-scale (e.g., texture and noise) to large-scale structures (e.g., boundaries). Extracting this hierarchy is an important part of understanding the relationship between objects, and it can be done by smoothing a scene through image filtering. We apply the SD filter to two kinds of scene decomposition tasks: Scale-space filtering and texture removal.

Parameter settings. For scale-space filtering, the input image f is guided by itself (g = f ). The regularization parameter λ varies from 5 × 10 to 5 × 10 4 . In texture removal, the static guidance image is set to a Gaussian-filtered version of the input image, g = G σ f where G σ is the Gaussian kernel with standard deviation σ. The regularization parameter λ and σ vary from 5 × 10 to 2 × 10 3 and from 1 to 2, respectively. The bandwidths, µ and ν, the step index k, and the confidence value c i are fixed to 5, 40, 5, and 1, respectively, for both applications.

Scale-space filtering

We obtain a scale-space representation by applying the SD filter while increasing the regularization parameter, as shown in Fig. 13. The SD filter preserves object boundaries well, even at coarse scales, and it is robust to global intensity shift.

Comparison with the state of the art. We compare the scale-space representation of WLS [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF], RGF [START_REF] Zhang | Rolling guidance filter[END_REF], and the SD filter in Fig. 13. The WLS framework [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF], a representative of static guidance filtering, alters the scale of image structure by varying the regularization parameter. It suffers from global intensity shifting [START_REF] He | Guided image filtering[END_REF] (Fig. 13(a-b)), and may not preserve image structures at coarse scales (Fig. 13(a)). RGF [START_REF] Zhang | Rolling guidance filter[END_REF] is the state of the art in scale-space filtering, and dynamic guidance in RGF could alleviate these problems. However, this filter does not use the structure of the input image, and controls the scale by the isotropic Gaussian kernel, leading to poor boundary localization at coarse scales (Fig. 13(c)). The SD filter uses the structure 

TABLE 6

Evaluation of boundary localization accuracy on the BSDS300 database [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF]. Scale-space is constructed by WLS [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] (µ = 40), RGF [START_REF] Zhang | Rolling guidance filter[END_REF] (σr = 0.05, k = 5), and the SD filter (u 0 = u l 2 and u 0 = u l 1 ), with varying scale parameters. of input and desired output images, and the scale depends on the regularization parameter, providing well localized boundaries even at coarse scales. Moreover, it is robust to global intensity shift (Fig. 13(d-e)). For a good scale-space representation, object boundaries should be sharp and coincide well with the meaningful boundaries at each scale [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF]. There is no universally accepted evaluation method for scale-space filtering. Motivated by the evaluation protocol for boundary detection, we measure ODS and OIS [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] with the BSDS300 database [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF], and evaluate boundary localization accuracy of scale-space filtering in Table 6. ODS is the F-measure 6 at a fixed contour threshold across the entire dataset, while OIS 6. The F-measure is the harmonic mean of precision and recall. (c) RGF [START_REF] Zhang | Rolling guidance filter[END_REF].

Method

(d) SD filter (u 0 = u l 2 ). Fig. 14. Examples of the gradient magnitude averaged over scale-space: Given (a) an input image, scale-space is obtained by (b) WLS [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] (µ = 40), (c) RGF [START_REF] Zhang | Rolling guidance filter[END_REF] (σr = 0.05, k = 5), and (d) the SD filter (u 0 = u l 2 ) with varying scale parameters. For each method, we set the maximum scale parameters manually, such that all the filtered images have similar smoothing levels. The gradient magnitude is then computed at each scale and averaged over scale-space.

refers to the per-image best F-measure. For all images in the dataset, ODS and OIS are measured using the gradient magnitudes of filtered images, each of which is averaged over scale-space, as shown in Fig. 14. We obtain the filtered images from the input image while varying scale parameters, i.e., λ in WLS [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] and the SD filter, and σ s in RGF [START_REF] Zhang | Rolling guidance filter[END_REF]. The maximum scale parameter is set manually for each method, such that all the filtered images are smoothed with similar levels. Similarly, we also measure ODS (resp. OIS ) with the gradient images of filtering results, but using a fixed scale parameter that provides maximum ODS (resp. OIS) for each image. That is, ODS (resp. OIS ) is the maximum value of ODS (resp. OIS) over scale-space. In both cases, the SD filter outperforms other filtering methods.

Texture removal

For removing texture while maintaining other high-frequency image structures, we need a guidance image that does not have the texture, but contains large image structures. Since it is hard to get such an image, we set the static guidance image to the Gaussianfiltered version of the original image with standard deviation σ. This removes the textures of scale σ, but it also smooths structural edges (e.g., boundaries). Our dynamic guidance and fidelity term reconstruct smoothed boundaries as shown in Fig. 15.

Comparison with the state of the art. As in scale-space filtering, to the best of our knowledge, there is no universally accepted evaluation protocol for texture removal. Filtering examples of (top) regular and (bottom) irregular textures are shown in Fig. 15. Most methods extract prominent image structures while filtering out textures. The Cov. M1 method [START_REF] Karacan | Structure-preserving image smoothing via region covariances[END_REF] adopts a weighted average process to eliminate textures. The weight is computed using the covariance of features in a local patch to encode the repetitive patterns of textures. This method, however, smooths object boundaries and corners (Fig. 15(b)), and needs lots of computational cost for weight computation. RTV [START_REF] Xu | Structure extraction from texture via relative total variation[END_REF] optimizes an objective function similar to the SD filter, but with relative total variation. Although this method uses a nonconvex regularizer, it penalizes large gradients similar to the total variation regularizer, which smooths structural edges (Fig. 15(c)). As pointed out in [START_REF] Xu | Structure extraction from texture via relative total variation[END_REF], RTV cannot perfectly extract image structures that have similar scale and appearance to the underlying textures. RGF [START_REF] Zhang | Rolling guidance filter[END_REF] can control the scale of image structure to be extracted, and preserves object boundaries well. However, it does not protect corners, possibly due to the inherent limitation of the Gaussian kernel used in RGF, and color artifacts are observed (Fig. 15(d)). On the other hand, the SD filter removes textures without artifacts, and maintains small, high-frequency, but important structures to be preserved such as corners (Fig. 15(e-f)). We can see that the SD filter with the l 1 initialization better preserves edges and corners than with the l 2 one.

Other applications

The SD filter can be applied to joint image restoration tasks. We apply it to RGB/NIR and flash/non-flash denoising problems as shown in Figs. 16 and17, respectively. In RGB/NIR denoising, the color image f is regularized with the flash NIR image g. Similarly, the non-flash image f is regularized with the flash image g. Since there exist structural dissimilarities between static guidance and input images (g and f ), the results might have artifacts and unnatural appearance. For example, static guidance filtering (e.g., GF [START_REF] He | Guided image filtering[END_REF]) cannot deal with gradient reversal in flash NIR images [START_REF] Yan | Crossfield joint image restoration via scale map[END_REF], resulting in smoothed edges. The SD filter handles structural differences between guidance and input images, and gives qualitative results comparable to the state of the art [START_REF] Yan | Crossfield joint image restoration via scale map[END_REF].

DISCUSSION

We have presented a robust joint filtering framework that is widely applicable to computer vision and computational photography tasks. Contrary to static guidance filtering methods, we leverage dynamic guidance images, and can exploit the structural information of the input image. Although our model does not have a closed-form solution, the corresponding optimization problem can be solved by an efficient algorithm that converges rapidly to a local minimum. The simple and flexible formulation of the SD filter makes it applicable to a great variety of applications, as demonstrated by our experiments.

APPENDIX A

Proposition 1. Ψ y ν is a surrogate function of ψ ν . Proof. Let us consider the following function:

f ν (x) = (1 -exp(-νx))/ν. ( 27 
)
Since f ν (x) < 0, this function is strictly concave, i.e., ∀x, y, f ν (x) ≤ f ν (y) + (x -y)f ν (y),

with equality holding when x is equal to y. Thus, a surrogate function f y ν is f y ν (x) = f ν (y) + (x -y)f ν (y) (29) = f ν (y) + (x -y)(1 -νf ν (y)).

It follows that

ψ ν (x) = f ν (x 2 ) ≤ f y 2 ν (x 2 ) (30) 
= ψ ν (y) + (x 2 -y 2 )(1 -νψ ν (y)) = Ψ y ν (x). 

  (a) Color image. (b) Depth image. (c) Static guidance. (d) Dynamic guidance.
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 25 Fig. 5. Upper bounds on Welsch's function ψν : An l 2 regularizer x 2 and an l 1 regularizer α|x| (a tight upper bound on ψν ), when ν is set to 1. (Best viewed in colour.)

  0 = u l2 ) Ours (u 0 = u l1 ) (b) Graz dataset[START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF].
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 7 Fig. 7. Average PBP on (a) the Middlebury dataset [60] and (b) the Graz dataset [10] as a function of the depth error tolerance δ. (Best viewed in colour.)

  (a) Color image. (b) Ground truth. (c) Bilinear Int.
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 10 Fig. 10. Log 10 of the normalized histograms (probability) of relative depths between adjacent pixels. Each histogram is computed using depth gradients along x-and y-axis, and then averaged on the Middlebury dataset [60]. (Best viewed in colour.)

  Ground truth. (c) Bilinear Int.

Fig. 12 .

 12 Fig. 12. Influence of the regularization parameter λ on the upsampled depth image. The results become smooth as the parameter λ increases.

  RGF[START_REF] Zhang | Rolling guidance filter[END_REF].(d) SD filter (u 0 = u l 2 ).(e) SD filter (u 0 = u l 1 ). Fig. 13. Examples of scale-space filtering. (a) WLS [23] (from left to right, λ = 5 × 10, 2 × 10 3 , 5 × 10 4 , µ = 5), (b) WLS [23] (from left to right, λ = 5 × 10 3 , 2 × 10 5 , 5 × 10 6 , µ = 40), (c) RGF [16] (from left to right, σs = 5, 5 × 10, 2.5 × 10 2 , σr = 0.05, k = 5), (d) SD filter (u 0 = u l 2 , and from left to right, λ = 5 × 10, 2 × 10 3 , 5 × 10 4 ), (e) SD filter (u 0 = u l 1 , and from left to right, λ = 5 × 10, 2 × 10 3 , 5 × 10 4 ). In these examples, we manually pick the scale parameter λ of the SD filter between 5 × 10 to 5 × 10 4 . The parameters for other methods are similarly chosen, such that all methods have similar smoothing levels.

  (a) Input image.(b) WLS[START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF].

  (a) Input image and snippets.(b) Cov. M1[START_REF] Karacan | Structure-preserving image smoothing via region covariances[END_REF].(c) RTV[START_REF] Xu | Structure extraction from texture via relative total variation[END_REF]. (d) RGF[START_REF] Zhang | Rolling guidance filter[END_REF].(e) SD filter. (f) SD filter. Fig. 15. Visual comparison of texture removal for (top) regular and (bottom) irregular textures. (a) Input image, (b) Cov. M1 [14] (σ = 0.3, r = 10), (c) RTV [15] (λ = 0.01, σ = 6), (d) RGF [16] (σs = 5, and from top to bottom, σr = 0.1, 0.05, k = 5), (e) SD filter (u 0 = u l 2 , and from top to bottom, λ = 1 × 10 3 , 1 × 10 2 , σ = 2), (f) SD filter (u 0 = u l 1 , and from top to bottom, λ = 2 × 10 3 , 3 × 10 2 , σ = 2). We set all parameters through extensive experiments for the best qualitative performance. (a) RGB images. (b) NIR images. (c) GF [2]. (d) Results of [4]. (e) SD filter (u 0 = u l 2 ). (f) SD filter (u 0 = u l 1 ). Fig. 16. RGB and flash NIR image restoration. (a) RGB images, (b) NIR images, (c) GF [2] (r = 3, ε = 4 -4 ), (d) results of [4], (e) SD filter (u 0 = u l 2 , λ = 10, µ = 60, ν = 30, k = 5), (f) SD filter (u 0 = u l 1 , λ = 10, µ = 60, ν = 30, k = 5). The results of (d) are from the project webpage of [4].

Best viewed in colour.)

  Fig. 4. Welsch's function ψν and its surrogate functions Ψ y ν , when ν is set to 1. The convex surrogate function Ψ y ν (x) is an upper bound on ψν (x) and coincides with ψν (x) only when x is equal to y. (
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  . ± std. avg. ± std. avg. ± std.avg. ± std.

	0.001 10.0±4.7	10.9±6.1	7.0±3.4	7.1±3.4
	0.005 10.0±4.7	10.9±6.1	7.0±3.4	7.1±3.4
	0.010 10.0±4.7	10.9±6.1	7.0±3.4	7.1±3.4
	0.050 10.0±4.7	11.4±6.5	7.1±3.4	7.1±3.4
	0.100 10.0±4.8	12.1±7.0	7.1±3.4	7.1±3.4
	0.200 10.1±4.8	13.4±7.9	7.1±3.5	7.1±3.4
	0.500 10.4±5.0	16.2±9.5	7.2±3.5	7.2±3.5
	1.000 10.9±5.3	19.5±11.2	7.4±3.7	7.4±3.6
	10.00 16.8±9.8	35.0±19.4	10.3±6.0	10.3±6.0
			TABLE 2		
	Average PBP (δ = 1) and processing time on the Middlebury
	dataset [60] with varying the number of steps k.
	1	10.0±4.8	0.7	7.6±3.5	4.9
	5	7.2±3.5	2.7	7.1±3.4	7.0
	10	7.1±3.4	5.4	7.1±3.4	9.6
	30	7.1±3.4	15.5	7.1±3.4	19.6
	35	7.0±3.4	18.1	7.1±3.4	22.3
	100	7.0±3.4	51.9	7.1±3.4	55.7

Ours (u 0 = u l 2 )

Ours (u 0 = u l 1 ) k avg. ± std. time (s) avg. ± std. time (s)

TABLE 3 PBP

 3 (δ = 1) comparison with the state of the art on the Middlebury dataset[START_REF] Scharstein | A taxonomy and evaluation of dense twoframe stereo correspondence algorithms[END_REF]. Superscripts indicate the rank of each method for each image.MethodTsukuba Venus Teddy Cones Art Books Dolls Laun. Moeb. Rein. avg. ± std. Bilinear Int. 10.40 10 3.29 10 11.80 10 14.60 10 34.59 9 13.07 7 14.59 6 22.85 10 17.15 8 17.48 8 15.98±8.29 9 GF [2] 9.87 9 2.74 9 15.50 11 15.50 11 45.31 11 19.14 10 19.64 11 26.89 11 22.22 11 21.70 9 19.85±11.2 11 RWR [62] 9.63 8 1.36 7 11.40 9 11.70 9 41.07 10 17.67 9 18.36 10 21.74 9 21.28 10 25.71 11 17.99±10.8 10 Park et al. [12] --10.10 8 9.71 7 27.81 8 11.18 5 15.23 7 18.27 8 13.82 7 12.35 6 14.81±5.97 8 TGV [10] 5.40 6 1.31 6 9.82 7 10.20 8 23.59 7 13.14 8 16.14 9 15.12 7 18.26 9 10.42 5 12.34±6.40 7 WMF [11] 6.14 7 1.03 5 7.88 3 8.10 5 22.13 6 8.67 1 9.58 1 14.26 6 10.52 4 10.04 3 9.84±5.48 4 WModF [25] 4.35 5 0.61 3 9.51 5 9.43 6 12.39 3 10.68 4 11.48 4 9.91 3 8.60 1 12.63 7 8.96±3.76 3 u l 2 3.60 4 1.60 8 9.28 4 7.86 4 17.88 4 11.90 6 12.63 5 11.74 4 13.61 6 10.28 4 10.04±4.78 5 u l 1 2.59 3 0.67 4 9.51 5 7.56 3 17.98 5 19.29 11 15.86 8 12.75 5 13.08 5 21.85 10 12.11±7.03 6 Ours (u 0 = u l 2 ) 2.39 1 0.52 1 7.39 1 5.24 1 10.04 2 9.79 3 10.84 3 8.11 1 9.49 2 6.93 1 7.07±3.43 1 Ours (u 0 = u l 1 ) 2.45 2 0.52 1 7.42 2 5.36 2 9.96 1 9.52 2 10.77 2 8.22 2 9.49 2 6.98 2 7.07±3.38 1

TABLE 4 PBP

 4 (δ = 1) comparison on the Middlebury dataset[START_REF] Scharstein | A taxonomy and evaluation of dense twoframe stereo correspondence algorithms[END_REF].Bilinear Int.46.3010 37.10 10 35.30 10 35.80 11 GF [2] 43.20 9 26.50 9 37.50 11 34.40 10 RWR [62] 39.50 8 12.30 6 27.50 8 25.40 9 Park et al. [12] --25.40 6 19.90 7 TGV [10] 23.90 6 14.40 7 29.00 9 23.60 8 WMF [11]28.00 7 10.10 5 22.203 19.20 5 WModF[START_REF] Min | Depth video enhancement based on weighted mode filtering[END_REF] 

	Method	Tsukuba Venus Teddy Cones

In case of a color image, the linear system is solved in each channel.

We use IRLS[START_REF] Daubechies | Iteratively reweighted least-squares minimization for sparse recovery[END_REF] to find the solution.

The SD filter of[START_REF] Ma | Constant time weighted median filtering for stereo matching and beyond[END_REF] applies the very popular WLS filter[START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] iteratively with a fixed input image, allowing us to use many acceleration techniques for WLS filtering[START_REF] Badri | Fast edge-aware processing via first order proximal approximation[END_REF],[START_REF] Min | Fast global image smoothing based on weighted least squares[END_REF]. When using MEX implementation of the fast WLS algorithm in[START_REF] Min | Fast global image smoothing based on weighted least squares[END_REF], we obtain the filtering result with 0.1 seconds for the same image size.
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APPENDIX B

Let us consider the following objective function: ), (d) result of [START_REF] Petschnigg | Digital photography with flash and no-flash image pairs[END_REF], (e) result of [START_REF] Yan | Crossfield joint image restoration via scale map[END_REF], (f) SD filter (u 0 = u l 2 , λ = 15, µ = 60, ν = 30, k = 5). The results of (d) and (e) are from the project webpages of [START_REF] Petschnigg | Digital photography with flash and no-flash image pairs[END_REF] and [START_REF] Yan | Crossfield joint image restoration via scale map[END_REF], respectively.

The surrogate function of (31) can be found using the inequality in (9) as follows:

where w ij ≡ φ s (i -j) and w g ij ≡ φ µ (g i -g j ). Then,

.