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Robust Guided Image Filtering Using
Nonconvex Potentials

Bumsub Ham, Member, IEEE, Minsu Cho, and Jean Ponce, Fellow, IEEE

Abstract—Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in
computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance
signal as a structure prior, and transfers the structure of the guidance signal to an input image, restoring noisy or altered image
structure. The main drawbacks of such a data-dependent framework are that it does not consider structural differences between
guidance and input images, and that it is not robust to outliers. We propose a novel SD (for static/dynamic) filter to address these
problems in a unified framework, and jointly leverage structural information from guidance and input images. Guided image filtering is
formulated as a nonconvex optimization problem, which is solved by the majorize-minimization algorithm. The proposed algorithm
converges quickly while guaranteeing a local minimum. The SD filter effectively controls the underlying image structure at different
scales, and can handle a variety of types of data from different sensors. It is robust to outliers and other artifacts such as gradient
reversal and global intensity shift, and has good edge-preserving smoothing properties. We demonstrate the flexibility and
effectiveness of the proposed SD filter in a variety of applications, including depth upsampling, scale-space filtering, texture removal,
flash/non-flash denoising, and RGB/NIR denoising.

Index Terms—Guided image filtering, joint image filtering, nonconvex optimization, majorize-minimization algorithm.

F

1 INTRODUCTION

MANY tasks in computer vision and computational photog-
raphy can be formulated as ill-posed inverse problems,

and thus theoretically and practically require filtering and reg-
ularization to obtain a smoothly varying solution and/or ensure
stability [1]. Image filtering is used to suppress noise and/or
extract structural information in many applications such as image
restoration, boundary detection, and feature extraction. In this
setting, an image is convolved with a spatially invariant or variant
kernel. Linear translation invariant (LTI) filtering uses spatially
invariant kernels such as Gaussian and Laplacian ones. Spatially
invariant kernels enable an efficient filtering process, but do not
consider the image content, smoothing or enhancing both noise
and image structure evenly.

Recent work on joint image filtering (or guided image filter-
ing) [2], [3], [4] uses an additional guidance image to construct a
spatially variant kernel. The basic idea is that the structural infor-
mation of the guidance image can be transferred to an input image,
e.g., for preserving salient features such as corners and boundaries
while suppressing noise. This provides a new perspective on the
filtering process, with a great variety of applications including
stereo correspondence [5], [6], optical flow [5], [7], semantic
flow [8], [9], joint upsampling [3], [10], [11], [12], dehazing [2],
noise reduction [4], [13], and texture removal [14], [15], [16].

Joint image filtering has been used with either static or
dynamic guidance images. Static guidance filtering (e.g., [2])
modulates the input image with a weight function depending only
on features of the guidance image, as in the blue box of Fig. 1.
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Fig. 1. SD filtering for depth upsampling: Static guidance filtering con-
volves an input image (a low-resolution depth image) with a weight
function computed from a fixed guidance signal (a high-resolution color
image), as in the blue box. Dynamic guidance filtering uses weight
functions that are repeatedly obtained from filtered input images, as
in the red box. We have observed that static and dynamic guidance
complement each other, and exploiting only one of them is problematic,
especially in the case of data from different sensors (e.g., depth and
color images). The SD filter takes advantage of both, and addresses the
problems of current joint image filtering. (Best viewed in colour.)

This guidance signal is fixed during the optimization. It can reflect
internal properties of the input image itself, e.g., its gradients [3],
[17], or be another signal aligned with the input image, e.g., a near
infrared (NIR) image [4]. This approach assumes the structure of
the input and guidance images to be consistent with each other,
and does not consider structural (or statistical) dependencies and
inconsistencies between them. This is problematic, especially in
the case of data from different sensors (e.g., depth and color
images). Dynamic guidance filtering (e.g., [16]) uses weight
functions that are repeatedly obtained from filtered input images,
as in the red box of Fig. 1. It is assumed that the weight between
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neighboring pixels can be determined more accurately from the
filtered input image than from the initial one itself [16], [18].
This method is inherently iterative, and the dynamic guidance
signal (the filtered input image, i.e., a potential output image)
is updated at every step until convergence. Dynamic guidance
filtering takes into account the properties of the input image, but
ignores the additional information available in the static guidance
image, which can be used to impose image structures lost in the
input data, e.g., in joint upsampling [3], [10], [11], [12].

We present in this paper a unified framework for joint image
filtering taking advantage of both static and dynamic guidance,
called the SD filter (Fig. 1). We address the aforementioned
problems by adaptively fusing data from the static and dynamic
guidance signals, rather than unilaterally transferring the structure
of the guidance image to the input one. To this end, we combine
static guidance image weighting with a nonconvex penalty on the
gradients of dynamic guidance, which makes joint image filtering
robust to outliers. The SD filter has several advantages over current
joint image filters: First, it effectively controls image structures at
different scales, and can handle a variety of types of data from
different sensors. Second, it has good edge-preserving properties,
and is robust to artifacts, such as gradient reversal and global
intensity shift [2].

Contributions. The main contributions of this paper can be
summarized as follows:
• We formulate joint image filtering as a nonconvex optimization

problem, where Welsch’s function [19] (or correntropy [20])
is used for a nonconvex regularizer. We solve this problem by
the majorize-minimization algorithm, and propose to use an l1

regularizer to compute an initial solution of our solver, which
accelerates the convergence speed (Section 3).

• We analyze several properties of the SD filter including scale
adjustment, runtime, filtering behavior, and its connection to
other filters (Section 4).

• We demonstrate the flexibility and effectiveness of the SD
filter in several computer vision and computational photography
applications including depth upsampling, scale-space filtering,
texture removal, flash/non-flash denoising, and RGB/NIR de-
noising (Section 5).

A preliminary version of this work appeared in [21]. This
version adds (1) an in-depth presentation of the SD filter; (2)
a discussion on its connection to other filtering methods; (3) an
analysis of runtime; (4) an extensive experimental evaluation and
comparison of the SD filter with several state-of-the-art methods;
and (5) an evaluation on the localization accuracy of depth edges
for depth upsampling. To encourage comparison and future work,
the source code of the SD filter is available at our project webpage:
http://www.di.ens.fr/willow/research/sdfilter.

2 RELATED WORK

2.1 Image filtering and joint image filtering
Joint image filters can be derived from minimizing an objective
function that usually involves a fidelity term (e.g., [2], [3], [22]),
a prior smoothness (regularization) term (e.g., [17]), or both
(e,g., [15], [23], [24]). Regularization is implicitly imposed on
the objective function with the fidelity term only. The smoothness
term encodes an explicit regularization process into the objective
function. We further categorize joint image filtering (static or dy-
namic guidance filtering) into implicit and explicit regularization

methods. The SD filter belongs to the explicit regularization that
takes advantage of both static and dynamic guidance.

Implicit regularization stems from a local filtering framework.
The input image is filtered using a weight function that depends
on the similarity of features within a local window in the guidance
image [3], allowing the structure of the guidance image to be
transferred to the input image. The bilateral filter (BF) [22], guided
filter (GF) [2], weighted median filter (WMF) [11], and weighted
mode filter (WModF) [25] are well-known implicit regulariza-
tion methods, and they have been successfully adapted to static
guidance filtering. They regularize images through a weighted
averaging process [2], [22], a weighted median process [11],
or a weighted mode process [25]. Two representative filtering
methods using dynamic guidance are iterative nonlocal means
(INM) [18] and the rolling-guidance filter (RGF) [16]. These
methods share the same filtering framework, but differ in that
INM aims at preserving textures during noise reduction, while
RGF aims at removing them through scale-space filtering. The
implicit regularization involved is simple and easy to implement,
but it has some drawbacks. For example, it has difficulties handling
sparse input data (e.g., in image colorization [26]), and often
introduces artifacts (e.g., halos and gradient reversal [2]) due to
its local nature. Accordingly, implicit regularization has mainly
been applied in highly controlled conditions, and is typically used
as pre- and/or post-processing for further applications [11], [27].

An alternative approach is to explicitly encode the regular-
ization process into the objective function, while taking advan-
tage of the guidance image. The weighted least-squares (WLS)
framework [23] is the most popular explicit regularization method
in static guidance filtering [12]. The objective function typically
consists of two parts: A fidelity term captures the consistency
between input and output images, and a regularization term,
modeled using a weighted l2 norm [23], encourages the output
image to have a similar structure to the guidance one. Many other
regularization terms, e.g., l1 norm in total generalized variation
(TGV) [10], l0 norm in l0 norm minimization [24], or relative
total variation (RTV) [15], have also been employed, so that the
filtered image is forced to have statistical properties similar to
those of the desired solution. Anisotropic diffusion (AD) [17]
is an explicit regularization framework using dynamic guidance.
In contrast to INM [18] and RGF [16], AD updates both input
and guidance images at every step. Filtering is performed itera-
tively with the filtered input and updated guidance images. This
explicit regularization enables formulating a task-specific model,
with more flexibility than implicit regularization. Furthermore, it
overcomes several limitations of implicit regularization, such as
halos and gradient reversal for example, at the cost of global
intensity shift [2], [23].

Existing image filtering methods typically apply to a lim-
ited range of applications and suffer from various artifacts: For
example, RGF is applicable to scale-space filtering only, and
suffers from poor edge localization [16]. In contrast, our approach
provides a unified model for many applications, gracefully han-
dles most artifacts, and outperforms the state of the art in all
the applications considered in the paper. Although the proposed
model is superficially similar to WLS [23] and RGF [16], our
nonconvex objective function requires a different solver, which
gives theoretical reasoning for RGF. Our model is also related to a
diffusion-reaction equation [28], the steady-state solution of which
has a similar form to the SD filter. However, the SD filter has
an additional weight function using static guidance, as described
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(a) Color image. (b) Depth image. (c) Static guidance [23]. (d) Dynamic guidance [16]. (e) Our model.
Fig. 2. Comparison of static and dynamic guidance filtering methods. Given (a) a high-resolution color image, (b) a low-resolution depth image is
upsampled (⇥8) by our model in (1) using (c) static guidance only [23], (d) dynamic guidance only [16], and (e) joint static and dynamic guidance.
Static guidance filtering restores smoothed depth edges, as in the red boxes of (c). However, this method transfers all the structural information of
the color image to the depth image, such as the weak color edges between the board and background and the color stripes on the tablecloth in the
blue boxes of (c). Dynamic guidance filtering avoids this problem, as in the blue boxes of (d), but this method does not use the structural information
of the high-resolution color image, smoothing or even eliminating depth edges as in the red boxes of (d). The SD filter jointly uses the structure of
color and depth images, and does not suffer from these problems as in the blue and red boxes of (e). See Section 5.1 for details. (Best viewed in
colour.)

in Section 4.4 in detail. While Badri et al. [29] used a similar
nonconvex objective function for image smoothing, our model
provides a more generalized objective for joint image filtering.
Shen et al. [30] used the common structure in input and guidance
images, but the local filtering formulation of the filter introduces
halo artifacts and limits the applicability. The closest work to
ours is a recently introduced a learning-based joint filter [31]
using convolutional neural networks (CNNs). This deep joint filter
considers the structures of both input and guidance images, but
requires a large number of annotated images for training the deep
model for each task.

2.2 Joint image filtering for high-level vision

Joint image filtering have shown great success in low-level vision
tasks, but little attention has been paid to applying it to high-
level vision problems. Motivated by the fact that contrast-sensitive
potentials [32] typically used in conditional random fields (CRFs)
have a similar role to static guidance image weighting (e.g., see
(5) in [32].), Krähenbühl and Koltun [33] used joint image filtering
for an efficient message passing scheme, enabling an approximate
inference algorithm for fully connected CRF models. In a similar
manner that joint image filtering is used for many applications
(e.g., joint upsampling), the CRF model has been widely used to
refine low-resolution CNN outputs, e.g., in semantic segmenta-
tion [34], [35]. Recent work [36], [37] learns parameters of both
a joint image filter and a CNN model in an end-to-end manner
to upsample low-resolution network outputs. As in existing joint
image filters, however, the refinement methods use the structure of
high-resolution color images (static guidance) only, while ignoring
additional information available in the CNN outputs. We believe
that using the SD filter will improve the refinement by considering
the structures of both inputs and outputs of the CNN in the end-
to-end learning.

3 PROPOSED APPROACH

3.1 Motivation and problem statement
There are pros and cons in filtering images under static or dynamic
guidance. Let us take the example of depth upsampling in Fig. 2,
where a high-resolution color image (the guidance image) in (a)
is used to upsample (⇥8) an input low-resolution depth image in
(b). Static guidance filtering reconstructs destroyed depth edges
using the color image with high signal-to-noise ratio (SNR) [3],
[10], as in the red boxes of (c). However, this approach does not
handle differences in structure between depth and color images,
transferring all the structural information of the color image to
the depth image, as in the blue boxes of (c). For regions of high-
contrast in the color image, the depth image is altered according
to the texture pattern, resulting in texture-copying artifacts [38].
Similarly, depth edges are smoothed in low-contrast regions on
the color image (e.g., weak color edges), causing jagged artifacts
in scene reconstruction [39]. Dynamic guidance filtering utilizes
the content of the depth image1, avoiding the drawbacks of static
guidance filtering, as in the blue boxes of (d). The depth edges
are preserved, and unwanted structures are not transferred, but
dynamic guidance does not take full advantage of the abundant
structural information in the color image. Thus, depth edges are
smoothed, and even eliminated for regions of low-contrast in the
depth image, as in the red boxes of (d).

This example illustrates the fact that static and dynamic
guidances complement each other, and exploiting only one of
them is not sufficient to infer high-quality structural information
from the input image. This problem becomes even worse when
input and guidance images come from different data with different
statistical characteristics. The SD filter proposed in this paper
jointly leverages the structure of static (color) and dynamic (depth)
guidance, taking advantage of both, as shown in (e).

1. Dynamic guidance is initialized with the interpolated depth image using
static guidance as shown in Fig. 2(c), not with the low-resolution depth image
itself.
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3.2 Model
Given the input image f , the static guidance g, and the output
image u (dynamic guidance), we denote by fi, gi, and ui the cor-
responding image values at pixel i, with i ranging over the image
domain I ⇢ N2. Our objective is to infer the structure of the input
image by jointly using static and dynamic guidance, and to make
joint image filtering robust to outliers in a unified framework.
The influence of the guidance images on the input image varies
spatially, and is controlled by weight functions that measure the
similarity between adjacent pixels in the guidance images. Various
features (e.g., spatial location, intensity, and texture [12], [40]) and
metrics (e.g., Euclidian and geodesic distances [7], [23]) can be
used to represent distinctive characteristics of pixels on images
and measure their similarities.

We minimize an objective function of the form:

E(u) =
X

i

ci(ui � fi)
2
+ �⌦(u, g), (1)

which consists of fidelity and regularization terms, balanced by
the regularization parameter �. The first (fidelity) term helps
the solution u to harmonize well with the input image f with
confidence ci � 0. The regularization term makes the solution
u smooth while preserving salient features (e.g., boundaries). We
propose the following regularizer:

⌦(u, g) =

X

i,j2N
�µ(gi � gj) ⌫(ui � uj), (2)

where
 ⌫(x) = (1� �⌫(x))/⌫, (3)

and
��(x) = exp(��x2

). (4)

Here, µ and ⌫ control the smoothness bandwidth, and N is the
set of image adjacencies, defined in our implementation on a local
8-neighborhood system. The first term, �µ in the regularizer is a
weight function using intensity difference between adjacent pixels
in the guidance g. This function approaches to zero as the gradient
of the guidance g becomes larger (e.g., at the discontinuities of g),
preventing smoothing the output image u in those regions. That is,
the weight function �µ transfers image structures from the static
guidance g to the output image u. The second one  ⌫ , called
Welsch’s function [19], regularizes the output image u, and makes
joint filtering robust to outliers, due to its nonconvex shape and
the fact that it saturates at 1 (Fig. 4). Note that convex potentials
in existing joint image filters regularize the structure of the output
image u and bring the structure through static guidance image
weighting �µ. In contrast, the nonconvex potential  ⌫ penalizes
large gradients of the output image u (dynamic guidance) less
than a convex one during filtering [17], [41], [42], and preserves
features having high-frequency structures (e.g., edges and corners)
better. This means the use of nonconvex potentials relax the strict
dependence of the existing joint image filters on the static guidance
g, and allows to leverage the structure of the dynamic guidance
u as well. Accordingly, by combining static guidance image
weighting �µ with the nonconvex penalty  ⌫ on the gradients
of the dynamic guidance u, the SD filter adaptively fuses data
from the static and dynamic guidances. This effectively reflects
structural differences between guidance and input images, and
makes joint image filtering robust to outliers. Although nonconvex
potentials preserve some noise, the static guidance g with high
SNR in our model alleviates this problem. Note that in order to

E(u)Qk (u)

ukuk+1

Fig. 3. Sketch of the majorize-minimization algorithm. At step k, a
surrogate function Qk is constructed given some estimate uk of the
minimum of E , such that Qk(uk) = E(uk) and Qk(u) � E(u). At step
k + 1, the next estimate uk+1 is obtained by minimizing Qk. These two
steps are repeated until convergence.

adaptively fuse data from the static and dynamic guidances, one
might attempt to add a weight function �⌫ using the dynamic
guidance u in the regularizer as follows:

⌦(u, g) =

X

i,j

�µ(gi � gj)�⌫(ui � uj) ⌫(ui � uj). (5)

This regularizer, however, is hard to optimize and may be unstable.

3.3 Optimization algorithm

Let f = [fi]N⇥1, g = [gi]N⇥1, and u = [ui]N⇥1 denote
vectors representing the input image, static guidance and the
output image (or dynamic guidance), respectively, where N = |I|
is the size of the images. Let Wg = [�µ(gi � gj)]N⇥N ,
Wu = [�⌫(ui � uj)]N⇥N , and C = diag ([c1, . . . , cN ]). Wg

and Wu denote weight matrices of the 8-neighborhood system for
static and dynamic guidances, respectively. We can rewrite our
objective function in matrix/vector form as:

E(u) = (u� f)T C (u� f) +
�

⌫

1T
(Wg �W)1, (6)

where W = Wg � Wu, and � denotes the Hadamard product of
the matrices defined as the element-wise multiplication of their
elements. 1 is a N ⇥ 1 vector, where all the entries are 1. The
diagonal entries ci of C are confidence values for the pixels i in
the input image.

3.3.1 The majorize-minimization algorithm

Our objective function is not convex, and thus it is non-trivial
to minimize the objective function of (6). In this work, we
compute a local minimum of (6) by iteratively computing a convex
upper bound (surrogate function) and solving the corresponding
convex optimization problems. Concretely, we use the majorize-
minimization algorithm (Fig. 3) [43], [44], [45], which guarantees
convergence to a local minimum of the nonconvex objective
function [46]. This algorithm consists of two repeated steps: In
the majorization step, given some estimate uk of the minimum of
E at step k, a convex surrogate function Qk is constructed, such
that

⇢

Qk
(uk

) = E(uk
)

Qk
(u) � E(u) . (7)

In the minimization step, the next estimate uk+1 is then computed
by minimizing Qk. These steps are repeated until convergence.
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Fig. 4. Welsch’s function  ⌫ and its surrogate functions  y
⌫ , when ⌫

is set to 1. The convex surrogate function  y
⌫(x) is an upper bound on

 ⌫(x) and coincides with  ⌫(x) only when x is equal to y. (Best viewed
in colour.)

3.3.2 Implementation details

The nonconvexity of our objective function comes from Welsch’s
function  ⌫ . As shown in Appendix A, a convex surrogate
function  y

⌫ for  ⌫ , such that 8x, y,
⇢

 

y
⌫(y) =  ⌫(y)

 

y
⌫(x) �  ⌫(x)

, (8)

is given by

 

y
⌫(x) =  ⌫(y) + (x

2 � y

2
)(1� ⌫ ⌫(y)). (9)

The surrogate function  y
⌫(x) is an upper bound on  ⌫(x) and

coincides with  ⌫(x) only when x is equal to y (Fig. 4).
Majorization step: Let us now use this result to compute the

surrogate function Qk for E by substituting  ⌫ with  y
⌫ in (2) as

follows:

Qk
(u) = uT

h

C + �Lk
i

u� 2fT Cu+ fT Cf (10)

� �ukTLkuk
+

�

⌫

1T
⇣

Wg �Wk
⌘

1.

Lk
= Dk �Wk is a dynamic Laplacian matrix at step k, where

Wk
= Wg �Wuk and Dk

= diag

�⇥

d

k
1 , . . . , d

k
N

⇤�

where d

k
i =

PN
j=1 �µ(gi � gj)�⌫(u

k
i � u

k
j ).

Minimization step: We then obtain the next estimate uk+1

by minimizing the surrogate function Qk w.r.t. u as follows2:

uk+1
= argmin

u
Qk

(u) = (C + �Lk
)

�1Cf . (11)

The above iterative scheme decreases the value of E monotonically
in each step, i.e.,

E(uk+1
)  Qk

(uk+1
)  Qk

(uk
) = E(uk

), (12)

where the first and the second inequalities follow from (7) and
(11), respectively, and converges to a local minimum of E [46].
The static guidance affinity matrix Wg is fixed regardless of steps,
while the dynamic guidance matrix Wuk is iteratively updated.
Thus, we jointly use the structure of static and dynamic guidance
to compute the solution u. Note that all previous joint image
filters (e.g., [2], [3], [11], [25]) except recently proposed ones [31]

2. In case of a color image, the linear system is solved in each channel.

determine the structure of the output image by the weight func-
tion of the static guidance image (Wg) only. We overcome this
limitation by using an additional weight function of the dynamic
guidance image (Wuk) in each round of an intermediate output
uk, thus reflecting the structures of both static and dynamic
guidance images simultaneously during the optimization process.

The majorize-minimization algorithm generalizes other well-
known optimization methods [47], e.g., the expectation-
maximization (EM) algorithm [48], iteratively reweighted least-
squares (IRLS) [49], the Weiszfeld’s method [50], and the half-
quadratic (HQ) minimization [51], [52]. Nikolova and Chan [53]
have shown that the method where the solution of the objective
function is computed by iteratively solving linear systems at each
step as in our solver is equivalent to the HQ minimization (of
multiplicative form). That is, both methods give exactly the same
iterations. Thus, our solver gives an identical solution to the HQ
minimization (of multiplicative form) for (6), if initializations are
the same.

Algorithm 1 summarizes the optimization procedure.

Algorithm 1 The SD filter.
1: Input:

f (an input image); g (a static guidance image);
u0 (an initial estimate for a dynamic guidance image).

2: Parameters:
µ (a bandwidth parameter for g);
⌫ (a bandwidth parameter for u);
� (a regularization parameter);
K (the maximum number of steps).

3: Compute a confidence matrix C = diag ([c1, . . . , cN ]) where
ci � 0.

4: Compute an affinity matrix for the static guidance image g,
Wg = [�µ(gi � gj)]N⇥N , where �µ(x) = exp(�µx

2
).

5: for k = 0, . . . ,K do
6: Compute an affinity matrix for the dynamic guidance image

uk, Wuk =

h

�⌫(u
k
i � u

k
j )

i

N⇥N
.

7: Compute a dynamic Laplacian matrix Lk
= Dk � Wk

where Wk
= Wg �Wuk and Dk

= diag

�⇥

d

k
1 , . . . , d

k
N

⇤�

where d

k
i =

PN
j=1 �µ(gi � gj)�⌫(u

k
i � u

k
j ).

8: Update uk+1 by solving (C + �Lk
)uk+1

= Cf .
9: end for

10: Output: uK (a final estimate).

3.3.3 Initialization

Our solver finds a local minimum, and thus different initializations
for u0 (dynamic guidance at k = 0) may give different solutions.
In this work, we compute the initial estimate u0 by minimizing the
objective function of (1) and using an upper bound on Welsch’s
function in the regularizer (Fig. 5). Two functions are used for
initialization.

l2 initialization. Welsch’s function is upper bounded by an
l2 regularizer, i.e., 8x, x2 �  ⌫(x). This can be easily shown
by using the inequality, exp(x) � 1 + x. The initial estimate
u0 is computed by minimizing the objective function in (1)
with a weighted l2 norm as a regularizer, i.e., using the WLS
framework [23]:

⌦l2(u, g) =
X

i,j2N
�µ(gi � gj)(ui � uj)

2
. (13)
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Fig. 5. Upper bounds on Welsch’s function  ⌫ : an l2 regularizer x2 and
an l1 regularizer ↵|x| (a tight upper bound on  ⌫ ), when ⌫ is set to 1.
(Best viewed in colour.)

The l2 initialization is simple, but may yield a slow convergence
rate as illustrated by Fig. 6(a).

l1 initialization. A good initial solution accelerates the con-
vergence of our solver. We propose to use the following regularizer
to compute the initial estimate u0:

⌦l1(u, g) =
X

i,j2N
�µ(gi � gj)↵|ui � uj |, (14)

where ↵ is set to a positive constant, chosen so ↵|x| is a much
tighter upper bound on Welsch’s function than the l2 regularizer,
as shown in Fig. 5. This regularizer is convex, and thus the global
minimum3 is guaranteed [49].

4 ANALYSIS

In this section, we analyze the properties of the SD filter, including
runtime and scale adjustment, and illustrate its convergence rate
and filtering behavior with different initializations. A connection
to other filtering methods is also presented.

4.1 Runtime
The major computational cost of the SD filter comes from
solving the linear system of (11) repeatedly. We use a local 8-
neighborhood system, resulting in the sparse matrix (C + �Lk

).
This matrix has a positive diagonal and four sub-diagonals on each
side. These sub-diagonals are not adjacent, and their separation
is proportional to the image width. It is therefore not banded
with a fixed bandwidth. Yet, it is sparse and positive semidef-
inite, thus (11) can be solved efficiently using sparse Cholesky
factorization. We use the CHOLMOD solver [54] of MATLAB in our
implementation. Running k = 5 steps of our algorithm from an
l1 or l2 initialization takes about 2.5 seconds for an image of size
500 ⇥ 300 on a 4.0GHz CPU4. The l1 and l2 initializations take
about 1.2 and 0.4 seconds, respectively, on average for the same
image size.

3. We use IRLS [49] to find the solution.
4. The SD filter of (11) applies the very popular WLS filter [23] iteratively

with a fixed input image, allowing us to use many acceleration techniques for
WLS filtering [29], [55]. When using MEX implementation of the fast WLS
algorithm in [55], we obtain the filtering result with 0.1 seconds for the same
image size.

Number of Steps
10 20 30 40 50 60 70 80 90 100

#105

1

2

3
Energy Evolution

u0 = ul2

u0 = ul1
(a)

Number of Steps
1 2 3 4 5 6 7 8 9 10

#105

0

1

2
Sum of Intensity Differences Between Steps

u0 = ul2

u0 = ul1
(b)

(c) Input image. (d) u0 = ul2 , k = 30.

(e) u0 = ul1 , k = 7. (f) u0 = ul1 , k = 30.
Fig. 6. Examples of (a) energy evolution of (6) and (b) a sum of intensity
difference between successive steps (i.e., kuk � uk+1k1), given (c) the
input image. Our solver converges in fewer steps with the l1 initialization
(u0 = ul1 ) than with the l2 one (u0 = ul2 ), with faster overall speed.
It also guarantees a meaningful solution in the steady-state: (d) u0 =
ul2 , k = 30, (e) u0 = ul1 , k = 7, and (f) u0 = ul1 , k = 30. In this
example, for removing textures, static guidnce is set to the Gaussian
filtered version (standard deviation, 1) of the input image (� = 50, µ = 5,
⌫ = 40). See Section 5.2 for details.

4.2 Influence of initialization

As explained earlier, the majorize-minimization algorithm is
guaranteed to converge to a local minimum of E in (6) [46].
In this section, we show the convergence rate of (11) as the
step index k increases, and observe its behavior with different
initializations, using ul2 and ul1 , the global minima of (1) using
⌦l2 and ⌦l1 as regularizers, respectively. Figure 6 shows how
(a) the energy E of (6) and (b) the intensity differences (i.e.,
kuk � uk+1k1) evolve over steps for a sample input image
(Fig. 6(c)). In this example, our solver converges in fewer steps
with the l1 initialization (u0

= ul1 ) than with the l2 one
(u0

= ul2 ), with faster overall speed, despite the overhead of
the l1 minimization: Our solver with the l2 and l1 initializations
converges in 30 and 7 steps (Fig. 6(d) and (e)), taking 45 and
20 seconds (including initialization), respectively. Although our
solver with the l2 initialization converges more slowly, the per-
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pixel intensity difference still decreases monotonically in (b). Note
that after few steps (typically from 5), the solver gives almost
the same filtering results. For example, after 5 steps, the average
and maximum values of the per-pixel intensity difference are
9.4⇥10

�5 and 1.7⇥10

�3, respectively, with the l2 initialization,
and 4.3⇥10

�5 and 8.7⇥10

�4 with the l1 initialization5. It should
also be noted that most filtering methods, except the recently
proposed RGF [16], eventually give a constant-value image, if
they are performed repeatedly, regardless of whether the filters
have implicit or explicit forms (e.g., BF [22] and AD [17]). In
contrast, the SD filter converges to a meaningful image no matter
how many steps are performed (Fig. 6(e) and (f)).

4.3 Scale adjustment

There are two approaches to incorporating scale information in
image filtering [16], [17], [23]. In implicit regularization methods,
an intuitive way to adjust the degree of smoothing is to use an
isotropic Gaussian kernel. Due to the spatially invariant properties
of the kernel, this approach regularizes both noise and features
evenly without considering image structure [17]. RGF addresses
this problem in two phases: Small-scale structures are removed by
the Gaussian kernel, and large-scale ones are then recovered [16].
Since RGF [16] is based on the Gaussian kernel, it inherits its
limitations. This leads to poor edge localization at coarse scales,
with rounded corners and shifted boundaries. The regularization
parameter is empirically used to adjust scales in explicit regular-
ization methods [23]. It balances the degree of influence between
fidelity and regularization terms in such a way that a large value
leads to more regularized results than a small one.

Now, we will show how the regularization parameter � con-
trols scales in the SD filter. It follows from (11) that

(C + �Dk
)uk+1 � �Wkuk+1

= Cf . (15)

Let us define diagonal matrices A and A0 as

A = (C + �Dk
)

�1C, (16)

and

A0
= �(C + �Dk

)

�1Dk
, (17)

such that A + A0
= I. By multiplying the left- and right-hand

sides of (15) by (C + �Dk
)

�1, we obtain

uk+1
= (I� �(C + �Dk

)

�1Dk

| {z }

A0

Pk
)

�1
(C + �Dk

)

�1C
| {z }

A=I�A0

f

(18)

= A(I�A0Pk
)

�1f ,

where Pk
= (Dk

)

�1Wk. Note that this gives the exact same
form as random walk with restart [56], [57], [58], except that
Pk is updated at every step in our case. It has been shown that
the restarting probability A controls the extent of smoothing in
different scales in the image [56]. In our case, the regularization
parameter � determines the restarting probability, which shows
that by varying this parameter, we can adjust the degree of
smoothing.

5. We normalize the intensity range to [0, 1].

4.4 Connections with other filters
Let us consider the objective function of (1), but without the
regularization term. We can implicitly impose joint regularization
on the objective function by introducing a spatial weight function
�s and static guidance weighting �µ to the fidelity term. The
objective function is then

E(u) =
X

i

X

j2⌘

�s(i� j)�µ(gi � gj)(ui � fj)
2
, (19)

where s is a spatial bandwidth parameter and ⌘ is the local
neighborhood of the pixel i. The solution of this objective function
can be computed as follows:

u

k+1
i =

P

j2⌘
�s(i� j)�µ(gi � gj)fj

P

j2⌘
�s(i� j)�µ(gi � gj)

. (20)

This becomes equivalent to the joint BF [3] (or BF [22] by setting
g = f ). By further introducing Welsch’s function  ⌫ to (19), we
obtain the following objective function:

E(u) =
X

i

X

j2⌘

�s(i� j)�µ(gi � gj) ⌫(ui � fj), (21)

We can compute a local minimum of this objective function by the
majorize-minimization algorithm as follows (see Appendix B):

u

k+1
i =

P

j2⌘
�s(i� j)�µ(gi � gj)�⌫(u

k
i � fj)fj

P

j2⌘
�s(i� j)�µ(gi � gj)�⌫(u

k
i � fj)

. (22)

This again becomes the joint BF [3] with �⌫(x) = 1. A variant of
RGF [16] can be derived by setting �µ(x) = 1.

Let us now consider the case when f , g, and u are continuous
functions over a continuous domain. A continuous form of the
objective function of (1) can then be written as [59]:

Z

J

n

ci(ui � fi)
2
+ ��µ (krgk) ⌫ (kruk)

o

dJ , (23)

where J ⇢ R2
+ and r denotes the gradient operator. This

function can be minimized via gradient descent using the calculus
of variations [59] as follows:
@u

@k

= ci(ui � fi) + �div [�µ (krgk)�⌫ (kruk)ru] , (24)

where @k and div represent a partial derivative w.r.t. k and the
divergence operator, respectively. This is a variant of the diffusion-
reaction equation [17], [28] with an additional term �µ (krgk)
involving the static guidance g. The result of the SD filter is a
steady-state solution of this scheme. Note that while being widely
used in image filtering, nonconvex potentials have never been im-
plemented before in the context of joint image filtering to the best
of our knowledge. In our approach, nonconvex potentials make
joint image filtering robust to outliers by effectively exploiting
structural information from both guidance and input images. If
one uses (24) with �⌫(x) = 1 (i.e., without dynamic guidance),
the steady-state solution of (24) can be found in closed form, and is
exactly same as the result obtained by the WLS framework [23].
With �µ(x) = 1 (i.e., without static guidance), the steady-state
solution of (24) is found by solving the following equation:

0 = ci(ui � fi) + �r · [�⌫ (kruk)ru] . (25)

In this case, the solution cannot be computed in closed form, but
it can be obtained by repeatedly solving (11) with Wk

= Wuk .
This corresponds to a variant of RGF [16] with the fidelity term.
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Fig. 7. Average PBP on (a) the Middlebury dataset [60] and (b) the Graz dataset [10] as a function of the depth error tolerance �. (Best viewed in
colour.)

TABLE 1
Average PBP (� = 1) on the Middlebury dataset [60] with varying the
regularization parameter �. PBP is defined as the percentage of bad

pixels for all regions as in (26).

ul2 ul1
Ours Ours

(u0 = ul2 ) (u0 = ul1 )

� avg. ± std. avg. ± std. avg. ± std. avg. ± std.

0.001 10.0±4.7 10.9±6.1 7.0±3.4 7.1±3.4
0.005 10.0±4.7 10.9±6.1 7.0±3.4 7.1±3.4
0.010 10.0±4.7 10.9±6.1 7.0±3.4 7.1±3.4
0.050 10.0±4.7 11.4±6.5 7.1±3.4 7.1±3.4
0.100 10.0±4.8 12.1±7.0 7.1±3.4 7.1±3.4
0.200 10.1±4.8 13.4±7.9 7.1±3.5 7.1±3.4
0.500 10.4±5.0 16.2±9.5 7.2±3.5 7.2±3.5
1.000 10.9±5.3 19.5±11.2 7.4±3.7 7.4±3.6
10.00 16.8±9.8 35.0±19.4 10.3±6.0 10.3±6.0

TABLE 2
Average PBP (� = 1) and processing time on the Middlebury

dataset [60] with varying the number of steps k.

Ours (u0 = ul2 ) Ours (u0 = ul1 )

k avg. ± std. time (s) avg. ± std. time (s)

1 10.0±4.8 0.7 7.6±3.5 4.9
5 7.2±3.5 2.7 7.1±3.4 7.0

10 7.1±3.4 5.4 7.1±3.4 9.6
30 7.1±3.4 15.5 7.1±3.4 19.6
35 7.0±3.4 18.1 7.1±3.4 22.3

100 7.0±3.4 51.9 7.1±3.4 55.7

5 APPLICATIONS

We apply the SD filter to depth upsampling, scale-space filtering,
texture removal, flash/non-flash denoising, and RGB/NIR denois-
ing. In each application, we compare the SD filter to the state of
the art. The results for the comparison have been obtained from
source codes provided by the authors, and all the parameters for
all compared methods have been empirically set to yield the best
average performance through extensive experiments.

5.1 Depth upsampling

Acquiring range data through an active sensor has been a popular
alternative to passive stereo vision. Active sensors capture dense
range data in dynamic conditions at video rate, but the acquired
depth image may have low resolution, and be degraded by noise.

These problems can be addressed by exploiting a registered high-
resolution RGB image as a depth cue [10], [11], [12], [25], [61],
[62]. We apply the SD filter to this task. We will show that,
contrary to existing methods, the robust and nonconvex regularizer
in the SD filter avoids smoothing depth edges, and gives a sharp
depth transition at depth discontinuities.

Parameter settings. In our model, input and guidance images
(f and g) are set to sparse depth and dense color (or intensity)
high-resolution images, respectively, and ci is set to 1 if the pixel
i of the sparse depth image f has valid data, and 0 otherwise.
The bandwidths, µ and ⌫, and the step index k are fixed to 60, 30,
and 10, respectively, in all experiments, unless otherwise specified.
The regularization parameter � is set to 0.1 for synthetic examples,
and is set to 5 for real-world examples due to the huge amount of
noise. For the quantitative comparison, we measure the percentage
of bad matching pixels for all regions (PBP) defined as follows:

PBP =

1

N

X

i

⇣

�

�

�

ui � u

gt
i

�

�

�

> �

⌘

, (26)

where � is a depth error tolerance [60]. ui and u

gt
i represent

upsampled and ground-truth depth images at the pixel i, respec-
tively. We also measure the percentage of bad matching pixels near
depth discontinuities (PBP?) using a ground-truth index map for
discontinuous regions, provided by [60]. PBP? is measured only
when the index map is available.

5.1.1 Synthetic data

We synthesize a low-resolution depth image by downsam-
pling (⇥8) ground-truth data from the Middlebury benchmark
dataset [60]: Tsukuba, venus, teddy, cones, art, books, dolls,
laundry, moebius, and reindeer, and use the corresponding color
image as static guidance.

Performance evaluation. We compare the average PBP
(� = 1) of the results obtained by the SD filter with the l2 and
l1 initializations and the corresponding initial estimates (ul2 and
ul1 ) while varying the regularization parameter � in Table 1. A
first important conclusion is that the nonconvex regularizer in the
SD filter shows a better performance than the convex ones. The
table also shows that the results of the l1 regularizer are strongly
influenced by the regularization parameter, whereas the SD filter
gives almost the same PBP regardless of the initialization. For
example, when � is set to 10, the SD filter reduces the average
PBP from 16.8 and 35.0 for ul2 and ul1 , respectively, to 10.3.
Table 2 compares the average PBP (� = 1) and processing time
of the SD filter with the l2 and l1 initializations while varying
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TABLE 3
PBP (� = 1) comparison with the state of the art on the Middlebury dataset [60]. Superscripts indicate the rank of each method for each image.

Method Tsukuba Venus Teddy Cones Art Books Dolls Laun. Moeb. Rein. avg. ± std.

Bilinear Int. 10.4010 3.2910 11.8010 14.6010 34.599 13.077 14.596 22.8510 17.158 17.488 15.98±8.299

GF [2] 9.879 2.749 15.5011 15.5011 45.3111 19.1410 19.6411 26.8911 22.2211 21.709 19.85±11.211

RWR [62] 9.638 1.367 11.409 11.709 41.0710 17.679 18.3610 21.749 21.2810 25.7111 17.99±10.810

Park et al. [12] – – 10.108 9.717 27.818 11.185 15.237 18.278 13.827 12.356 14.81±5.978

TGV [10] 5.406 1.316 9.827 10.208 23.597 13.148 16.149 15.127 18.269 10.425 12.34±6.407

WMF [11] 6.147 1.035 7.883 8.105 22.136 8.671 9.581 14.266 10.524 10.043 9.84±5.484

WModF [25] 4.355 0.613 9.515 9.436 12.393 10.684 11.484 9.913 8.601 12.637 8.96±3.763

ul2 3.604 1.608 9.284 7.864 17.884 11.906 12.635 11.744 13.616 10.284 10.04±4.785

ul1 2.593 0.674 9.515 7.563 17.985 19.2911 15.868 12.755 13.085 21.8510 12.11±7.036

Ours (u0 = ul2 ) 2.391 0.521 7.391 5.241 10.042 9.793 10.843 8.111 9.492 6.931 7.07±3.431

Ours (u0 = ul1 ) 2.452 0.521 7.422 5.362 9.961 9.522 10.772 8.222 9.492 6.982 7.07±3.381

(a) Color image. (b) Ground truth. (c) Bilinear Int. (d) GF [2].

(e) RWR [62]. (f) Park et al. [12]. (g) TGV [10]. (h) WMF [11].

(i) WModF [25]. (j) ul2 . (k) ul1 . (l) SD filter.

Fig. 8. Visual comparison of upsampled depth images on a snippet of
the books sequence in the Middlebury dataset [60]: (a) a high-resolution
color image, (b) a ground-truth depth image, (c) bilinear interpolation, (d)
GF [2], (e) RWR [62], (f) Park et al. [12], (g) TGV [10], (h) WMF [11], (i)
WModF [25], (j) ul2 , (k) ul1 , and (l) SD filter (u0 = ul1 ). In contrast to
the static guidance filters such as GF [2] and WMF [11], the SD filter
interpolates the low-resolution depth image using the structure of both
color and depth images, preserving sharp depth edges.

the number of steps k. This table shows that the results obtained
by the l1 initialization converges faster than with the l2 one. The
l1 and l2 initializations converge in 5 and 35 steps, respectively.
Both initializations give almost the same error at the convergence,
but the l1 initialization takes less time (7s) until convergence than
the l2 one (18s). We fix the step index k to 10, regardless of the
initialization.

Comparison with the state of the art. We compare the
average PBP (� = 1) of the SD filter and the state of the art
in Table 3. Superscripts indicate the rank of each method in each
column. This table shows that WMF [11] and WModF [25] give
better quantitative results than other state-of-the-art methods, but
that the SD filter outperforms all methods on average, regard-
less of the initialization. Figure 7(a) shows the variation of the
average PBP as a function of the depth error tolerance �. The
SD filter outperforms other methods until the error tolerance �
reaches around 4, and after that all methods show the similar
PBP performance. Figure 8 shows a visual comparison of the

TABLE 4
PBP? (� = 1) comparison on the Middlebury dataset [60].

Method Tsukuba Venus Teddy Cones

Bilinear Int. 46.3010 37.1010 35.3010 35.8011

GF [2] 43.209 26.509 37.5011 34.4010

RWR [62] 39.508 12.306 27.508 25.409

Park et al. [12] – – 25.406 19.907

TGV [10] 23.906 14.407 29.009 23.608

WMF [11] 28.007 10.105 22.203 19.205

WModF [25] 20.205 5.734 23.705 19.205

ul2 15.504 15.108 26.307 18.904

ul1 11.403 5.483 22.804 15.103

Ours (u0 = ul2 ) 10.401 5.102 20.302 12.401

Ours (u0 = ul1 ) 10.802 4.831 20.001 12.401

upsampled depth images on a snippet of the books sequence, and
it clearly shows the different behavior of static guidance and joint
static/dynamic guidance models: The upsampled depth image has
a gradient similar to that of the color image in static guidance
methods such as GF [2] and WMF [11], which smooths depth
edges and causes jagged artifacts in scene reconstruction (Fig. 9).
In contrast, the SD filter interpolates the low-resolution depth
image using joint static and dynamic guidance, and provides a
sharp depth transition by considering the structure of both color
and depth images (Fig. 8(l)). The upsampled depth image of ul1
also preserves depth discontinuities, since the l1 regularizer is
robust to outliers. The l1 regularizer, however, favors a piecewise
constant solution. This is problematic in regions that violate the
fronto-parallel surface assumption (e.g., a slanted surface), and
every pixel in this surface has the same depth value (Fig. 8(k)).
TGV [10] addresses this problem using a piecewise linear model,
but this approach still smooths depth edges in low-contrast regions
on the color image (Fig. 8(g)). Note that bilinear interpolation
gives better quantitative results (Table 3) than the GF [2] and
RWR [62], although its subjective quality looks worse than these
methods (e.g., depth edges in Fig. 8(c-e)). This is because PBP
does not differentiate depth discontinuities from other regions.

Table 4 shows the average PBP? (� = 1) measured near depth
discontinuities, and it clearly shows the superior performance of
the SD filter around these discontinuities. This can be further
verified by observing the statistical distribution of the upsampled
depth image as shown in Fig. 10. Bilinear interpolation loses most
of the high-frequency information. Static guidance filtering meth-
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(a) Ground truth. (b) Bilinear Int. (c) GF [2]. (d) TGV [10]. (e) WMF [11]. (f) SD filter.
Fig. 9. Examples of (top) point cloud scene reconstruction using (bottom) depth images computed by (a) the ground truth, (b) bilinear interpolation,
(c) GF [2], (d) TGV [10], (e) WMF [11], and (f) SD filter (u0 = ul2 ). Current depth upsampling methods smooth depth edges, causing jagged
artifacts.
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Fig. 10. Log10 of the normalized histograms (probability) of relative depths between adjacent pixels. Each histogram is computed using depth
gradients along x- and y-axis, and then averaged on the Middlebury dataset [60]. (Best viewed in colour.)

TABLE 5
The Kullback-Leibler divergence between the normalized histograms of
depth gradients computed from the ground truths and upsampled depth

images.

Bilinear Int. 230.7310

GF [2] 108.199

RWR [62] 96.438

TGV [10] 22.435

WMF [11] 86.337

WModF [25] 13.114

ul2 25.366

ul1 9.723

Ours (u0 = ul2 ) 4.191

Ours (u0 = ul1 ) 4.632

ods show different statistical distributions from the ground-truth
depth image. In contrast, the SD filter considers characteristics of
depths as well, and delivers almost the same distribution as the
ground truth depths. For evaluating this quantitatively, we also
measure the Kullback-Leibler divergence between the statistical
distributions of depth gradients obtained from the ground-truth
and upsampled depth images in Table 5. From this table, we can
see that the methods using a robust convex regularizer such as
TGV [10] give better quantitative results than other methods, and
the SD filter outperforms all methods. This verifies once more the
importance of using a robust nonconvex regularizer and using both
static and dynamic guidance in joint image filtering.

5.1.2 Real data

Recently, Ferstl et al. [10] have introduced a benchmark dataset
that provides both low-resolution depth images captured by a ToF

(a) Intensity. (b) Ground truth. (c) Bilinear Int. (d) GF [2].

(e) RWR [62]. (f) TGV? [10]. (g) WMF [11]. (h) WModF [25].

(i) ul2 . (j) ul1 . (k) SD filter (ul2 ). (l) SD filter (ul1 ).

Fig. 11. Visual comparison of upsampled depth images on a snippet
of the shark sequence in the Graz dataset [10]: (a) a high-resolution
intensity image, (b) a ground-truth depth image, (c) bilinear interpolation,
(d) GF [2], (e) RWR [62], (f) TGV? [10], (g) WMF [11], (h) WModF [25],
(i) ul2 , (j) ul1 , (k) SD filter (u0 = ul2 ), and (l) SD filter (u0 = ul1 ). Note
that the l1 regularizer in (j) favors a piecewise constant solution, and this
is problematic in a slanted surface. TGV? denotes the results provided
by the authors of [10].

camera and highly accurate ground-truth depth images acquired
with structured light. We have performed a quantitative evaluation
using this dataset [10] in Fig. 7(b): We measure the average PBP
of upsampled depth images with varying the depth error tolerance
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� = 5 � = 20

Fig. 12. Influence of the regularization parameter � on the upsampled
depth image. The results become smooth as the parameter � increases.

�. This shows that the SD filter outperforms all methods for all
ranges of �, regardless of the initialization. A qualitative com-
parison can be found in Fig. 11. Although most methods reduce
sensor noise relatively well, they smooth depth edges as well. In
contrast, the SD filter preserves sharp depth discontinuities, while
suppressing sensor noise. The amount of noise in low-resolution
depth images may change. We can deal with this by adjusting the
regularization parameter that determines the degree of smoothing
in the upsampled depth image, as shown in Fig. 12.

5.2 Scale-space filtering and texture removal

In natural scenes, various objects appear in different sizes and
scales [63], and they contain a diversity of structural information
from small-scale (e.g., texture and noise) to large-scale structures
(e.g., boundaries). Extracting this hierarchy is an important part
of understanding the relationship between objects, and it can be
done by smoothing a scene through image filtering. We apply the
SD filter to two kinds of scene decomposition tasks: scale-space
filtering and texture removal.

Parameter settings. For scale-space filtering, the input image
f is guided by itself (g = f ). The regularization parameter � varies
from 5 ⇥ 10 to 5 ⇥ 10

4. In texture removal, the static guidance
image is set to a Gaussian-filtered version of the input image, g =

G�f where G� is the Gaussian kernel with standard deviation �.
The regularization parameter � and � vary from 5⇥10 to 2⇥10

3

and from 1 to 2, respectively. The bandwidths, µ and ⌫, the step
index k, and the confidence value ci are fixed to 5, 40, 5, and 1,
respectively, for both applications.

5.2.1 Scale-space filtering

We obtain a scale-space representation by applying the SD filter
while increasing the regularization parameter, as shown in Fig. 13.
The SD filter preserves object boundaries well, even at coarse
scales, and it is robust to global intensity shift.

Comparison with the state of the art. We compare the
scale-space representation of WLS [23], RGF [16], and the SD
filter in Fig. 13. The WLS framework [23], a representative
of static guidance filtering, alters the scale of image structure
by varying the regularization parameter. It suffers from global
intensity shifting [2] (Fig. 13(a-b)), and may not preserve image
structures at coarse scales (Fig. 13(a)). RGF [16] is the state of
the art in scale-space filtering, and dynamic guidance in RGF
could alleviate these problems. However, this filter does not use
the structure of the input image, and controls the scale by the
isotropic Gaussian kernel, leading to poor boundary localization
at coarse scales (Fig. 13(c)). The SD filter uses the structure
of input and desired output images, and the scale depends on
the regularization parameter, providing well localized boundaries

(a) WLS [23].

(b) WLS [23].

(c) RGF [16].

(d) SD filter (u0 = ul2 ).

(e) SD filter (u0 = ul1 ).
Fig. 13. Examples of scale-space filtering. (a) WLS [23] (from left to right,
� = 5 ⇥ 10, 2 ⇥ 103, 5 ⇥ 104, µ = 5), (b) WLS [23] (from left to right,
� = 5 ⇥ 103, 2 ⇥ 105, 5 ⇥ 106, µ = 40), (c) RGF [16] (from left to right,
�s = 5, 5⇥10, 2.5⇥102, �r = 0.05, k = 5), (d) SD filter (u0 = ul2 , and
from left to right, � = 5 ⇥ 10, 2 ⇥ 103, 5 ⇥ 104), (e) SD filter (u0 = ul1 ,
and from left to right, � = 5⇥ 10, 2⇥ 103, 5⇥ 104). In these examples,
we manually pick the scale parameter � of the SD filter between 5⇥ 10
to 5⇥104. The parameters for other methods are similarly chosen, such
that all methods have similar smoothing levels.

TABLE 6
Evaluation of boundary localization accuracy on the BSDS300

database [64]. Scale-space is constructed by WLS [23] (µ = 40),
RGF [16] (�r = 0.05, k = 5), and the SD filter (u0 = ul2 and

u0 = ul1 ), with varying scale parameters.

Mathod ODS OIS ODS? OIS?

WLS [23] 0.514 0.524 0.514 0.524

RGF [16] 0.553 0.603 0.603 0.633

Ours (u0 = ul2 ) 0.612 0.631 0.622 0.651

Ours (u0 = ul1 ) 0.621 0.631 0.631 0.651

even at coarse scales. Moreover, it is robust to global intensity
shift (Fig. 13(d-e)).

For a good scale-space representation, object boundaries
should be sharp and coincide well with the meaningful boundaries
at each scale [17]. There is no universally accepted evaluation
method for scale-space filtering. Motivated by the evaluation pro-
tocol for boundary detection, we measure ODS and OIS [65] with
the BSDS300 database [64], and evaluate boundary localization
accuracy of scale-space filtering in Table 6. ODS is the F-measure6

at a fixed contour threshold across the entire dataset, while OIS
refers to the per-image best F-measure. For all images in the
dataset, ODS and OIS are measured using the gradient magnitudes

6. The F-measure is the harmonic mean of precision and recall.
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(a) Input image. (b) WLS [23].

(c) RGF [16]. (d) SD filter (u0 = ul2 ).
Fig. 14. Examples of the gradient magnitude averaged over scale-space:
Given (a) an input image, scale-space is obtained by (b) WLS [23]
(µ = 40), (c) RGF [16] (�r = 0.05, k = 5), and (d) the SD filter
(u0 = ul2 ) with varying scale parameters. For each method, we set the
maximum scale parameters manually, such that all the filtered images
have similar smoothing levels. The gradient magnitude is then computed
at each scale and averaged over scale-space.

of filtered images, each of which is averaged over scale-space, as
shown in Fig. 14. We obtain the filtered images from the input
image while varying scale parameters, i.e., � in WLS [23] and the
SD filter, and �s in RGF [16]. The maximum scale parameter is
set manually for each method, such that all the filtered images are
smoothed with similar levels. Similarly, we also measure ODS?

(resp. OIS?) with the gradient images of filtering results, but using
a fixed scale parameter that provides maximum ODS (resp. OIS)
for each image. That is, ODS? (resp. OIS?) is the maximum value
of ODS (resp. OIS) over scale-space. In both cases, the SD filter
outperforms other filtering methods.

5.2.2 Texture removal

For removing texture while maintaining other high-frequency
image structures, we need a guidance image that does not have the
texture, but contains large image structures. Since it is hard to get
such an image, we set the static guidance image to the Gaussian-
filtered version of the original image with standard deviation �.
This removes the textures of scale �, but it also smooths structural
edges (e.g., boundaries). Our dynamic guidance and fidelity term
reconstruct smoothed boundaries as shown in Fig. 15.

Comparison with the state of the art. As in scale-space
filtering, to the best of our knowledge, there is no universally
accepted evaluation protocol for texture removal. Filtering exam-
ples of (top) regular and (bottom) irregular textures are shown in
Fig. 15. Most methods extract prominent image structures while
filtering out textures. The Cov. M1 method [14] adopts a weighted
average process to eliminate textures. The weight is computed
using the covariance of features in a local patch to encode the
repetitive patterns of textures. This method, however, smooths
object boundaries and corners (Fig. 15(b)), and needs lots of
computational cost for weight computation. RTV [15] optimizes
an objective function similar to the SD filter, but with relative total
variation. Although this method uses a nonconvex regularizer, it
penalizes large gradients similar to the total variation regularizer,
which smooths structural edges (Fig. 15(c)). As pointed out
in [15], RTV cannot perfectly extract image structures that have
similar scale and appearance to the underlying textures. RGF [16]

can control the scale of image structure to be extracted, and
preserves object boundaries well. However, it does not protect
corners, possibly due to the inherent limitation of the Gaussian
kernel used in RGF, and color artifacts are observed (Fig. 15(d)).
On the other hand, the SD filter removes textures without artifacts,
and maintains small, high-frequency, but important structures to be
preserved such as corners (Fig. 15(e-f)). We can see that the SD
filter with the l1 initialization better preserves edges and corners
than with the l2 one.

5.3 Other applications

The SD filter can be applied to joint image restoration tasks. We
apply it to RGB/NIR and flash/non-flash denoising problems as
shown in Figs. 16 and 17. In RGB/NIR denoising, the color image
f is regularized with the flash NIR image g. Similarly, the non-
flash image f is regularized with the flash image g. Since there
exist structural dissimilarities between static guidance and input
images (g and f ), the results might have artifacts and unnatural
appearance. For example, static guidance filtering (e.g., GF [2])
cannot deal with gradient reversal in flash NIR images [4], result-
ing in smoothed edges. The SD filter handles structural differences
between guidance and input images, and gives qualitative results
comparable to the state of the art [4].

6 DISCUSSION

We have presented a robust joint filtering framework that is widely
applicable to computer vision and computational photography
tasks. Contrary to static guidance filtering methods, we leverage
dynamic guidance images, and can exploit the structural infor-
mation of the input image. Although our model does not have
a closed-form solution, the corresponding optimization problem
can be solved by an efficient algorithm that converges rapidly
to a local minimum. The simple and flexible formulation of the
SD filter makes it applicable to a great variety of applications, as
demonstrated by our experiments.

APPENDIX A
Proposition 1.  y

⌫ is a surrogate function of  ⌫ .

Proof. Let us consider the following function:

f⌫(x) = (1� exp(�⌫x))/⌫. (27)

Since f

00
⌫ (x) < 0, this function is strictly concave, i.e.,

8x, y, f⌫(x)  f⌫(y) + (x� y)f

0
⌫(y), (28)

with equality holding when x is equal to y. Thus, a surrogate
function f

y
⌫ is

f

y
⌫ (x) = f⌫(y) + (x� y)f

0
⌫(y) (29)

= f⌫(y) + (x� y)(1� ⌫f⌫(y)).

It follows that

 ⌫(x) = f⌫(x
2
)  f

y2

⌫ (x

2
) (30)

=  ⌫(y) + (x

2 � y

2
)(1� ⌫ ⌫(y)) =  

y
⌫(x).
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(a) Input image and snippets. (b) Cov. M1 [14]. (c) RTV [15]. (d) RGF [16]. (e) SD filter. (f) SD filter.
Fig. 15. Visual comparison of texture removal for (top) regular and (bottom) irregular textures. (a) Input image, (b) Cov. M1 [14] (� = 0.3, r = 10),
(c) RTV [15] (� = 0.01, � = 6), (d) RGF [16] (�s = 5, and from top to bottom, �r = 0.1, 0.05, k = 5), (e) SD filter (u0 = ul2 , and from top to
bottom, � = 1⇥ 103, 1⇥ 102,� = 2), (f) SD filter (u0 = ul1 , and from top to bottom, � = 2⇥ 103, 3⇥ 102,� = 2). We set all parameters through
extensive experiments for the best qualitative performance.

(a) RGB images. (b) NIR images.

(c) GF [2]. (d) Results of [4].

(e) SD filter (u0 = ul2 ). (f) SD filter (u0 = ul1 ).
Fig. 16. RGB and flash NIR image restoration. (a) RGB images, (b) NIR
images, (c) GF [2] (r = 3, " = 4�4), (d) results of [4], (e) SD filter
(u0 = ul2 , � = 10, µ = 60, ⌫ = 30, k = 5), (f) SD filter (u0 = ul1 ,
� = 10, µ = 60, ⌫ = 30, k = 5). The results of (d) are from the project
webpage of [4].

APPENDIX B

Let us consider the following objective function:

E(u) =
X

i

X

j2⌘

�s(i� j)�µ(gi � gj) ⌫(ui � fj). (31)

(a) (b) (c) (d) (e) (f)

Fig. 17. Flash and non-flash image restoration. (a) Flash image, (b) non-
flash image, (c) GF [2] (r = 3, " = 4�4), (d) result of [13], (e) result of [4],
(f) SD filter (u0 = ul2 , � = 15, µ = 60, ⌫ = 30, k = 5). The results of
(d) and (e) are from the project webpages of [13] and [4], respectively.

The surrogate function of (31) can be found using the inequality
in (9) as follows:

Qk
(u) =

X

i,j

wijw
g
ij�⌫(u

k
i � fj)(ui � fj)

2
+ (32)

1

⌫

X

i,j

wijw
g
ij

n

1� �⌫(u
k
i � fj)� ⌫�⌫(u

k
i � fj)(u

k
i � fj)

2
o

.

where wij ⌘ �s(i� j) and w

g
ij ⌘ �µ(gi � gj). Then,

u

k+1
i = argmin

u

X

j2⌘

wijw
g
ij�⌫(u

k
i � fj)(ui � fj) (33)

=

P

j2⌘
�s(i� j)�µ(gi � gj)�⌫(u

k
i � fj)fj

P

j2⌘
�s(i� j)�µ(gi � gj)�⌫(u

k
i � fj)

.
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