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Abstract

Jitter is a phenomenon caused by the perturbation in the length of the glottal
cycles due to the quasi-periodic oscillation of the vocal folds in the production
of the voice. It can be modeled as a random phenomenon described by the
deviations of the glottal cycle length in relation to a mean value. Its study
has been developed due to important applications such as aid in identification
of voices with pathological characteristics, when its values are large, because
a normal voice has naturally a low level of jitter. The aim of this paper is to
construct a stochastic model of jitter using a two-mass mechanical model of
the vocal folds, assuming complete right-left symmetry of the vocal folds and
considering the motion of the vocal folds only in the horizontal direction. The
stiffnesses taken into account in the model are considered as stochastic processes
and their modeling are proposed. Glottal signals and voice signals are generated
with jitter and the probability density function of the fundamental frequency is
constructed for several values of the hyperparameters that control the level of
jitter.

Keywords: Stochastic modeling, voice production, mechanical models, jitter.

1. Introduction

The voice production process, in particular in voiced speech production,
where vowels are included, is due to the oscillation of the vocal folds, which
modulates the airflow coming from the lungs, and the air pulses then generated
(called the glottal signal) will be filtered and amplified by the vocal tract and,
further, radiated by the mouth.

However, the glottal signal is not exactly periodic. The (small) fluctuation
in each glottal cycle length is called jitter and its study is justified because
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it can be used for measuring the voice quality and indicating the presence of
pathologies related to the voice or even helping the speech recognition (Titze,
1994; Orlikof, 2000; Farrus and Hernando, 2008; Baken and Manfredi et al.,
2012).

Voice pathology can cause increased noise components in the voice signal
such as: fundamental frequency and amplitude irregularities and variations with
different patterns, sub-harmonic frequency components, turbulent noise, voice
breaks and tremors (Koike, 1973; Hirano, 1981; Muahamad and Mulhen, 2014;
Wilcox, 2015).

To help pre-diagnosis of pathologies related to the voice, in general, it is
necessary to extract not only jitter from the voice signal, but also other mea-
sures, like shimmer and HNR (harmonic-noise ration). A large level of jitter
can indicate a possibility of a pathology, but to help the identification of the
type of pathology, in general, it is not enough. Some authors have discussed
this point and proposed strategies to use jitter and other measures to classify
pathologies related to the voice (Hirose, 1998; Silva et al., 2009; Vieira, 2001;
Zhang, 2008; Mendoza et al., 2014; Mendoza et al., 2015).

Some motivations for developing models of jitter include the discussion about
the mechanisms that may cause the movements of the vocal folds to be non
periodic. In addition, models of jitter may help to improve naturalness or mimic
hoarse voices when synthesizers are used, for example.

Some researchers have developed models to produce voice and even voice
with pathological characteristics (Flanagan and Landgraf, 1968; Ishizaka and
Flanagan, 1972; Titze, 1973; Story and Titze, 1995). Erath et al. (2013)
made a good review of models used to produce voice, including mechanical
models and pathological phonation. Shinji Deguchi and Juki Kawahara (2011)
present a continuum-based numerical model of phonation to simulate human
phonation with vocal nodules. Deguchi and Kawahara (2011) have simulate
human phonation with vocal nodules. Fraile et al. (2015) simulate vocal tremor
using a high-dimensional discrete vocal fold model. However, all of these models
are deterministic.

The objective of this paper is to construct a stochastic model of the vocal
folds in order to generate jitter. The underlying deterministic model used is
the one introduced by Ishizaka and Flanagan model (1972). Previous works
have discussed stochastic mechanical models to produce voice (Cataldo et al.,
2009, 2013) considering some parameters modeled as random variables, prior
probability distributions have been constructed and then updated.

The approach used here is different and consists in modeling the stiffnesses
as stochastic processes. A system of nonlinear stochastic differential equation is
then solved and the voiced signals are synthesized for different levels of jitter.

2. Deterministic model used

The underlying deterministic model used is the nonlinear two-mass model
proposed by Ishizaka and Flanagan composed by two subsystems: the subsystem
of the vocal folds (source) and the subsystem of the vocal tract (filter). The two
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subsystems are coupled by the glottal flow. The vocal tract is represented by a
standard configuration of concatenated tubes (Fant, 1960; Liberman, 1963).

The complete model considered here presents some modifications in relation
to the original Ishizaka and Flanagan model (Cataldo et al. , 2005, 2008, 2009).
The system of differential equations to be solved, and which is detailed in Ap-
pendix A, can be divided in three parts (see Fig. 1 that illustrates a sketch of
the model):

Figure 1: Sketch of the Ishizaka and Flanagan model (1972).

• A nonlinear integro-differential equation for the glottal flow that is coupled
with the vocal tract, called the coupling equation (see Eqs. (A.1) to (A.9)).
It is a scalar nonlinear integro-differential equation whose unknown time-
dependent function is the real-valued function t 7→ ug(t) that models the
acoustic volume velocity through the glottis. This equation depends on
the real-valued function t 7→ u1(t) that is related to the first tube of the
sound acoustic propagation into the vocal tract.

• A system of linear integro-differential equations related to the sound acous-
tic propagation through the vocal tract and called the sound acoustic prop-
agation equation (see Eq. (A.10)). It is constituted of n + 1 scalar linear
integro-differential equations for which the n+1 unknown time-dependent
functions are the real-valued functions t 7→ u1(t), . . . , un(t), uR(t). The
function t 7→ pr(t) is the sound acoustic pressure through the mouth.

• A system of nonlinear differential equations related to the dynamics of the
vocal folds and called the vocal folds dynamic equation (see Eq. (A.11)).
It is a system of nonlinear differential equations whose unknown time-
dependent functions are the real-valued functions t 7→ x1(t) that is the
displacement of the mass 1 and x2(t) is the displacement of the mass 2,
corresponding together to the vocal folds. For all t, x1(t) and x2(t) are
generated by the vocal folds dynamic equations . The solutions x1 and x2

of such equations are constructed for all t and are used as follows:
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– The collision of the vocal folds starts at a time t1 when x1(t) reaches
a given critical value x01 (defined in Appendix A). This process con-
tinues, and at a time t2, x2(t) reaches a given critical value x02. At
this time, the two parts of the model corresponding to the vocal folds
are in collision. Then, at a third time t3, the upper part of the vocal
folds leaves the contact, but the mass lower part continues in contact
(mass m2). Finally, at a time t4, the lower part leaves the collision.

– While the glottis is closed (during time t1 up to t4), ug and dug/dt
remain zero, ug(τ) = dug(τ)/dτ = 0, the stiffnesses and the dampings
of the models are modified in the vocal folds dynamic equation, but
the propagation of sound goes on in the vocal tract .

3. Jitter modeling

The jitter phenomenon has been studied for many researchers in order to
be used as a measure for discriminating voices with pathological characteristics
or even aging voice characteristics. Since the second middle of the eighties, the
research about jitter has become less clinical and more methodological. The
methods used to measure jitter, and other characteristics of the voice signal,
changed considerably, and one of the first works for quantifying the jitter was
proposed by Lieberman (1963). Other preliminary works were based on the
calculations of a typical value related to the differences between the lengths of
the cycles and their mean values. In general, the works agree with the fact that
typical values of the jitter are between 0.1% and 1% of the fundamental period,
for the so-called normal voices (that is, without presence of pathologies). Some
works discussing jitter and its application (Henrich et al., 2005; Kreiman and
Gerrat, 2005; Londono et al., 2010; Dejonckerea et al., 2012; Mendoza et al.,
2014). In general, the authors who work with models of jitter (or the variations
of the fundamental frequency) do not introduce mathematical models for the
voice production. Only a few authors consider stochastic models (Schoengten
and De Guchteneere, 1997; Schoengten, 2001; Cataldo et al., 2009; Shoengten,
2013; Cataldo et al., 2013).

3.1. System of stochastic equations

As the objective of the stochastic model is to enrich the deterministic model
of the voice production, and since we are interested in constructing a stochas-
tic perturbation (the jitter effect) of the periodic solution that is produced
when the stiffnesses k1, k2, and kc are constant, it is coherent to introduce
a stochastic modeling of these stiffnesses in replacing them by stochastic quan-
tities K1(t) , K2(t), and Kc(t). We thus introduce the stationary stochastic
processes {K1(t), t ∈ R}, {K2(t), t ∈ R}, and {Kc(t), t ∈ R}, with values in
R

+, which models the stiffnesses k1, k2 and kc of the deterministic model.
Consequently, the deterministic equations (that are detailed in Appendix A)
for the deterministic time functions ug(t), u1(t), . . . , un(t), uR(t), x1(t), and
x2(t), become stochastic equations for the stochastic processes denoted by Ug(t),
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U1(t), . . . , Un(t), UR(t), X1(t), and X2(t). The corresponding stochastic equa-
tions are detailed in Appendix B.

3.2. Construction of a stochastic model for [K(t)]

For all fixed t, the real-valued random variablesK1(t), K2(t), andKc(t) must
be positive as explained above. Nevertheless, this property is not sufficient
for ensuring the coherence of the construction of the stochastic model of the
stochastic stiffnesses. It is necessary to write that, for all fixed t, the random
matrix [K(t)] defined by

[

K11(t) K12(t)
K21(t) K22(t)

]

(1)

in which

K11(t) = K1(t) +Kc(t) , (2)

K22(t) = K2(t) +Kc(t) , (3)

K12(t) = K21(t) = −Kc(t) , (4)

is a random matrix with values in the set M+
2 (R) of all the positive-definite real

(2×2) matrices. Consequently, the construction of the stochastic model of stiff-
nesses consists in constructing a stochastic process {[K(t)], t ∈ R} with values
in M

+
2 (R), which can then be not Gaussian (due to the positivity property).

It can then be deduced the stochastic model of the dependent non-Gaussian
stochastic processes {K1(t), t ∈ R}, {K2(t), t ∈ R}, and {Kc(t), t ∈ R}, which
are such that, for all fixed t,

Kc(t) = −K12(t) , (5)

K1(t) = K11(t)−Kc(t) , (6)

K2(t) = K22(t)−Kc(t) . (7)

In the framework of the jitter effects, matrix-valued stochastic process {[K(t)],
t ∈ R} is chosen as a stationary stochastic process that must be of second-order
for physical reason. In order to ensure the positivity property, for all t fixed in
R, random matrix [K(t)] is written as

[K(t)] = [LK ]T [G(t)] [LK ] , (8)

in which [G(t)] is a random matrix with values in M
+
2 (R) such that its mean

values E{[G(t)]} = [I2] is the identity matrix. In Eq. (8), [LK ] is an upper
triangular real (2 × 2) matrix such that the mean value [K] = E{[K(t)]} ∈
M

+
2 (R) of the random matrix [K(t)] is written as

[K] = [LK ]T [LK ] , (9)
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which is the Cholesky decomposition of the positive-definite real matrix [K].
As explained in (Soize, 2012), for all t in R, the random matrix [G(t)] must be
written as

[G(t)] =
1

1 + ǫ
([G0(t)] + ǫ[I2]) , (10)

in which ǫ > 0 is a given regularization parameter and where {[G0(t)], t ∈ R} is
a second-order stationary stochastic process with values in M

+
2 (R) such that

E{[G0(t)]} = [I2] . (11)

The stochastic model is constructed as explained in (Soize, 2005, 2006). For all
fixed t, random matrix [G0(t)] is written as

[G0(t)] = [L0(t)]
T [L0(t)] , (12)

in which [L0(t)] is a random upper triangular matrix whose diagonal entries are
positive-valued random variable,

[L0(t)] =

[

L0(t)11 L0(t)12
0 L0(t)22

]

. (13)

For j = 1, 2, the positive-valued random variable L0(t)jj is written as

L0(t)jj = σ
√

2h(αj , Ujj(t)) , (14)

in which the mapping u 7→ h(α, u) from R into ]0 ,+∞[ is defined in (Soize,
2006) and where

L0(t)12 = σU12(t) . (15)

In Eqs. (14) and (15), the different quantities are defined hereinafter.

• σ = δ/
√
3 in which δ is a hyperparameter of the stochastic model, which

allows for controlling the level of the statistical fluctuations, and which
must satisfy 0 ≤ δ <

√

3/7 (note that δ = 0 will correspond to the
deterministic case, there are no statistical fluctuations).

• For j = 1, 2, the real-valued parameter αj is such that αj = (1 − j +
δ/
√
3)/2.

• {U11(t), t ∈ R}, {U12(t), t ∈ R}, and {U22(t), t ∈ R} are three indepen-
dent copies of a Gaussian stationary second-order centered normalized
stochastic process {U(t), t ∈ R} such that, for all fixed t, E{U(t)} = 0
and E{U2(t)} = 1.

• The Gaussian stationary centered stochastic process U is thus completely
defined by its autocorrelation function RU (τ) = E{U(t + τ)U(t)} which
is chosen as RU (τ) = exp{−b |τ |}, in which b is the second positive-valued
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hyperparameter of the stochastic model (therefore, for all b > 0, we have
effectively E{U2(t)} = 1). Therefore, the corresponding power spectral
density function, SU (ω), of stochastic process U is such that

RU (τ) =

∫

R

eiωt SU (ω) dω , SU (ω) =
1

2π

2b

ω2 + b2
,

The correlation time, τc, is defined by

τc =

∫ +∞

0

exp{−b |τ |} dτ =
1

b
.

Consequently, hyperparameter b is related to the correlation time.

• The copies of Gaussian stationary stochastic process U will be generated
in introducing a linear Itô stochastic differential equation.

Taking into account the definition of stochastic process U , a realization (sample
path or trajectory) of stochastic process U for t ≥ 0 can be obtained by solving
the following linear Itô stochastic differential equation,

dU(t) = −b U(t) dt+
√
2b dW (t) , t > 0 , (16)

with the random initial condition

U(0) = U0 . (17)

In Eq. (16), {W (t), t ≥ 0} is the normalized Wiener stochastic process (Krée,
1986; Soize, 1994). The random initial condition U0 is a normalized Gaussian
real-valued random variable (E{U0} = 0 and E{U2

0 } = 1), which is independent
of Wiener process {W (t), t ≥ 0}. Note that the construction of the three copies
U11, U12, and U22 of stochastic process U is obtained by solving Eq. (16) with
Eq. (17) by using, for {W,U0}, three independent copies {W,U0}11, {W,U0}12,
and {W,U0}22 of the random variable U and of the Wiener stochastic process
W .

4. Simulations and production of voice signals with jitter

The objective of this section is to perform the numerical simulation of the
system of nonlinear stochastic integro-differential equations in order to produce
voice signals with jitter. The subglottal pressure ps(t) is a given deterministic
function of time (according to the results obtained in (Cataldo et al., 2005)).

The subglottal pressure ps(t) is deterministic and, without jitter, the glottal
signal ug(t) is a periodic signal denoted by up

g(t). Then, if u
p
g(t) was considered

as a stochastic process, denoted by Ug(t), then Ug(t) that would be a periodic
function, would not be a stationary stochastic process on the real line, and con-
sequently, would not be ergodic. However, considering the presence of jitter
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in the voice signals generated, the stochastic process Ug(t) could be written as
Ug(t) = up

g(t)+Us
g (t), in which up

g(t) would be a periodic function and where the
perturbation, Us

g (t), would be assumed to be a stationary and ergodic stochastic
process. It is not easy to prove that the perturbation Us

g (t) is stationary and
ergodic. However, it is reasonable to introduce such a hypothesis that allows
for giving a sense to the construction of the fundamental frequency as a random
variable (by construction, the fundamental frequency is considered as a random
variable that does not depend on time). In such a context, an important point
is the construction of the estimation of the probability density function of this
random fundamental frequency by using a time averaging related to a trajec-
tory of the stochastic response. In addition, the convergence analysis of this
probability density function with respect to the duration of the time averaging
must be carried out. Such an analysis has been performed and the convergence
has been obtained. Such properties can been viewed in looking at the results,
which will be shown further in this section.

It is important to say that there are three hyperparameters, ǫ > 0, b > 0,
and δ > 0, that have been introduced in Section 3.2 devoted to the construction
of the stochastic modeling of the stiffnesses. Hyperparameter ǫ is a regulariza-
tion parameter that can be chosen small and thus is fixed to the value 10−6.
Hyperparameter b allows for controlling the correlation time τc, and thus, for
controlling the bandwidth of power spectral density function SU . Therefore the
color of the stiffnesses stationary signals, which impacts the coloring voice is
controlled by this hyperparameter b. Hyperparameter δ controls the level of
the statistical fluctuations that are injected in the stochastic model through the
stochastic process [K(t)]. For the stochastic model proposed , δ must be such
that 0 < δ <

√
37 (Soize, 2005).

For the numerical simulations carried out with the deterministic model and with
the stochastic model, the following nominal values of the parameters are: Ag0 =
0.05 × 10−2m2, ρ = 0.12 kg/m3, ca = 346.3m/s, µ = 1.86 × 10−4 kg/(m2s),
m1 = 0.125 × 10−3 kg, m2 = 0.025 × 10−3 kg, ℓ = 1.4 × 10−2m, d1 =
0.25 × 10−2m, d2 = 0.05 × 10−2m.
Concerning the numerical simulations carried out with the stochastic model,
the mean values K1, K2, and Kc, which are the entries of the matrix [K] are
K1 = 371N/m, K2 = 64N/m, and Kc = 105N/m. The stochastic solver used
is the Monte Carlo method for which only one realization is computed and for
which the ergodic property is used for the estimates of the statistics of interest.
The realization is sampled with a sampling frequency fs = 88, 200Hz, which
yields a time step ∆t = 1/(2fs) s. The time of simulation for the realization is
then given by N × ∆t = 0.5 s. This number is enough in order to ensure the
convergence of the solution to a stationary and ergodic stochastic process.
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At first, we take b = 200 and three values of δ that are δ = 0.001 (very small
dispersion equivalent to the case without jitter), δ = 0.05 and δ = 0.1 for two
cases with a significant jitter effect. Then, the three realizations of the glottal
signal (stochastic process Ug) are shown in Fig. 2 corresponding to these three
values of (b, δ). In Fig. 2, it can be observed the variation of the amplitude,
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Figure 2: For b = 200, realization of the glottal signal (Ug) for δ = 0.001 (equivalent to the
case without jitter, (a)), and for δ = 0.05 (b) and 0.1 (c) (with jitter).

called shimmer, associated to the jitter. Let us consider the duration between
to successive times, the first one corresponding to the instant the glottis opens
and the second one the instant for it closes completely. This duration, denoted
by Tfund is a random variable, and its inverse is defined as the fundamental
frequency that is the random variable Ffund = 1/Tfund. For each value of (b, δ),
the probability density function of Ffund is estimated using the realization of the
stochastic process Ug that is numerically simulated, and is shown in Fig. 3 for
each value of (b, δ).
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Figure 3: For (b, δ) = (200, 0.001) (dashed line), = (200, 0.05) (dotted line), = (200, 0.1) (full
line), probability density function of random fundamental frequency Ffund, estimated using
each realization displayed in Fig. 2
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In order to analyze the effects of the variation of hyperparameter b (that
controls the time correlation) on the glottal signal, δ is fixed to the value 0.1 for
b = {50, 100, 150}. Fig. 4 displays the realizations of stochastic process Ug for
these three values of (b, δ).
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Figure 4: For δ = 0.1, realization of the glottal signal (Ug) with jitter for b = 50 (a), 100 (b),
and 150 (c).

For each value (b, δ) of the hyperparameters, the probability density function
of Ffund, which is estimated using the realization of the stochastic glottal signal
(Ug) shown in Fig. 4, is displayed in Fig. 5.

100 105 110 115 120 125 130 135 140 145 150
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Hz

Figure 5: For (b, δ) = (50, 0.1) (dashed line), = (100, 0.1) (dotted line), = (150, 0.1) (full line),
probability density function of random fundamental frequency Ffund, estimated using each
realization displayed in Fig. 4.

In Figs. 3 and 5, it can be seen that the probability density function of the
random fundamental frequency, Ffund, is very sensitive to the values of hyperpa-
rameters b (controlling the color of the signal) and δ (controlling the level of the
statistical fluctuations). This means that the stochastic model proposed has the
capability to generate a large family of voice signals with a jitter effect. Figs. 2
and 4 show that the realizations of the glottal signal is sensitive to the value of
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δ, but would seem to be less or not sensitive to the value of b. In fact, the voice
signals are effectively sensitive to the value of b as it can be listened in:

https://www.dropbox.com/s/4vkwxjenxlix4ol/IF72SoundsJitter.zip?dl=0

The utterance of vowel /a/, simulated with the stochastic model with jitter,
for the different values of b and δ, can be listened using the internet link given
before. The cases considered for the sounds are the following ones:

• b = 50 and δ = 0.1: Male–b50delta01

• b = 100 and δ = 0.1: Male–b100delta01

• b = 150 and δ = 0.1: Male–b150delta01

• b = 200 and δ = 0.001: Male–b200delta0001

• b = 200 and δ = 0.1: Male–b200delta01

• b = 200 and δ = 0.05: Male–b200delta005

• Deterministic case: Male–deterministic.wav

4.1. Jitter measurements

The jitter features are also calculated using the Praat voice analysis software:
http://www.fon.hum.uva.nl/praat/ that reports different types of measures for
jitter listed below. The terminology used below corresponds to the one used by
this software.

Let T1, . . . , TN be N realizations of the random variable Tfund, which cor-
respond to successive values extracted from one realization of the stochastic
glottal signal Ug (the total duration of the simulated realization of the glottal
signal is thus T1 + T2 + . . . + TN). Consequently, the statistical estimation of
the mean value of the random variable Tfund can be written as

T fund =
1

N

N
∑

i=1

Ti . (18)

Below, five quantities (introduced by the literature) are considered: Absolute
jitter, local jitter, RAP, PPQ5, and DDP. In general, the value 1.040% for
the local jitter is considered as a threshold for the occurrence of a pathology,
the value 0.680% for RAP is considered as a threshold for the occurrence of
a pathology, and the value 0.840% for PPQ5 is considered as a threshold for
pathology (as this number was based on jitter measurements influenced by noise,
the correct threshold is probably lower). For instance the absolute jitter and
the local jitter are defined as follows:

Absolute jitter : Jitabs =
1

N − 1

N−1
∑

i=1

|Ti − Ti+1|.

Local jitter : Jitloc = Jitabs/T fund.
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Summary of the jitter measures. Using the signals synthesized, with different
levels of jitter, the Praat software was used for measuring jitter, considering
approximately the same number of periods and during the time the subglottal
pressure is constant. The results obtained are given in Tab. (1). The measures

b δ Abs Loc RAP PPQ5 DDP
200 0.001 19.145× 10−6 s 0.247 % 0.108 % 0.187 % 0.323 %
50 0.1 213.169× 10−6 s 2.716 % 1.513 % 2.132 % 4.538 %
100 0.1 255.873× 10−6 s 3.384 % 1.950 % 2.184 % 5.849 %
150 0.1 214.653× 10−6 s 3.008 % 1.732 % 2.165 % 5.197 %
200 0.1 267.724× 10−6 s 3.867 % 2.157 % 3.116 % 6.472 %

Table 1: Jitter measurements calculated by using Praat software. The numbers in bold
represent those indices that have overpast the pathology thresholds.

must not be considered as having precise values because they depend upon
the length of the signal window considered. However, it can easily be seen
that, for b = 200 and δ = 0.001, the voice signal produced with the stochastic
model corresponds to a normal voice (without characteristics of pathologies),
while for all the other cases, the voice signal produced corresponds to voices
with characteristics of pathologies. The mean value of the random fundamental
frequency Ffund of the voice signal considered is about 130Hz. Then, when b is
near to this value (b = 150), it can be seen that the values of jitter are less than
when b is 100 or 200. The correlation time (equal to 1/b) is near to the mean
value T fund of the random fundamental period.

5. Conclusions

An approach has been proposed for constructing a stochastic model for cre-
ating jitter in a two-mass mechanical model used for producing voiced sounds.
The stiffnesses of the model have been considered as stochastic processes, a
stochastic stiffness matrix was constructed and its modeling proposed. The
construction of the corresponding stochastic matrix permitted to generate jitter
and its level can be controlled through different values of three hyperparameters.
The probability density function of the so-called random fundamental frequency
has been constructed and compared for different values of the hyperparameters.
The voice signals have been synthesized with different levels of jitter, which
could be easily perceived when they are listened. The model proposed gives
excellent results for producing a jitter effect in the voice signals.
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Appendix A. Deterministic Model

Coupling equation. The coupling nonlinear equation relates ug and u1, for which
coefficients depend on x1(t) and x2(t), is written as

(Rk1(x1(t)) +Rk2(x2(t)) ) |ug(t)|ug(t)
+(Rv1(x1(t)) +Rv2(x2(t)) )ug(t)

+(Lg1(x1(t)) + Lg2(x2(t)) )
dug

dt
+ L1

dug

dt

+R1ug(t) +
1

c1

∫ t

0

{ug(τ) − u1(τ)} dτ − ps(t) = 0 ,

(A.1)

where the coefficientsRk1(x1(t)), Rk2(x2(t)), Rk1(x1(t), ug(t)), Rk2(x2(t), ug(t)),
Lg1(x1(t)) and Lg2(x2(t)) are defined by

Rv1(x1(t)) = 12µ d1 ℓ
2 [Ag1(x1(t))]

−3 , (A.2)

Rv2(x2(t)) = 12µ d2 ℓ
2 [Ag2(x2(t))]

−3 , (A.3)

Rk1(x1(t), ug(t)) = 0.19 ρ |ug(t)| [Ag1(x1(t))]
−2 , (A.4)

Rk2(x2(t), ug(t)) =





0.5− Ag2(x2(t))
A1

(

1− Ag2(x2(t))
A1

)

Ag2(x2(t))2



 , (A.5)

Lg1(x1(t)) = ρ d1 [Ag1(x1(t))]
−1 , (A.6)

Lg2(x2(t)) = ρ d2 [Ag2(x2(t))]
−1 , (A.7)

in which Ag1(x1(t)) and Ag2(x2(t)) are the glottal areas such that

Ag1(x1(t)) = Ag01 + ℓ x1(t) , Ag2(x2(t)) = Ag02 + ℓ x2(t) , (A.8)

with ℓ the length of each vocal fold, and Ag01 and Ag02 are such that the critical
value x01 and x02 are written as

x01 = −Ag01/ℓ , x02 = −Ag02/ℓ . (A.9)

In Eqs. (A.2) to (A.7), µ is the air kinematic viscosity, d1 and d2 are the vocal
fold thicknesses, and ρ is the air density. In Eq. (A.1), ps(t) is the subglottal
pressure that is given and the coefficients c1 and L1 are defined hereinafter.
When the glottis is closed, at a time t1, Eq. (A.1) becomes

1

c1

∫ t

0

{ug(τ) − u1(τ)} dτ − ps(t) = 0 .

up to time t4.

Sound acoustic propagation equation. We consider the configuration of the vocal
tract proposed by (Fant, 1960). The vocal tract is represented as a transmission
line of n cylindrical tubes, for which the section areas are A1, . . . , An (the last
area An corresponds to the mouth) and where the tube lengths are ℓ1, . . . , ℓn.
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For i = 1, . . . , n, the corresponding inductances are given by Li = ρ ℓi/(2Ai)
and the capacitances by ci = ℓiAi/(ρc

2
a) in which ca is the sound velocity in

air. To take into account the lost of the vocal tract, resistances are introduced
in series and are such that ri = (Si/A

2
i )
√

ρ µω/2 where Si is the length of
the i-th circumference. There are two eigenfrequencies related to the masses,
which characterize the dynamics of the vocal folds. The model is constructed in
choosing ω = (k1/m1)

1/2 as the eigenfrequency controlling the dynamics. The
line transmission ends with a radiation load for which the inductance is written
as LR = (8 ρ/(3π))

√
πAn and the resistance as rR = 128 ρ ca/(9π

2An). Con-
sequently, the linear integro-differential equations related to the wave acoustic
propagation through the vocal tract, which is coupled to Eq. (A.1) by time-
dependent function u1, are written as







































































































































(L1 + L2)
du1(t)

dt
+ (r1 + r2)u1(t) +

1

c2

∫ t

0

{u1(τ) − u2(τ)} dτ+
1

c1

∫ t

0

{u1(τ) − ug(τ)} dτ = 0 ,

(Li + Li+1)
dui(t)

dt
+ (ri + ri+1)ui(t)+

1

ci+1

∫ t

0

{ui(τ) − ui+1(τ)} dτ+
1

ci

∫ t

0

{ui(τ) − ui−1(τ)} dτ = 0 , i = 2, . . . , n− 1 ,

(Ln + LR)
dun(t)

dt
+ rn un(t)− LR

duR(t)

dt
+

1

cn

∫ t

0

{un(τ) − un−1(τ)} dτ = 0 ,

LR
d(uR(t)− un(t))

dt
+ rR uR(t) = 0 .

(A.10)

Vocal folds dynamic equation. The system of nonlinear differential equations in
x1 and x2 for the vocal folds dynamics, which is coupled with the vocal-tract
(through ug(t)) are written as











m1
d2x1(t)

dt2
+ r1

dx1(t)

dt
+ s1(x1) + kc(x1 − x2) = F1(x1(t), ug(t)) ,

m2
d2x2(t)

dt2
+ r2

dx2(t)

dt
+ s2(x2) + kc(x2 − x1) = F2(x2(t), ug(t)) .

(A.11)

When the glottis is open, that is, x1(t) > x01 and x2(t) > x02, then

F1(x1(t), ug(t)) = P1(x1(t), ug(t)) ℓd1 ,
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with

P1(x1(t), ug(t)) = ps(t)− 1.37
ρ

2

(

ug(t)

Ag1(x1(t))

)2

− 1

2

(

Rv1(x1(t))ug(t) + Lg1(x1(t))
dug

dt

)

and

F2(x2(t), ug(t)) = P2ℓd2 ,

with

P2(x1(t), x2(t), ug(t)) = P1(x1(t), ug(t))

− 1

2

{

(Rv1(x1(t)) +Rv2(x2(t)) )ug(t) + (Lg1(x1(t)) + Lg2(x2(t)))
dug

dt

}

− ρ

2
ug(t)

2

(

1

Ag2(x2(t))2
− 1

A2
g1(x1(t))

)

.

We also have

si(xi) = ki(xi + ηk1
x3
i ) , i = 1, 2 .

It can then be seen that the vocal folds dynamic equation depends on the two
masses m1 and m2 and on three stiffness parameters that are k1, k2, and kc.

When the glottis is closed, xi ≤ −Agi0

2ℓ
and

si(xi) = ki(xi+ηk1
x3
i )+h1

{

(

xi +
Ag0i

2ℓ

)

+ ηki

(

xi +
Ag01

2ℓ

)3
}

, i = 1, 2 .

The values for F1 and F2 depend on the configuration of the glottis when it is

closed (ug(t) = 0 and
dug(t)

dt
= 0:

• If x1(t) ≤ x01 and x2(t) > x02,

F1 = Psℓd1 and F2 = 0 . (A.12)

• If x1(t) > x01 and x2(t) ≤ x02,

F1 = Psℓd1 and F2 = Psℓd2 . (A.13)

• If x1(t) ≤ x01 and x2(t) ≤ x02,

F1 = Psℓd1 and F2 = 0 . (A.14)
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Remarks on the deterministic system and the stochastic modeling of

the jitter.

• In Eqs. (A.1) to (A.14), the values of the parameters can be found in
(Cataldo et al., 2008 and 2009; Mauprivez et al., 2012).

• Eqs. (A.1) to (A.14) constitute a set of nonlinear coupled equations.

• In Eq. (A.1), dug(t)/dt does not exist at a time t for which the glottis is
closing or is opening. Such a non existence is taken into account by the
numerical scheme of time integration during the computation (see Cataldo
et al., 2008 and 2009, and see also a discussion in Sciamarella et al. 2004;
Lucero, 2005).

• The analysis of the existence and uniqueness of a solution and the possible
bifurcations are very difficult to analyze from a mathematical point of
view. However, these equations have been numerically studied by several
authors and a knowledge on the type of the solutions that can be obtained
is available (in particular, see hereinafter).

• The voice production model defined by Eqs. (A.1) to (A.14) can effectively
produce the phonation using only the few parameters introduced in the
model. It is important to note that there is a range for the values of the
parameters, which allows for obtaining a regular phonation. For example,
if the subglottal pressure is too low, the phonation will not be possible.
On the other side, if it is too high, the vocal folds can oscillate in a non
periodic manner; it means that the voice signal generated can be chaotic,
for example. The values of the parameters considered in this paper, called
the typical glottal condition, make sure that glottal-flow signal reaches a
periodic steady-state for the deterministic model defined by Eqs. (A.1) to
(A.14).

• Preliminary studies have shown that small variations of the parameters
can be associated with a physiological action that allows for producing the
sounds that are targeted. Some types of pathologies can be simulated for
certain values of the parameters, in particular for the masses m1 and m2,
and for the stiffnesses k1, k2, and kc of the vocal folds.

• In previous works (Cataldo et al., 2009; Mauprivez et al., 2012, Cataldo
et al., 2013), the tension parameter of the vocal folds (which is a pa-
rameter describing a relation between mass and stiffness of the vocal
folds, and which can be found, for instance, in Ishizaka and Flanagan
(1972)) was considered as a random variable and its probability density
function was constructed and identified by solving an inverse stochastic
problem. Further, it was updated using the Bayesian method (Cataldo
et al., 2013). In this paper, we consider a stochastic model for k1, k2
and kc that are modeled by stochastic processes K1(t), K2(t) and Kc(t),
in order to generate a jitter in the voice production for the phonation.
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The corresponding system of nonlinear stochastic differential equations
is obtained by substituting stiffnesses k1, k2 and kc in the deterministic
model by the stochastic processes K1(t), K2(t) and Kc(t), respectively.
Consequently, ug, u1, . . . , un, uR and also x1, x2 and xc become stochastic
processes Ug, U1, . . . , Un, UR and X1 and X2 (the stochastic equations are
detailed in Appendix B).

• We are interested in constructing the asymptotic stationary solution for
the stochastic equations, which corresponds to a ”quasi-periodic” steady
state solution for the deterministic equation. The stochastic model allows
for producing the normal voices and also some pathological voices.

Appendix B. Stochastic vocal folds dynamic equations

Stochastic vocal folds dynamic equation. The vocal folds dynamic equation (de-
fined by Eq. (A.11)) in x1(t) and x2(t) depending on ug(t) becomes a system
of nonlinear stochastic differential equations for the stochastic processes X1(t)
and X2(t) coupled with the stochastic process Ug(t). The system of stochastic
differential equations can be written as

[M ]Ẍ(t) + [C]Ẋ(t) + [K(t)]X(t) = −S(X(t)) + F (X(t), Ug(t)) , (B.1)

in which

[M ] =

[

m1 0
0 m2

]

, [C] =

[

r1 0
0 r2

]

,

[K(t)] =

[

K1(t) +Kc(t) −Kc(t)
−Kc(t) K2(t) +Kc(t)

]

.

The vector valued-function F (X(t), Ug(t)) is written as

F (X(t), Ug(t)) = (F1(X1(t), Ug(t)) , F2(X2(t), Ug(t)) ,

for which F1(X1(t), Ug(t)) and F2(X2(t), Ug(t)) are obtained in replacing, in
the equations that define F1 and F2 introduced in Appendix A, the determinis-
tic quantities x1(t), x2(t), and ug(t) by the stochastic quantities X1(t), X2(t),
and Ug(t). It should be noted that the random quantities F (X(t), Ug(t)) and
S(X(t)) depend on the collision of the vocal folds.

When there is no collision of the vocal folds, the expression of S(X(t)) is given
by

S(X(t)) =

[

K1(t) ηk1
X1(t)

3

K2(t) ηk2
X2(t)

3

]

.

When there is collision of the vocal folds, the expression of S(X(t)) is given by

S(X(t)) =













K1(t)

(

ηk1
X1(t)

3+
h1

k1

{

(

X1(t)+
Ag01

2ℓ

)

+ηℓ1

(

X1(t)+
Ag01

2ℓ

)3
})

K2(t)

(

ηk2
X2(t)

3+
h2

k2

{

(

X2(t)+
Ag02

2ℓ

)

+ηℓ2

(

X2(t)+
Ag02

2ℓ

)

3
})













.
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Stochastic coupling equation. The deterministic coupling nonlinear equation
(defined by Eq. (A.1) with Eqs. (A.2) to (A.9)) in ug(t) and coupled with u1(t),
for which the coefficients depend on x1(t) and x2(t), become a stochastic cou-
pling equation for the stochastic process Ug(t) and coupled with the stochastic
process U1(t), for which the coefficients depend on stochastic processes X1(t)
and X2(t), and is written as

(Rk1(X1(t)) +Rk2(X2(t)) ) |Ug(t)|Ug(t) + (Rv1(X1(t)) +Rv2(X2(t)) )Ug(t)

+ (Lg1(X1(t)) + Lg2(X2(t)))
dUg

dt
+ L1

dUg

dt
+R1Ug(t)

+
1

c1

∫ t

0

{Ug(τ) − U1(τ)} dτ − ps(t) = 0 , (B.2)

where Rv1(X1(t)), Rv2(X2(t)), Lg1(X1(t)), and Lg2(X2(t)) are defined by
Eqs. (A.2) to (A.8) in which x1(t), x2(t), and ug(t) are replaced by the stochas-
tic quantities X1(t), X2(t), and Ug(t). When the glottis is closed, the coupling
equation becomes

1

c1

∫ t

0

{Ug(τ) − U1(τ)} dτ − ps(t) = 0 . (B.3)

Stochastic sound acoustic propagation equation. The deterministic resistances
r1, . . . , rn of the vocal tract (which are independent of t) become stochastic
processes R1(t), . . . , Rn(t) for the stochastic model, and are such that, for all t
and for all i = 1, . . . , n,

Ri(t) = (Si/A
2
i )
√

ρ µΩ1(t)/2 , Ω1(t) = (K1(t)/m)1/2 . (B.4)

Consequently, the deterministic sound acoustic propagation equation (defined
by Eq. (A.10)) in u1(t), . . . , un(t), uR(t) becomes a stochastic sound acoustic
propagation equation with stochastic coefficients for the stochastic processes
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U1(t), . . . , Un(t), UR(t), which is written as










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


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








































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






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























(L1 + L2)
dU1(t)

dt
+ (R1(t) +R2(t))U1(t) +

1

c2

∫ t

0

{U1(τ) − U2(τ)} dτ+
1

c1

∫ t

0

{U1(τ)− Ug(τ)} dτ = 0 ,

(Li + Li+1)
dUi(t)

dt
+ (Ri(t) +Ri+1(t))Ui(t)+

1

ci+1

∫ t

0

{Ui(τ) − Ui+1(τ)} dτ+
1

ci

∫ t

0

{Ui(τ) − Ui−1(τ)} dτ = 0 , i = 2, . . . , n− 1 ,

(Ln + LR)
dUn(t)

dt
+Rn(t)Un(t)− LR

dUR(t)

dt
+

1

cn

∫ t

0

{Un(τ)− Un−1(τ)} dτ = 0 ,

LR
d(UR(t)− Un(t))

dt
+ rR UR(t) = 0 .

(B.5)
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