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We study the dynamic behavior of a three-dimensional chain that is attached at one end both theoretically and numerically. Using the Laplace transform we derive the explicit solution for the linear problem where the chain is initially supported at rest at the horizontal axis and fastened at origin. We present numerical simulations for both linear and the nonlinear problems that confirm earlier experimental findings related to this problem. Introducing Frenet-Serret formulas, we derive an equivalent nonlinear problem that shows interesting relationship between the curvature and the torsion of the chain. Further, we use particular changes of variables to derive two equivalent nonlinear problems.

Introduction 1.1 Motivation and related work

The study of this paper is motivated by the problems arising in drilling processes used in oil and gas industry. In general, a drilling assembly consists of cylindrical steel pipes connected to form a long "drill-string" with a cutting device, called "drill-bit" attached at the free end at the bottom of the string. The top end of the string is driven in a particular way with the goal of constructing a hole that connects the oil and gas reservoirs to the earth's surface. Since the drill-string can be several miles long, it is important to precisely predict the motion of the string and, especially, its free end. The dynamic behavior of the drill-string is described using Newton's equations of motion. A nice exposition of such a model was given in [START_REF] Tucker | An integrated model for drill-string dynamics[END_REF][START_REF] Cull | On parametrically excited flexural motion of an extensible and shearable rod with a heavy attachment[END_REF] by Tucker et al. We present the theoretical and numerical study of the dynamic behavior of the inextensible three-dimensional string (i.e., chain) that is attached at one end. Derivation of the equations governing the large motion of strings was given in [START_REF] Antman | The equations for large vibrations of strings[END_REF] by Antman and in [START_REF] Yong | Strings, chains, and ropes[END_REF] by Yong. Small amplitude oscillations in both a fixed and a rotating plane were studied in [START_REF] Coomer | A non-linear eigenvalue problem associated with inextensible whirling strings[END_REF] giving rise to a nonlinear eigenvalue problem that is studied numerically using the shooting method for two-point boundary value problems. Well-posedness, existence, uniqueness and geometry of solutions were studied in [START_REF] Preston | The motion of whips and chains[END_REF][START_REF] Preston | The geometry of whips[END_REF][START_REF] Preston | An H 1 model for inextensible strings[END_REF] by Preston and Saxton. Numerical simulations of a top-driven hanging chain were given in [START_REF] Belmonte | Dynamic patterns and selfknotting of a driven hanging chain[END_REF] by Belmonte et al. The dynamic behavior of the chain whose one end is fixed and the other end is released from the same elevation, with ends sufficiently close, was studied in [START_REF] Churchill | Operational Mathematics[END_REF][START_REF] Calkin | Dynamics of a falling chain: I[END_REF] by Calkin et al. We point out that this paper is an attempt to approach the problem of the falling chain, which because of its difficulty, is not clear and it leads to several paths to understand the problem. These paths do not seem connected and lead to separate views of the same problem, but they, nevertheless, have their merits with the goal of better understanding of the behavior of the solution. The problem of the complete understanding of the dynamics of falling chains still posses many open questions.

Formulation of the problem and overview of the paper

Let s ∈ [0, L] denote the arc-length of a three-dimensional curve, let X(s,t) ∈ R 3 denote the position along the curve at time t ≥ 0 and let T (s,t) ∈ R denote the tension. We consider the system ρX tt = (T X s ) s -ρgz,

where ρ is the linear mass density, g is gravitational acceleration and z is the third component of X, with the condition of inextensibility

X s • X s = 1. (1.2)
The problem is supplemented with the initial conditions

X(s, 0) = F(s), X t (s, 0) = G(s), (1.3) 
and boundary conditions

X(0,t) = H(t), T (L,t) = 0. (1.4)
The first boundary condition describes driving at the fixed end, while the second boundary condition describes that no forces are acting on the free end of the chain.

In Section §2 we consider a linear version of the above problem (assuming T is constant) where the chain is initially aligned with the horizontal axis with the left end attached at the origin. The chain is released and falls down due to gravity. The case of a semi-finite chain was studied by Churchill in [START_REF] Churchill | Operational Mathematics[END_REF] and we adopt his approach for the case of the finite chain. The experimental results for this physical set-up were provided by Tomaszewski et al. in [START_REF] Tomaszewski | The motion of a freely falling chain tip[END_REF]. We find the explicit solution of the problem using the Laplace transform and we also present numerical simulations that confirm the configuration obtained in [START_REF] Tomaszewski | The motion of a freely falling chain tip[END_REF]. Section §3 deals with numerical simulations for the nonlinear problem (1.1)-(1.2) in X and T .We employ an interplay of central and forwarded differences to construct a numerical method for solving the nonlinear problem of the falling chain which is initially aligned with the horizontal axis with the left end attached at the origin. We compare our numerical results with the experimental results in [START_REF] Tomaszewski | The motion of a freely falling chain tip[END_REF] as well as with numerical simulations for the linear problem from §2 (where T is assumed to be a constant). It is not surprising that the numerical approximations for the nonlinear problem for X and T and the linear problem for X with T constant differ. We investigate the form of T that can be used in (1.1) for a better approximation of the solution of the nonlinear problem (1.1)-(1.2). Our findings are that T should depend on time and we propose an expression for T (t).

In Section §4 we remark that the energy of the inextensible string is entirely kinetic as also observed in [START_REF] Dickey | Dynamic behavior of the inextensible string[END_REF] by Dickey for a two-dimensional case.

In Sections §5 and §6 we generalize the theoretical approaches presented by by Hanna and Santangelo in [START_REF] Hanna | At the end of the moving string[END_REF] and by Dickey in [START_REF] Dickey | Dynamic behavior of the inextensible string[END_REF], respectively. In Section §5, we use Frenet-Serret formulas and rewrite the above system (1.1)-(1.2) using a system of five differential equations that gives interesting relationship between the curvature of the string and its torsion in time. Section §6 deals with two changes of variables that transform the above system (1.1)-(1.2). First, we consider the cylindrical coordinates, and under simplifying assumptions, we give an approach for finding a solution. We also show a numerical example where such change of coordinates might be useful. Secondly, we consider the spherical coordinates which ensure that the inextensibility condition (1.2) is automatically satisfied.

Wave equation with gravity

Since mathematical analysis of the above nonlinear problem (1.1)-(1.4) in X and T is very challenging, we first consider a linear version of the problem. The approach outlined in [START_REF] Churchill | Operational Mathematics[END_REF], by Churchill, §42, assumes the physical setup of a chain which is initially supported at rest along the horizontal axis and fastened at the origin. At the initial time t = 0, the support is removed and the chain moves downward due to gravity. Churchill considered a semi-infinite chain and described the problem using a linear equation of motion with appropriate initial/boundary conditions. He found an explicit solution to the problem using a Laplace transform which lead to a simple ODE problem that was solved explicitly.

In this section, we pose an analogous linear problem for the finite chain. We use the Laplace transform and we obtain an explicit solution of the corresponding ODE problem. However, the fact that the chain is finite makes the problem genuinely much more complicated than in the case of a semi-finite chain. The main difficulty is in finding the inverse Laplace transform. Up to now the explicit solution for the finite chain has not been known and we use the idea that was introduced by Jovanović and Koshkin in [START_REF] Jovanovi Ć | Alambert sums for vibrating bar with viscous ends[END_REF]. This idea is to consider Taylor expansions of the terms involved and the shifting property of the Laplace transform. The explicit solution is given by a series, however, due to the nature of the problem only finitely many terms are nonzero. By manipulating the expression, remarkably, we obtain that our explicit solution for the finite chain matches the explicit solution for the semi-finite chain in [START_REF] Churchill | Operational Mathematics[END_REF]. At the end of the section, we also provide a numerical simulation of this problem.

Theorem 2.1. The solution of the initial boundary value problem

Y tt = a 2 Y xx -g, 0 ≤ x ≤ L,t > 0, (2.1) Y (x, 0) = Y t (x, 0) = 0, Y (0,t) = 0, Y x (L,t) = 0, (2.2)
where x denotes the arc-length, is given by

Y (x,t) = -g 2a 2 (2axt -x 2 ), 0 ≤ x < at, -gt 2 2 , at ≤ x ≤ L. (2.3) A(at, -gt 2 2 ) B O x y at Figure 1.

Falling chain in time

Proof. To prove the above theorem, we proceed in two steps. First, we find the solution of the problem in the form of the infinite series, and, secondly, we show that this infinite series reduces to the expression (2.3).

• Step 1: To solve the problem (2.1)-(2.2), we use the Laplace transform. Let y(x, s) = L(Y (x,t)). The transformed problem is

a 2 y xx (x, s) -s 2 y(x, s) = g s , y(0, s) = 0, y x (L, s) = 0.
The general solution of this second order linear ODE in x is

y(x, s) = c 1 e -sx a + c 2 e sx a - g s 3 .
Using the boundary conditions in (2.2), we find c 1 and c 2 , and we obtain

y(x, s) = g s 3 e -sx/a 1 + e -2sL/a + g s 3 e -s(2L-x)/a 1 + e -2sL/a - g s 3 =: A(x, s) + B(x, s) +C(x, s).
To solve the original problem (2.1)-(2.2), we need to find the inverse Laplace transform of the above expression, i.e., Y (x,t) = L -1 (y(x, s)). To find the inverse Laplace transform of the expressions A(x, s) and B(x, s), we recall that

1 1 + w = ∞ ∑ n=0 (-1) n w n , |w| < 1.
Hence,

L -1 (A(x, s)) = L -1 g s 3 e -sx/a ∞ ∑ n=0 (-1) n e -2sLn/a = g ∞ ∑ n=0 (-1) n L -1 e -( x+2Ln a )s 1 s 3 .
Next, we use the shifting property of the Laplace transform

L -1 [e -cs F(s)] = H(t -c)L -1 [F](t -c),
where H(t) is the Heaviside function

H(t) = 1, t ≥ 0, 0, t < 0.
Therefore,

L -1 (A(x, s)) = g ∞ ∑ n=0 (-1) n H t - x + 2Ln a L -1 [F] t - x + 2Ln a ,
where F(s) = 1 s 3 and we recall that

L -1 [F](s) = t 2 2 .
Finally, we obtain

L -1 (A(x, s)) = g 2 ∞ ∑ n=0 (-1) n H t - x + 2Ln a t - x + 2Ln a 2 .
Similarly, we have

L -1 (B(x, s)) = g ∞ ∑ n=0 (-1) n L -1 e -s(2L(n+1)-x)/a 1 s 3 = g 2 ∞ ∑ n=0 (-1) n H t - 2L(n + 1) -x a t - 2L(n + 1) -x a 2 ,
and, clearly,

L -1 (C(x, s)) = - gt 2 2 .
Hence, the solution of the initial-boundary value problem (2.1)-(2.2) is given by

Y (x,t) = g 2 ∞ ∑ n=0 (-1) n H t - x + 2Ln a t - x + 2Ln a 2 (2.4) + g 2 ∞ ∑ n=0 (-1) n H t - 2L(n + 1) -x a t - 2L(n + 1) -x a 2 - gt 2 2 .
• Step 2: First note that for a given time t, only finitely many terms in L -1 (A(x, s)) and L -1 (B(x, s)) are nonzero, namely those terms for which

x + 2Ln a ≤ t and 2L(n + 1) -x a ≤ t, ( 2.5) 
i.e., those terms for which

n ≤ at -x 2L and n ≤ at + x 2L -1.
Next, we show that if at < x ≤ L, then Y (x,t) = -gt 2 2 . Given a fixed x ∈ (at, L], note that the first condition in (2.5) implies atx ≥ 2Ln which is not satisfied for any n ∈ {0, 1, . . .}, implying that the first sum in (2.4) is empty. Similarly, the second condition in (2.5) implies at + x ≥ 2L(n + 1) which is also not satisfied for any n ∈ {0, 1, . . .}, implying that the second sum in (2.4) is also empty. Therefore,

Y (x,t) = - gt 2 2 for at < x ≤ L.
Finally, let 0 ≤ x ≤ at ≤ L. The first condition in (2.5) implies at ≥ x + 2Ln, which is satisfied only for n = 0. Hence, the only nonzero term in the first sum in (2.4) is for n = 0. The second condition in (2.5) implies x + at ≥ 2L(n + 1) which is not satisfied for any n ∈ {0, 1, . . .}, implying that the second sum in (2.4) is empty. Therefore,

Y (x,t) = g 2 t - x a 2 - gt 2 2 = - g 2a 2 (2xat -x 2 ).
Remark 2.1. We denote by A the point on the chain where the chain changes from curved to flat and we also consider the end point B (see Figure 1). Using the explicit solution from the above theorem (2.3), it is clear that the point A(at, -gt 2 2 ) describes a parabola

y = - g 2a 2 x 2
in time. We also find the location of the end point B. First, using (2.3) we find the length of the arc OA as follows.

OA = at 0 1 + dY dx 2 dx = at 0 1 + g a 2 (x -at) 2 dx = a 2 g 0 -gt/a 1 + u 2 du where u = g a 2 (x -at) = a 2 2g u 1 + u 2 | 0 -gt/a + 0 -gt/a du √ 1 + u 2 = a 2 2g gt a 1 + g 2 t 2 a 2 + ln |u + 1 + u 2 || 0 -gt/a = 1 2g gt a 2 + g 2 t 2 -a 2 ln | a 2 + g 2 t 2 -gt| a .
Therefore, the location of the end point B is time is given by (L + at -OA, -gt 2 2 ). Remark 2.2. We show numerical simulation of the above linear problem in time where a = 1. The bold curve shows the path of the point A in time.

Numerical results for the nonlinear problem and comparison with the linear problem

In this section we construct a numerical method for approximate solving of the nonlinear problem (1.1)-(1.2)in X and T where the chain is initially at rest aligned with the horizontal axis and fastened at the origin. The support is removed at time t = 0 and the chain falls downward due to gravity. We use the data given by Tomaszewski et al. in [START_REF] Tomaszewski | The motion of a freely falling chain tip[END_REF] to compare our numerical results with their experimental results. We assume the chain length of L = 1.02m and total mass of M = 0.0208kg (the linear density is given by ρ = M/L). It has been known for 

Numerical simulations for the nonlinear problem

To construct a numerical scheme, we first rewrite the system (1.1) as ρX tt = T s X s + T X ss -ρgz.

(3.1)

Our scheme consist of iterations of system (3.1) and condition (1.2) as follows.

• The system (3.1) is discretized using finite differences, central in space and forward in time with time step dt = 1/100 and spatial step ds = 1/30. Because of the nature of the initial and boundary conditions, the values used in finite differences to approximate T s and X ss that fall outside of the mesh domain are determined using linear extrapolation. • The nonlinear condition (1.2) is discretized using finite differences and resulted in a nonlinear system that is solved in each step numerically using GSL Library's nonlinear solvers.

The numerical simulation up to time t = 0.4 is plotted in Figure 3. The thin curves represent the chain position in time.

Comparison of the nonlinear and linear models

Superimposing of the linear problem studied in §2 to the nonlinear problem from §3.1 reveals big difference in the structure of the numerical solutions -the end points of the chain do not match, the path of the point A where the chain changes shape from the curved to horizontal is not the same and the curvature of the curved segment differs; however, the horizontal segment near the free end remains horizontal. In Figure 4 we plot the paths of point A. The bottom curve is the path of A in the linear problem (i.e., T = a = 1), while the top curve is the path of A in the nonlinear problem. Not surprisingly, we observe that the parameter a plays a crucial role in the different behaviors of the solutions to the linear and the nonlinear models. Our numerical investigation shows that this parameter (which is T in the nonlinear problem (1.1)) depends mostly on time. This dependency was numerically determined for 2). It is very likely that a nicer form of T could be derived using trigonometric functions and, in particular, the shape of the path of A in Figure 4 suggest a cycloid. The problem still calls for further investigation and maybe even a different linearization of the nonlinear problem. We remark that Tomaszewski et al [START_REF] Tomaszewski | The motion of a freely falling chain tip[END_REF] consider a discrete model with Lagrange equations and obtain good approximation to their experimental results. Our model is a polynomial fit with the above expression for T (t).

Energy considerations

In this section we make a simple observation that the energy of the inextensible string is entirely kinetic.

We multiply equation (1.1) by X t and integrate for s

∈ [0, L] to obtain L 0 X tt • X t ds = L 0 (T X s ) s • X t ds.
We rewrite the left-hand side by noticing that d dt X t • X t = 2X tt • X t and we use integration by parts for the righthand side of the above expression to get 1 2

d dt L 0 X t • X t ds = T X s • X t | s=L s=0 - L 0 T X s • X st ds
By differentiating the inextensibility constraint (1.2) with respect to t, we find X s • X st = 0. Also, recall T (L,t) = 0, for all t, implying 1 2

d dt L 0 X 2 t ds = T (0,t)X s (0,t) • X t (0,t).
Therefore, the energy of the inextensible string is entirely kinetic, meaning that the string can change shape, but it cannot stretch nor compress.

A theoretical approach using Frenet-Serret formulas

In this section we extend the approach by Hanna & Santangelo in [START_REF] Hanna | At the end of the moving string[END_REF] in two dimensions of using Frenet-Serret formulas in rewriting the problem (1.1)-(1.4). We obtain an equivalent system of five differential equations in five scalar variables. Let κ and τ denote curvature and torsion, respectively. We recall

∂ s     X t n b     =     0 1 0 0 0 0 κ 0 0 -κ 0 τ 0 0 -τ 0         X t n b     .
(5.1)

Consider the arc-length derivative of (1.1) and use (5.1) to obtain X tts = (T X s ) ss = (T t) ss = (T ss -κ 2 T )t + (2T s κ + κ s T )n + κτT b.

Note that the left-hand side of the above expression is t tt , implying

t tt = (T ss -κ 2 T )t + (2T s κ + κ s T )n + κτT b. (5.2)
Notice that since t is a unit vector, differentiating t • t = 1 with respect to t we obtain

t t • t = 0. (5.3)
Similarly, t s • t = 0 and we remark that the same is true for vectors n and b. Differentiating (5.3) with respect to t we further obtain

t tt • t + t t • t t 0. (5.4)
We find projections of (5.2) along t, n and b (and for the first projection, we use the previous equation) to obtain

t t • t t = κ 2 T -T ss , (5.5 
)

t tt • n = 2T s κ + κ s T, ( 5.6 
)

t tt • b = κτT. (5.7)
Our goal is to express the left-hand side of equations (5.5)-(5.7) using scalar quantities. We follow the ideas given in [START_REF] Hanna | At the end of the moving string[END_REF] for the two-dimensional case.

and by applying the dot product with b, we obtain b ss • b = -τ 2 . Therefore

t sst • b = 2α s τ + ατ s + β ss -τ 2 β .
Secondly,

n t • b = (t s /κ) t • b = 1 κ t st • b - κ t κ 2 t s • b = 1 κ (αn s • b + β s ) = 1 κ (ατ + β s ).
Thirdly, n s • b = τ. Hence, from (5.12) we have

n st • b = 1 κ (2α s τ + ατ s + β ss -τ 2 β - κ s κ (ατ + β s ) -κ t τ).
To complete (5.11), next, we find n s • b t . From (5.1) and the fact that t × n = b, we have

n s • b t = -κt • b t = -κt • (t t × n) -κt • (t × n t ) = -κt t • (n × t) -0 = κt t • b = κβ .
Hence, (5.11) becomes

τ t = 1 κ α s τ + ατ s + β ss - κ s κ (ατ + β s ) + κβ , (5.13) 
where we also used (5.10) to express κ t . Regarding equation (5.5), we use (5.9) to obtain

t t • t t = α 2 + β 2 .
Hence,

α 2 + β 2 = κ 2 T -T ss .
(5.14)

Regarding equation (5.6), we have, again using (5.9),

t tt • n = α t + β b t • n. Now, b t • n = (t × n) t • n = n • (t t × n) + n • (t × n t ) = 0 + n t • (n × t) = -n t • b = -(t s /κ) t • b = - 1 κ 2 (κt st -κ t t s ) • b = - 1 κ (αn s + β s b) • b = - 1 κ (τα + β s ) .
Hence, equation (5.6) becomes

α t = β κ (τα + β s ) + 2T s κ + κ s T. (5.15)
Finally, regarding equation (5.7), we have from (5.9)

t tt • b = αn t • b + β t .
Moreover,

n t • b = (t s /κ) t • b = 1 κ t st • b = 1 κ (τα + β s ).
Hence, (5.7) becomes

β t = κτT - α κ (τα + β s ). (5.16) 
Therefore, we reduced the problem (1.1)-(1.4) to the study of the system five equations (5.14), (5.15), (5.16), (5.10) and (5.13) in five scalar variables α, β , T, κ and τ with appropriate initial/boundary conditions.

Comparison with the two-dimensional case

We show that the above system (5.14), (5.15), (5.16), (5.10) and (5.13) reduces to the system found in [START_REF] Hanna | At the end of the moving string[END_REF] for the two-dimensional case.

Suppose V = 0 and τ = 0 and recall the expressions for α and β from (5.9). Then α = κW +U s and β = 0. Equations (5.13) and (5.16) are irrelevant.

First, we have that (5.10) becomes

κ t = (κW +U s ) s (5.17)
which is equation (3) from [START_REF] Hanna | At the end of the moving string[END_REF]. Next, equation (5.14) becomes

(κW +U s ) 2 = κ 2 T -T ss , (5.18) 
and equation (5.15) becomes

(κW +U s ) t = 2κT s + T κ s . (5.19) 
This system of three equations in κ, T and W (recall that U = W s /κ) can be rewritten as a system of two equations in κ and T . Finding the square root in (5.18) and plugging it in (5.17) and (5.19) leads to the system of two equations

±κ t = ( κ 2 T -T ss ) s , ±( κ 2 T -T ss ) t = 2κT s + T κ s .
in curvature κ and tension T , which are the same as ( 9) and ( 10) in [START_REF] Hanna | At the end of the moving string[END_REF].

Two theoretical approaches for analyzing (1.1)-(1.2) using the change of variables

The paper [START_REF] Dickey | Dynamic behavior of the inextensible string[END_REF], by Dickey, gives several ideas, under simplifying assumptions, of approaching the problem (1.1)-(1.4) in two spatial dimensions, theoretically. His ideas are based on particular changes of variables, which conveniently simplify the problem with the goal of reaching more qualitative understanding of the problem.

In this section, we generalize some of those ideas to the case of three spatial dimensions. First, we consider a change of variables to cylindrical coordinates and we also give a numerical example where this change of variables would be of practical use. Secondly, we consider the change of variables to spherical coordinates which ensure that inextensibility condition (1.2) is automatically satisfied.

The first approach: Cylindrical coordinates

We denote X = (x, y, z) and we introduce the cylindrical coordinates

x = r cos θ , y = r sin θ , z = z. ( 6.1) 
By substituting this into the above system (1.1), we obtain r ttr(θ t ) 2 = T s r s + Tr ss -Tr(θ s ) 2 , (6.2) rθ tt + 2r t θ t = T s rθ s + 2Tr s θ s + Trθ ss , (6.3)

z tt = (T z s ) s , (6.4) 
while the condition (1.2) becomes

r 2 s + r 2 θ 2 s + z 2 s = 1. (6.5)
For simplicity, we assume that z coordinate does not depend on time, i.e., we assume z = z(s). Then, equation (6.4) implies that (T z s ) s = 0. Hence, T z s is a function of t only, i.e., z s = U(t) T , for some unknown function U(t). Therefore, from (6.5) we get

r 2 s + r 2 θ 2 s + U(t) T 2 = 1.
As in [START_REF] Dickey | Dynamic behavior of the inextensible string[END_REF], we further assume that r = F(θ ). Hence,

(F ′ (θ ) 2 + F(θ ) 2 )θ 2 s = 1 - U(t) T 2 , implying θ 2 s = 1 -U(t) T 2 F ′ (θ ) 2 + F(θ ) 2 =: G 2 (s,t) H 2 (θ ) .
Further, by assuming that θ is a nondecreasing function of s, we have

θ s = G(s,t) H(θ ) , (6.6) 
and, therefore,

H(θ )dθ = G(s,t)ds =: B(s,t). ( 6.7) 
From (6.6), we have

θ ss = G s H - G 2 F ′ H 4 (F ′′ + F).
As a consequence of (6.7), we have

θ t = B t H and θ tt = B tt H - (B t ) 2 F ′ H 4 (F ′′ + F).
Using that r = F(θ ) and (6.6), we get

r s = F ′ G H and r ss = F ′ G s H + G 2 F H 4 (F ′′ F -(F ′ ) 2 )
and

r t = F ′ B t H and r tt = F ′ B tt H + B 2 t F H 4 (F ′′ F -(F ′ ) 2 ).
We plug these derivatives into (6.2) and (6.3) to get

F ′ H {B tt -(T G) s } + F H 4 (B 2 t -T G 2 )(FF ′′ -2(F ′ ) 2 -F 2 ) = 0 (6.8)
and

F H {B tt -(T G) s } - F ′ H 4 (B 2 t -T G 2 )(FF ′′ -2(F ′ ) 2 -F 2 ) = 0. (6.9)
This is a system of two equations, which is linear in variables 1

H (B tt -(T G) s ) and 1 H 4 (B 2 t -T G 2 )(FF ′′ - 2(F ′ ) 2 -F 2 ).
We calculate the determinant of the system to be F 2 +(F ′ ) 2 . From linear algebra, we know that for such linear homogeneous system either both solutions are zero or its determinant is zero. Since F 2 + (F ′ ) 2 = 0, we have one of the following two possibilities.

• Case 1: Assume B tt = (T G) s and B 2 t = T G 2 . We note that (6.7) implies

G = B s , (6.10) 
and, therefore, we have T . Using (6.7), we also have θ = V (B(s,t)), for an arbitrary function V , implying that the solution for r(θ ) is of the form

T = B 2 t B 2 s . ( 6 
r = F(V (B(s,t))),
where F and V are arbitrary.

• Case 2: Assume B tt = (T G) s and FF ′′ -2(F ′ ) 2 -F 2 = 0.
This second order equation in F can be solved explicitly by introducing the change of variables G = 1 F . Then G satisfies the second order equation G ′′ + G = 0 and the solution for F is of the form

r = F(θ ) = C 1 cos(θ +C 2 ) ,
with C 1 and C 2 being constants depending on initial/boundary conditions. Recall that H(θ ) 2 = F ′ (θ ) 2 + F(θ ) 2 and, from the first equality in (6.7), we find G(s,t). Further, from the second equality in (6.7), we find B(s,t). Since B(s,t) and G(s,t) are now known functions, equation B tt = (T G) s can be solved for T (s,t). Again, we find U(t) from 1 -U 2 T 2 = G 2 and, by integrating z s = U(t) T (s,t) , we find z(s).

Example 6.1. A typical example of where cylindrical coordinates would be useful in the description and understanding of the problem is the following. Assume that chain is aligned at a half-circle and is initially supported at rest at the (x, y)-plane. As before, suppose that the chain is fastened at the origin and that the support is removed at the time t = 0. We have not managed so far to adopt the above approach to find the explicit solution to this problem and we leave this for future work. However, we were able to obtain numerical solution to equations (6.2)-(6.4), following §3, and we present the displacements of chain in time in Figure 5.

The second approach: Spherical coordinates

We introduce a change of variables that ensures that the inextensibility condition (1.2) is automatically satisfied. We denote X = (x, y, z) and we use spherical coordinates to define

x s = cos α cos β , y s = cos α sin β , and z s = sin α, for unknown functions α(s,t) and β (s,t). In order to rewrite the system (1.1) using α, β and T , we first differentiate (1.1) w.r.t. s to get X stt = (T X s ) ss . (6.13)

Using the above change of variables, we find derivatives

x stt = -cos α cos β α 2 t + 2 sin α sin β α t β t -sin α cos β α tt -cos α cos β β 2 tcos α sin β β tt t -2 sin α cos β α t β t -sin α sin β α tt -cos α sin β β 2 t + cos α cos β β tt z stt = -sin αα 2 t + cos αα tt . Also, we find derivatives x ss , x sss , y ss , y sss , z ss and z sss , and (6.13) becomes a system of three equations in α, β and T . We modify these equations using trigonometric identities in the following way. By multiplying those three equations by cos α cos β , cos α sin β and sin α, respectively, and adding them together, we obtain Remark 6.1. We multiply (6.14) bysin α and (6.15) by cos α and we add the two equations to get sin αα 2 t + cos αα tt = 2T s cos αα s + T cos αα ss -T sin αα 2 s + sin αT ss , or, equivalently, (cos αα t ) t = (T cos αα s + sin αT s ) s .

We notice that the right-hand side of the above equation can be further rewritten to obtain (cos αα t ) t = (T sin α) ss .

Note that if we consider the static, i.e., time independent problem, the left-hand side of the above equation is zero, implying

(T sin α) s = c 1 ,
i.e.,

T = c 1 s + c 2 sin α = c 1 s + c 2 z(s) ,
for constants c 1 and c 2 determined using the initial/boundary conditions.

Conclusion

We study dynamics of a falling chain attached at one end initially at rest at a horizontal position in three spatial dimensions. Using the Laplace transform we obtain the explicit solution to the linear problem that agrees with the solution of the linear problem in the case of the semi-finite chain. We construct a finite difference numerical method and solve the nonlinear problem approximately. Our numerical simulations are in agreement with experimental results observed earlier. Based on our numerical investigation, we propose an expression for the term in the linear problem that results in simulations close to those of the nonlinear problem. We also propose theoretical approaches for analysis of the nonlinear problem using differential geometry techniques and change of coordinates.
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 2 Figure 2. Numerical simulation for the linear problem
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 343 Figure 3. Numerical simulation for the nonlinear problem
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 13 Simplifying equations (5.5)-(5.6) 

Figure 5 .

 5 Figure 5. Numerical simulation of the displacements of the falling chain in time

T ss + α 2 t

 2 -T α 2 s + cos 2 α(β 2 t -T β 2 s ) = 0. (6.14)By multiplying the equations by sin α cos β , sin α sin β andcos α, respectively, and adding them together, we obtainα tt -2T s α s -T α ss + sin α cos α(β 2 t -T β 2 s ) = 0. (6.15)Finally, by multiplying the first equation by sin α sin β and the second bysin α cos β and adding them together, we obtain2 sin α(α t β t -T α s β s ) -cos α(β tt -2T s β s -T β ss ) = 0. (6.16)Equations (6.14)-(6.16) represent the system of three quasi-linear PDEs in α, β and T .
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A new form of equations

 (5.5)-(5.7) Note that, in three-dimensional space, we have the representation X t = W t +Un +V b (5.8) with

Proof of this fact follows by finding the derivative of (5.8) w.r.t. s and using (5.1) and the chain rule to obtain

On the other hand, X ts = t t , implying X ts • t = t t • t = 0, and, finally, W s -κU = 0. Hence,

(5.9)

Next, we want to express κ t and τ t using scalar quantities U,V,W, κ and τ.

Equation for κ t in three-dimensional space

Note that from (5.1), we have κ = t s • n, implying

Next, using derivative of (5.9) w.r.t. s and (5.1), we have

Therefore, κ t = α s -τβ .

(5.10)

Equation for τ t

From (5.1) we have τ = n s • b, implying

Next, we find n st • b. Note that from (5.1) we have t s = κn and differentiating with respect to t and s, we obtain

We use the dot product of the above expression with b to find

and we find the dot products on the right-hand side. First, note that from (5.9) we have