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We study non oscillating bifurcations of non homogeneous steady states of the Vlasov equation,
a situation occurring in galactic models, or for Bernstein-Greene-Kruskal modes in plasma
physics. Through an unstable manifold expansion, we show that in one spatial dimension the
dynamics is very sensitive to the initial perturbation: the instability may saturate at small
amplitude -generalizing the ”trapping scaling” of plasma physics- or may grow to produce
a large scale modification of the system. Furthermore, resonances are strongly suppressed,
leading to different phenomena with respect to the homogeneous case. These analytical find-
ings are illustrated and extended by direct numerical simulations with a cosine interaction potential.

PACS numbers: 05.45.-a Nonlinear dynamics and chaos 02.30.Oz Bifurcation theory

I. INTRODUCTION

The Vlasov equation models the dynamics of a large
number of interacting particles, when the force acting on
them is dominated by the mean-field. It is a fundamen-
tal equation of plasma physics and galactic dynamics, but
also describes a number of other physical systems, such
as wave-particles interactions [1], free electron lasers [2],
certain regimes of nonlinear optics [3], and wave propa-
gation in bubbly fluids [4]. Understanding its qualitative
behavior has proved to be a formidable challenge, from
the first linear computations of Landau [5] to the most
recent mathematical breakthroughs [6]. We address here
a problem of bifurcations in these systems.

The study of bifurcation of homogeneous stationary
solutions to the Vlasov equation (when particles are ho-
mogeneously distributed in space, with a certain velocity
distribution) has a long and interesting history, mainly
related to plasma physics; a detailed account can be
found in [7]. One of the main question is to determine the
asymptotic behavior of the system, when started close to
an unstable stationary state. The basic mechanism, ul-
timately responsible for the instability saturation, is the
resonance phenomenon: particles with a velocity close
to that of the growing mode are strongly affected by the
small perturbation. This was qualitatively recognized in
the 1960’s [8, 9], leading these authors to predict the
famous ”trapping scaling”, that is the asymptotic elec-
tric field, after nonlinear saturation, would be of order
λ2, with λ the instability rate. However, formal compu-
tations relying on standard nonlinear expansions often
led to the very different λ1/2 scaling (see discussion and
refs in [7]). In the 1990’s, Crawford’s careful unstable
manifold computations finally recovered unambiguously
the trapping scaling [10]. Yet, his expansion is plagued
by strong divergences in the λ → 0+ limit. Soon af-
ter, Del-Castillo-Negrete derived an infinite dimensional

reduced model for the instability development, using dif-
ferent techniques [11]. This is currently the best under-
standing we have, and shows a striking degree of univer-
sality.

Understanding the non homogeneous case is further
challenging, and has a practical importance for various
physical systems. A first key example comes from astro-
physics. Radial Orbit Instability destabilizes a spherical
self-gravitating system when the number of low angular
momentum particles, usually stars, grows. The fate of
the initially unstable system has been qualitatively and
numerically studied in [12], providing a rare example of
such a bifurcation study. In the plasma physics context,
Bernstein-Greene-Kruskal exhibited a large family of ex-
act solutions of the Vlasov-Poisson equation [13], now
commonly called BGK modes. Some of these solutions
are stable, others unstable [14–17]. The non linear be-
havior in case of instability is an open question.

To tackle the bifurcation in the non homogeneous case
we will consider in this article as a first step the case of
a real unstable eigenvalue, for a one dimensional system.
We will show that the number of particles around zero
frequency is negligible in the non homogeneous case com-
pared to the homogeneous case. This is a crucial remark,
since it implies that for non oscillating instabilities, the
resonance phenomenon will be absent, or strongly sup-
pressed. Nevertheless, similarly to the homogeneous case,
the unstable eigenvalue still bifurcates from a marginally
stable continuous spectrum. Thus, one should expect a
new type of bifurcation. Our strategy is to attack this
problem by revisiting Crawford’s expansion, in order to
describe the dynamics on the unstable manifold. The ba-
sic questions are: Does the instability saturate at small
amplitude? What is the analog of the ”trapping scal-
ing”? Can we expect the same kind of universality as
in the homogeneous context? Our main results include:
i) A striking asymmetry on the unstable manifold: one
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branch leads to a small amplitude saturation, the other
escapes far away from the original stationary point. ii)
The λ2 ”trappping scaling”, well known in the homo-
geneous case, generalizes for the small amplitude satura-
tion; however, the reason for this scaling is very different.
This result can also be reached by a different theoretical
approach, following [18]. iii) Since these features depend
on some generic physical characteristic of the problem,
we expect our results to be generic, at least for 1D sys-
tems.
The outline of the article is as follows: Section II deals

with a general one-dimensional Vlasov equation. We first
explain formally how to obtain the unstable manifold ex-
pansion and emphasize the main physical points (Section
IIA), then present a more detailed computation (Section
II B). In Section III, we restrict to a particular cosine in-
teraction potential. We are then able to perform more
explicit computations, and provide precise predictions,
as well as push the computations at higher orders, which
is crucial to understand the divergence pattern of the ex-
pansion (Section III B). We also show how some of these
predictions can also be obtained via the ”rearrangement
formula” idea, recently introduced [18]; this provides an
independent theoretical approach (Section III C). In Sec-
tion IV, we compare all previous predictions with direct
numerical simulations. The choice of the cosine potential
allows us to perform very precise computations. Section
V is devoted to some final comments and open questions.

II. UNSTABLE MANIFOLD REDUCTION
(SPATIALLY PERIODIC 1D SYSTEMS)

A. General picture

The Vlasov equation associated with the one-particle
Hamiltonian H [f ] is

∂tf = {f,H [f ]}, H [f ](q, p, t) = p2/2 + V [f ](q, t) (1)

where the one-particle potential V [f ] is defined by using
the two-body interaction v(q) as

V [f ](q, t) =

∫
v(q − q′)f(q′, p′, t)dq′dp′ (2)

and the Poisson bracket {·, ·} is

{u, v} = ∂pu∂qv − ∂qu∂pv. (3)

Denote by fµ a family of unstable stationary states de-
pending on the parameter µ, and by g a perturbation
around fµ. The equation for g consists of a linear and a
nonlinear parts:

∂tg = Lµg +N [g], (4)

where

Lµg = {g,H [fµ]}+ {fµ, V [g]} , N [g] = {g, V [g]}. (5)

Let Lµ have an unstable real nondegenerate eigenvalue λ
depending on µ, and Ψλ be the corresponding eigenfunc-
tion. We assume that the family {fµ} has a critical point
µc, where the eigenvalue is λ = 0, and we will study the
system in the limit µ → µc which implies λ → 0+.
Notice that the Hamiltonian structure implies that Lµ

also has the eigenvalue −λ. In addition, by space trans-
lation symmetry when fµ is homogeneous in space, λ is
in this case twice degenerate. When fµ is non homoge-
neous, the symmetry is broken, and a neutral Goldstone
mode ΨN appears.
We use the standard L2 Hermitian product, and in-

troduce L†
µ, the adjoint operator of Lµ, and Ψ̃λ the

adjoint eigenfunction with eigenvalue λ∗ = λ, where
λ∗ is the complex conjugate of λ. We normalize it as〈
Ψ̃λ,Ψλ

〉
= 1, where the scalar product is defined by

〈f, g〉 =
∫
f∗g dqdp, (6)

and note Πµ(·) =
〈
Ψ̃λ, ·

〉
Ψλ the projection onto the un-

stable eigenspace Span{Ψλ}. Depending on the behavior
of Ψ±λ and ΨN when λ → 0+, Πµ can be singular in this
limit. As will become clear later on, this is the origin of
an important difference between homogeneous and non
homogeneous cases.
We are interested in the dynamics on the unstable

manifold of fµ, and expand g as

g(q, p, t) = A(t)Ψλ(q, p) + S(q, p, A(t)). (7)

The term S parameterizes the unstable manifold, and we
have the estimation S = O(A2) for small A by assuming
that the unstable manifold is tangent to the unstable
eigenspace. Note that this parametrization may be only
local.
Performing the projection, we obtain for A(t) the fol-

lowing dynamical equation, expanded in powers of A:

Ȧ = λA+
〈
Ψ̃λ, N [f ]

〉
= λA+ a2(λ)A

2 + a3(λ)A
3 + · · · ,

(8)
where the coefficient a2 is

a2(λ) =
〈
Ψ̃λ, {Ψλ, V [Ψλ]}

〉
. (9)

In the homogeneous case, the unstable eigenspace is actu-
ally two-dimensional, and the reduced equation involves
A, which is complex, and A∗; since an equation similar
to (8) can be written for |A|, we omit this slight differ-
ence here. In this case we have by symmetry a2l = 0 for
any l ∈ N∗ and a2l+1 ∝ λ1−4l [10], this strong divergence
preventing the truncation of the series (8). By contrast,
in the non homogeneous case, a2 6= 0; we show however
below that a similar divergence pattern when λ → 0+ is
expected. Nevertheless, keeping term up to A2, (8) looks
like the normal form of a transcritical bifurcation; it is
not a standard one however, because λ is always posi-
tive, and a2 diverges when λ → 0+. From the truncated
equation, we can conjecture the general phenomenology:
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• on the unstable manifold, in one direction the dy-
namics is bounded and attracted by a stationary
state close to fµ, characterized by A∞ = −λ/a2(λ)
(notice that this state is stationary and stable for
the truncated unstable manifold dynamics; it may
not be so for the unconstrained dynamics);

• in the other direction, the dynamics leaves the per-
turbative regime, and thus the range of validity of
our analysis.

Estimating a2(λ) in the λ → 0+ limit gives access to A∞;
this requires more technical work performed in the next
subsection. Note that the formal computations leading to
(8) and (9) are essentially independent of the dimension;
the following estimate for a2(λ) is valid in 1D.

B. Technical computation

We present now the explicit form of a2(λ), the order A
2

coefficient in the reduced dynamics, for the non homoge-
neous case of a generic 1-dimensional system. The com-
putation is somewhat technical, but the physical message
is rather simple, and summarized here:

• a2 ∝ 1/λ when λ → 0+

• the normalization condition requires Ψ̃λ = O(1/λ),
and this divergence of the amplitude in the neigh-
borhood of λ = 0 is responsible for the divergence
of a2.

• the integrals appearing in the scalar product in (9)
do not diverge when λ → 0+.

The last two points are major differences with the ho-
mogeneous case in which the amplitude of Ψ̃λ does not
diverge, and the resonances translate into pinching sin-
gularities for the integrals analogous to (9) [10]. These
pinching singularities are responsible for the divergences
in the unstable manifold expansion. From these results,
we can now conclude that the stationary state close to fµ
on the unstable manifold is characterized by A∞ ∝ λ2,
which is a central result of this article.

1. The spectrum matrix

Let us turn to the explicit computation. We first need
to introduce quantities regarding the linearized problem;
we follow a classical method [19, 20] and use here the
notations of [21]. For preparation, we introduce the
biorthogonal functions {di}i∈I and {uk}k∈K , on which
we expand the density and potential respectively:

∫
f(q, p, t)dp =

∑

i∈I

ai(t)di(q), (10)

V [f ](q, t) =
∑

k∈K

ak(t)uk(q). (11)

The functions {di} and {uk} satisfy

∫
v(q − q′)dk(q

′)dq′ = uk(q), (12)

and

(di, uk) =

∫
di(q)

∗uk(q)dq = νkδik, (13)

Since all the functions expanded are real, we can choose
the di’s and uk’s to be real functions; the νk’s are then
also real.
In a generic system the spectrum function is a matrix

denoted by Λµ(λ) [19, 20], whose (l, k) element is

(Λµ)lk(λ) = νkδlk−2π
∑

m∈Z

∫
im∇JFµ

λ+ imΩ
ck,mc∗l,mdJ, (14)

where we have introduced the action-angle variables
(J, θ) for an integrable Hamiltonian system H [fµ] with
1 degree of freedom, and assumed that fµ depends only
on J ; this is denoted by fµ(q, p) = Fµ(J). The function
ck,m(J) is defined by

ck,m(J) =
1

2π

∫
uk(q)e

−imθdθ, (15)

and the frequency Ω(J) by Ω = dH [fµ]/dJ . We remark
that detΛµ(λ) = 0 implies λ to be the eigenvalue of the
linear problem. The matrix’s size is #K, the number of
biorthogonal functions in the expansion of the potential;
it is usually infinite, but only 2×2 for the cosine potential
introduced later.

2. Properties of the spectrum matrix

To analyze Λ, we need to specify a little bit more the
frequency Ω(J). We assume that Ω(J) does not vanish
at finite J , or does so only logarithmically. This includes
the cases where the stationary potential V [fµ](q) has a
single minimum and is infinite for |q| infinite (such as
for 1D gravity), and the generic situation with periodic
boundary conditions; indeed, in the latter situation, local
minima of the stationary potential give rise to separatri-
ces, on which the action is constant. At these specific
values of the action Ω vanishes, but generically it does so
only logarithmically (an example of this situation is given
in the next section). In particular, under the above as-
sumption for Ω, the functions (Λµ)lk(λ) defined in (14)
are well defined for λ = 0 (the integral over J converges),
and continuous for λ ∈ R. Furthermore, the same rea-
soning applies to the derivatives of (Λµ)lk(λ): these func-
tions are continuous for λ ∈ R, even for λ = 0. The fact
that integrals over J converge is the technical counterpart
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of a physical phenomenon: the absence, or weakness, of
resonances for λ = 0.
Furthermore, starting from (14), changing the summa-

tion variable m to −m, and using ck,−m(J) = c∗k,m(J), it
is not difficult to see that Λµ is a real matrix, and that
(Λµ)lk(λ) = (Λµ)kl(−λ). Hence Λµ(0

+) is symmetric.
This will be useful below.

3. Comparison with the homogeneous case

The properties of the spectrum matrix detailed in the
above paragraph are in sharp contrast with the better
known situation for a homogeneous stationary state. It
is useful to highlight the comparison. We assume here
periodic boundary conditions. For a homogeneous sta-
tionary state, a Fourier transform with respect to the
space variable diagonalizes the spectrum matrix. The
diagonal elements are [10]:

Λ
(hom)
k (λ) = 1− 2iπkv̂k

∫
F ′
0(p)

λ+ ikp
dp, (16)

where F0(p) is the momentum distribution of the consid-
ered stationary state, and v̂k the Fourier of the two-body
potential. Note that since 1/p is not integrable close to
p = 0, (16) may not be well defined for λ = 0, and in
any case is not differentiable along the imaginary axis.
In particular, the function defined by (16) for λ ∈ R is
not differentiable for λ = 0. This is the technical coun-
terpart of the strong resonance phenomenon between a
non oscillating perturbation and particles with vanishing
velocities. We come back now to the non homogeneous
case.

4. Eigenfunctions

The eigenfunctions with eigenvalue λ of Lµ and L†
µ

(recall that λ is real) are respectively expressed as

Ψλ =
∑

k∈K

∑

m∈Z

im∇JFµ

λ+ imΩ
ck,meimθbk (17)

and

Ψ̃λ = −
∑

k∈K

∑

m∈Z

ck,m
λ− imΩ

eimθ b̃k, (18)

where the real vectors b = (bk) and b̃ = (b̃k) depending
on λ must satisfy the conditions

Λµ(λ)b(λ) = 0, T b̃(λ)Λµ(λ) = 0. (19)

where the upper T represents the transposition. The
assumption that λ is a nondegenerate eigenvalue implies
that dimKerΛµ(λ) = 1. Otherwise, there would be two
linearly independent eigenfunctions for λ.

5. Analysis of the a2 coefficient

From the above eigenfunctions the a2(λ) term is writ-
ten as

a2(λ) = −2π
∑

j∈K

∑

k∈K

∑

l∈K

b̃jbkbl

×
∑

m∈Z

∑

n∈Z

∫
c∗j,m+nϕm,n

λ+ i(m+ n)Ω
dJ

(20)

where

ϕm,n =

[
in∇J

(
im∇JFµck,m
λ+ imΩ

)
cl,n

− im∇JFµck,m
λ+ imΩ

im∇Jcl,n

]
.

(21)

We study the λ dependence of the a2(λ) term in the limit
λ → 0+.
First, we estimate the order of magnitude of b̃. The

amplitude of b can be chosen arbitrarily but b̃ cannot,
since Ψ̃λ must satisfy the normalization condition, which
is expressed as

1 = −
∑

k∈K

∑

l∈K

b̃l(Λµ)
′
lk(λ)bk = −〈b̃,Λ′

µ(λ)b〉, (22)

with 〈·, ·〉 the standard scalar product. Making use of
the facts that the (Λµ)kl are regular around λ = 0+, the
normalization condition reads

−1 = 〈b̃,Λ′
µ(0)b0〉

+ λ〈b̃,Λ′′
µ(0)b0 + Λ′

µ(0)b1〉+O(λ2),
(23)

where we assumed that b can be expanded in λ:

b(λ) = b0 + λb1 +O(λ2). (24)

We will show that the amplitude of b̃(λ) diverges in the

limit λ → 0+, and accordingly, we assume that b̃(λ) can
be expanded as

b̃(λ) = λ−yỸ (λ), Ỹ (λ) = b̃0 + λb̃1 +O(λ2). (25)

The normalization condition (23) together with (24) im-
poses y ≥ 0. First, note that the definition of b (19)
reads, at order λ:

Λµ(0)b1 = −Λ′
µ(0)b0. (26)

Since Λµ(0) is symmetrical, this implies that Λ′
µ(0)b0 is

orthogonal to the kernel of Λµ(0). Now, writing at lead-

ing order the definition of b̃ (19), we obtain Λµ(0)b̃0 = 0.

Hence, we conclude that 〈b̃0,Λ′
µ(0)b0〉 = 0, and the first

term of (23) is estimated as

〈b̃(λ),Λ′
µ(0)b0〉 = O(λ1−y). (27)
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The second term of (23) is also estimated in the same
ordering as

λ〈b̃,Λ′′
µ(0)b0 + Λ′

µ(0)b1〉 = O(λ1−y), (28)

and the remaining terms are higher than O(λ1−y). Con-
sequently, to satisfy the normalization condition (23), the

exponent y should be unity and b̃ = O(1/λ).

In order to show that b̃ is the unique source of diver-
gence in the a2(λ) term, we have to check two cases which
may give an extra diverging factor 1/λ in the integrand
of a2(λ) (see (20)): m = 0 and m + n = 0. It is easy
to find that the contribution from the former vanishes.
Expanding a2(λ), we find that the contribution from the
latter is canceled out at leading order between ±m, and
the integral gives a finite value. Therefore, we conclude
that a2(λ) is of order 1/λ in the limit λ → 0+.

III. AN EXPLICIT EXAMPLE: COSINE
POTENTIAL (HMF MODEL)

The previous computations, for a generic 1D potential,
are a bit abstract, and complicated enough already at or-
der A2. In order to perform higher order computations,
and to prepare for precise numerical tests, we special-
ize in this section to a particular interaction potential
v(q) = − cos q, with q ∈ [0, 2π[ and periodic boundary
conditions; this model is sometimes called the Hamilto-
nian mean field (HMF) model [22, 23]. All computations
then become more explicit, which will be useful to an-
alyze higher orders, see Sec.III B. In addition, we can
also make use in this context of the ”rearrangement” ap-
proach described in [18]: this will provide an alternative
analytical approach to test the results, see Sec.III C.

A. Cosine potential: computation at order A2

The mean-field potential created by a phase space dis-
tribution f is in this case VMF [f ](q) = −Mx cos q −
My sin q with

M = Mx + iMy =

∫∫
f(q, p)eiq dpdq.

M is usually called the ”magnetization”. We choose Mµ,
the magnetization of fµ, to be real, and assume a sym-
metric initial condition, such that My(t) = 0 for all t
(test simulations with My(0) 6= 0 -not shown- showed a
similar behavior). We also assume Mµ 6= 0, that is fµ
non homogeneous. The one particle dynamics in VMF

is a simple pendulum dynamics, obviously integrable; we
introduce the associated action-angle variables (J, θ).
The biorthogonal functions in the expansion of the po-

tential are {cos q, sin q} and the size of matrix Λµ(λ) is

0
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FIG. 1: (Color online) Frequency Ω as a function of the
action J in the HMF model. The action is Js at the sepa-
ratrix (see the upper-left inset representing the phase space
(q, p)), where Js is different if the separatrix is approached
from below or from above [24]. Ω goes to Ω0 in the limit
J → 0+. The lower-right inset shows the logarithmic diver-
gence of 1/Ω around the separatrix action Js for both inside
(red solid upper line) and outside (blue broken lower line).

2 accordingly. The matrix Λ(λ) is diagonal: Λµ(λ) =
diag(Λc

µ(λ),Λ
s
µ(λ)) [24], where

Λc
µ(λ) = 1 + 2π

∑

m 6=0

∫
imF ′

µ(J)|cm(J)|2
λ+ imΩ(J)

dJ (29)

Λs
µ(λ) = 1 + 2π

∑

m 6=0

∫
imF ′

µ(J)|sm(J)|2
λ+ imΩ(J)

dJ (30)

and

cm(J) =
1

2π

∫ 2π

0

cos q(θ, J)e−imθdθ, (31)

sm(J) =
1

2π

∫ 2π

0

sin q(θ, J)e−imθdθ. (32)

The spectrum function satisfies Λs
µ(0) = 0 [25], which

corresponds to the Goldstone mode. The critical point
µc is, therefore, determined by the other part and the
root of the equation Λc

µ(λ) = 0 tends to 0+ in the limit
µ → µc. Hereafter we consider the cosine part Λc

µ only,
and denote it by Λµ for simplicity.
In the above setting the eigenfunctions are

Ψλ =
∑

m∈Z

imF ′
µ(J)cm(J)

λ+ imΩ(J)
eimθ (33)

Ψ̃λ = − 1

Λ′
µ(λ)

∗

∑

m∈Z

cm(J)

λ− imΩ(J)
eimθ. (34)

It is easy to see that Λ′
µ(λ) ∼ Cλ for µ → µc, inducing a

divergence in Ψ̃λ. The possibility of resonances is readily
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seen on Eqs.(33) and (34): they correspond to actions
J such that λ ± imΩ(J) = 0. Since we have assumed
λ ∈ R, this can happen only at the separatrix J = Js,
where Ω(Js) = 0 (see Fig.1). The divergence is very weak,
Ω(J)−1 = O(ln |J − Js|), thus resonances are strongly

suppressed since the number of particles around J = Js
is negligible. On the other hand, for a complex λ strong
resonances are possible, a priori similar to those occurring
in the homogeneous case.
For the cosine potential (HMF model), the above ex-

pression (20) for a2(λ) simplifies a little bit:

a2(λ) =
−2π

Λ′
µ(λ)

∫ ∑

m,n∈Z

c∗m+nϕm,n(J)

λ+ i(m+ n)Ω
dJ (35)

where Λµ(λ) is given by (29), and

ϕm,n(J) = m

[
n

∂

∂J

(
F ′
µcm

λ+ imΩ

)
cn −m

F ′
µcm

λ+ imΩ
c′n

]
.

(36)

It is straightforward to see that a2(λ) is of order 1/λ in
the limit λ → 0+ due to the divergent factor 1/Λ′

µ(λ).
Some details on how to compute numerically with a good
accuracy the function Λµ and its roots are given in the
appendix.

B. Computations at higher orders

We explain here how to compute the higher order
terms. While the structure is standard, the effective com-
putations are intricate. The first paragraph is valid for
a general potential, but in order to explicitly work out
the order of magnitude of a3, we restrict to the cosine
potential. We then show that a3 ∼ C/λ3, as λ → 0+.

1. Structure of the computation for a general potential

Let us parameterize the unstable manifold of fµ as

g =
∑

k≥1

SkA
k, S1 = Ψλ. (37)

Since the nonlinear part N [g] of the Vlasov equation,
∂tg = Lµg +N [g], is bilinear, we write it as

N [g] = B(g, g) , with B(g, h) = ∂Jg∂θV [g]− ∂θg∂JV [g].

Recalling that the reduced dynamics on the unstable
manifold is

Ȧ =
∑

k≥1

akA
k, a1 = λ, (38)

our goal is to provide a formal expression for ak. This
requires computing at the same time the Sk’s. We write

the time evolution equation for g in two ways:

∂tg =
∑

k≥1

∑

l≥1

Ak+l−1kalSk

=
∑

k≥1

AkLµSk +
∑

k≥1

∑

l≥1

Ak+lB(Sk, Sl),
(39)

where we have used (38). Picking up the terms order by
order, we have for any k

(ka1 − Lµ)Sk =

k−1∑

l=1

[B(Sk−l, Sl)− (k − l)al+1Sk−l] .

(40)
This equation for k = 1 is simply LµΨλ = λΨλ, and we
focus on k ≥ 2.
We now project these equations onto span{Ψλ} and

span{Ψλ}⊥; we note the corresponding projection oper-
ators Π and Π⊥ = I − Π, where I is the identity. The
projection operators work as

(Π ◦ Lµ)Ψλ = λΨλ, (Π⊥ ◦ Lµ)Ψλ = 0,

(Π ◦ Lµ)Sk = 0, (Π⊥ ◦ Lµ)Sk = LµSk, k ≥ 2.
(41)

The projection operator Π induces

akΨλ =

k−1∑

l=1

Π ◦B(Sk−l, Sl), (42)

and Π⊥ yields

(kλ−Lµ)Sk =

k−1∑

l=1

Π⊥ ◦B(Sk−l, Sl)−
k−2∑

l=1

(k− l)al+1Sk−l.

(43)
Equation (42) determines ak from Sl, and (43) Sk from
Sl and al with l ∈ {1, · · · , k − 1}.

2. Cosine potential - Order of magnitude of a3

We now specialize to the cosine potential and focus on
the third order coefficient a3.
Calling Gk the r.h.s. of Eq.(43), we have

Sk = R(kλ) Gk, (44)

where R(z) = (z − Lµ)
−1 is the resolvent of Lµ. Our

first task is to determine the λ dependence of R(kλ) Gk.
Let us then consider the equation

(z − Lµ)X = G ,

and solve for X(θ, J). Denoting the m-th Fourier compo-

nent of X in θ as X̂m, we find after some computations,
for all m ∈ Z:

X̂m =
Ĝm

z + imΩ(J)
− C(z)

imcmF ′
µ(J)

z + imΩ(J)
(45)
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where

C(z) =
2π

∑
l

∫ Ĝlc
∗

l

z+ilΩ(J′)dJ
′

Λµ(z)
. (46)

Taking z = 2λ in (45), we see that Λµ(2λ)
−1 introduces

a 1/λ2 divergence, and that the l = 0 term in the sum

yields an extra 1/λ divergence, unless Ĝl=0 = 0. Thus,
the C factor (46) gives the leading singularity.
Now, recalling (43), we have to apply the resolvent to

G = Π⊥B(Ψλ,Ψλ). Using the definition of a2, we have

S2 = R(2λ) B(Ψλ,Ψλ)− a2R(2λ) Ψλ. (47)

We first note that ̂B(Ψλ,Ψλ)m=0 = 0 (B contains
two terms, each containing a derivative with respect to
θ; hence the zeroth Fourier mode vanishes) and that

Ψ̂λ,m=0 = 0. Hence the possible divergence related to
l = 0 in (45) does not exist, and the resolvent introduces
only a 1/λ2 divergence. We conclude that in the r.h.s.
of (47), the first term is O(λ−2). The second is a priori
O(λ−3), since a2 ∝ 1/λ, but we show now it is actually

also O(λ−2). The C factor (46) for ̂(R(2λ)Ψλ)m is

C =
2π

∑
m

∫ Ψ̂mc∗
m

2λ+imΩ(J)dJ

Λµ(2λ)

=
2π

Λµ(2λ)

∑

m

∫
im

F ′
µ(J)|cm|2

(λ+ imΩ)(2λ+ imΩ(J))
dJ

=
2π

Λµ(2λ)
6λ

∑

m>0

∫
m2

F ′
µ(J)|cm|2

|λ+ imΩ|2|2λ+ imΩ|2dJ

∼ 3

2

Λ′
µ(λ)

Λµ(2λ)
= O(1/λ)

where the last line is for λ → 0+. Hence, the second term
in the r.h.s. of (47) is O(λ−2), and so is S2. From (42)

a3Ψλ = Π ◦ [B(S2,Ψλ) +B(Ψλ, S2)] , (48)

where the r.h.s. is Π applied to a O(λ−2). Now, the pro-
jection Π contains a diverging 1/λ factor, coming from

the normalization factor 1/Λ′
µ(λ), needed in Ψ̃λ to en-

sure that 〈Ψ̃λ,Ψλ〉 = 1. Hence, except for a restricted

set of functions ϕ such that 〈Ψ̃λ, ϕ〉 = O(1), we have
(for ϕ independent of λ): Πϕ ∝ 1

λ . The exceptional ϕ
such that the projection Π does not introduce a diverg-
ing 1/λ factor lie close to the kernels of Π and Π⊥ (the
latter is just Span(Ψλ)). With this in mind, it is not
difficult to conclude that a3 ∝ 1/λ3. This is the same
divergence strength as the one which appears in the ho-
mogeneous case [26], although the mechanism inducing
the divergence is different.

C. Rearrangement formula for the cosine potential

The rearrangement formula is a powerful tool to pre-
dict the asymptotic stationary state fA

µ from a given ini-

tial state fµ. We show here that it allows to recover some
of the above results, following a very different route.
The main result from the rearrangement formula is,

roughly speaking,

fA
µ = 〈fµ〉A , (49)

where the symbol 〈·〉A represents the average over angle
variable at fixed action, angle and action being associated
with the asymptotic HamiltonianHA

µ = H [fA
µ ] whose po-

tential part is determined self-consistently [18]. We show
that this formula predicts |MA

µ −Mµ| = O(λ2), whereMµ

and MA
µ are magnetizations in fµ and fA

µ respectively:
this is consistent with the unstable manifold analysis.
We assume that fµ = Fµ(Hµ). The average 〈·〉A

can be removed when applied to any function of energy:〈
ϕ(HA

µ )
〉
A
= ϕ(HA

µ ) by the definition [18]. Thus, we can

expand 〈fµ〉A with respect to small δH = HA
µ −Hµ, and

have

fA
µ = fµ + F ′

µ(Hµ)δH − F ′
µ(H

A
µ ) 〈δH〉A + · · · . (50)

Adding and subtracting F ′(Hµ) 〈δH〉I where the average
〈·〉I is taken over angle variable associated with Hµ, mul-
tiplying by cos q and integrating over (q, p), we obtain a
self-consistent equation for δM = MA

µ −Mµ:

Λµ(0)δM +N (δM) = 0, (51)

where N (δM) is of higher order and we used the
Parseval’s equality [27] to derive the coefficient Λµ(0).
Straightforward computations give

N (δM) =

{
O((δM)3/2) (Mµ = 0)
O((δM)2) (Mµ 6= 0)

(52)

where the homogeneous case is rather singular [28], and
the leading nonzero solution to (51) is

δM =

{
O(Λµ(0)

2) (Mµ = 0)
O(Λµ(0)) (Mµ 6= 0).

(53)

The relation between Λµ(0) and the instability rate λ is
obtained by recalling that λ satisfies Λµ(λ) = 0 and ex-
panding Λµ(λ) with respect to λ. This expansion implies

Λµ(0) =

{
O(λ) (Λ′

µ(0) 6= 0)
O(λ2) (Λ′

µ(0) = 0 and Λ′′
µ(0) 6= 0)

(54)

and the former and the latter correspond to the homoge-
neous and non homogeneous cases respectively. Sum-
marizing, the rearrangement formula gives the scaling
δM = O(λ2) for both homogeneous and non homoge-
neous cases, although the mechanisms for these scalings
are different in each case, as already found in the un-
stable manifold reduction. We remark that, in the non
homogeneous case, the leading three terms of (51) gives
two nonzero solutions of order O(λ2) and O(1), whose
stability is not clear by the rearrangement formula only.
The latter solution is a priori out of range of the method;
nevertheless, later we will numerically observe that one
direction of perturbation drives the system to the O(λ2)
state, and the other direction to O(1).
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IV. DIRECT NUMERICAL SIMULATIONS

Our analytical description of the bifurcation can be ac-
curately tested in the HMF case. The time-evolved distri-
bution function is obtained via a GPU parallel implemen-
tation of a semi-Lagrangian scheme for the Vlasov HMF
equation with periodic boundary conditions [29]. We use
a 2n × 2n grid in position momentum phase space trun-
cated at |p| = 2 with n up to 12; the time step is usually
10−2. We use two families of reference stationary states

F 0
µ(E) = N−1

F /[1 + eβ(E−µ)], G0
µ(E) = N−1

G E2e−µE ,
(55)

with the one-particle energy E(q, p) = p2/2 + Mµ(1 −
cos(q)), where the magnetization Mµ has to be com-
puted self-consistently, and NF and NG are the nor-
malization factors. Fig.2 presents Mµ and its bifurca-
tions, for the family F 0

µ . For both families, a real posi-

tive eigenvalue appears at a critical value of µ: for F 0
µ ,

this is at point a, see Fig.2. The initial perturbation is
ǫT (q, p) = ǫ cos(q) exp(−βp2/2). Note that this is not
proportional to the unstable eigenvector Ψλ: this allows
us to test the robustness of our unstable manifold analy-
sis with respect to the initial condition. For all simulation
results presented in Fig.3, the size of the perturbation ǫ
was chosen small enough such that the saturated solution
reached for ǫ > 0 does not depend on ǫ. On the other
hand, the smaller ǫ, the more accurate computations are
required to avoid numerical errors. In particular, we have
observed that numerical errors may drive the system far
away from the reference stationary solution, following a
dynamics similar to the one with ǫ < 0. In such cases, we
have used a finer phase space grid: GPU computational
power was crucial to reach very fine grids. For example
the initial Fermi distribution F 0

µ was very sensitive to

numerical errors and to ǫ: we took ǫ = 1.8 · 10−6 with
a 4096 × 4096 grid; for G0

µ distribution, which is much

smoother, ǫ = 10−5 and a 1024× 1024 grid was enough
(except for the point corresponding to λ = 0.032 where
more precision was needed, and we took ǫ = 3 · 10−6).

Typical evolutions for the order parameter M(t) are
shown in Fig.3 (insets), for positive and negative ǫ. The
asymmetry is clear: for one perturbation the change in
δM = M(t)−Mµ remains small, for the other it is O(1).
In the case where δM remains small, we compute its
saturated value by averaging the small oscillations; the
result is plotted as a function of λ on Fig.3: the δM ∝ λ2

behavior is clear, for both families. The fact that numer-
ical simulations are able to reach this stationary state
suggests that it is a genuine stationary state, indeed sta-
ble with respect to the whole dynamics, and not only on
the unstable manifold. However, longer simulations, or
with smaller grid sizes (not shown), indicate it is also
easily destabilized by numerical noise. We conclude that
the O(λ2) state is thus probably close to the instability

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

M

µ

a

l

FIG. 2: (Color online) Phase diagram of the Fermi distribu-
tion F 0

µ with β = 40. Dotted lines correspond to unstable
stationary solutions and solid lines to stable ones. We are in-
terested in this article in the neighborhood of point a, where a
branch of stable inhomogeneous Mµ 6= 0 stationary solutions
becomes unstable. At point l, a branch of stable homoge-
neous stationary solutions (Mµ = 0, red solid line) becomes
unstable; we do not consider this bifurcation in this article.

threshold. Notice that for the initial unstable reference
state |Λµ(0)| = O(λ2) is very small; hence the very close
nearby stationary state with δM ∝ λ2 may have a differ-
ent stability, although (in)stability of non homogeneous
stationary states is rather robust comparing with the ho-
mogeneous case (see [30] for a discussion).

We provide as Supplementary Material 3 videos, in or-
der to better illustrate the phase space dynamics. The
video ”Fermi eps +.mp4” shows the time evolution of the
distribution function in phase space with initial condi-
tion F 0

µ(E(q, p)) + ǫT (q, p), for ǫ = +1.8 · 10−6, β = 40,
(Mµ = 0.328, µ = 0.658) (it corresponds to the dashed
blue curve in the upper inset of Fig.3) from t = 0 to
t = 600. Since the system reaches a new stationary
state close to the original one, we observe almost no
change in the distribution function. It is important to
notice however that this picture is very different from
that of the saturation of an instability over an homoge-
neous background: in that case, resonances would create
small ”cat’s eyes” structures, which do not appear here.
To better appreciate the dynamics in this case, we also
provide the video ”Fermi eps + diff.mp4”, which is the
same as the previous one, except that the reference state
F 0
µ has been substracted; hence the evolution of the per-

turbation is more clearly shown.

The video ”Fermi eps -.mp4” shows the time evolution
of the distribution function with the same parameter val-
ues except that ǫ = −1.8 · 10−6 (it corresponds to the
green curve in the upper inset of Fig.3). This time the
distribution changes completely its shape and seems to
approach a periodic solution, far away from the original
stationary distribution. In all simulations the relative
error between the total energy of the system at a given
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FIG. 3: (Color online) 〈δM〉 (λ) for F 0
µ (circles) and G0

µ

(crosses) with associated quadratic fit; β = 40. For each func-
tion we show two runs of Mx(t) = M(t) (here My(t) = 0) with
positive and negative ǫ. 〈δM〉 in the main diagram is com-
puted as a long time average for ǫ > 0. For F 0

µ , |ǫ| = 1.8·10−6 ;
for G0

µ, |ǫ| = 10−5, except for λ = 0.032 where |ǫ| = 3 · 10−6.
Note that the reference stationary states F 0

µ follow the curve
from point a towards point l on Fig.2. Along this curve, λ
starts from 0 at point a, then grows and reaches an upper
limit, about 0.15, before decreasing and reaching 0 again at
point l. This is why two values of µ may correspond to the
same value of λ (but different values of 〈δM〉), as can be seen
around λ = 0.15.

time and the total initial energy is at most of the order
of 10−7.

V. CONCLUSION

To summarize, we have elucidated for one-dimensional
Vlasov equations the generic dynamics of a non oscillat-
ing instability of a non homogeneous steady state. We
have shown in particular: i) due to the absence of res-
onances, the physical picture is very different from the
homogeneous case; ii) a striking asymmetry: in one di-
rection on the unstable manifold, the instability quickly
saturates, and the system reaches a nearby stationary
state, in the other direction the instability does not sat-
urate, and the dynamics leaves the perturbative regime;
iii) for an instability rate λ, the nearby stationary state is
at distance O(λ2) from the original stationary state. Di-
rect numerical simulations of the Vlasov equation with a
cosine potential have confirmed these findings, and fur-
thermore suggested that this phenomenology may have
relevance for initial conditions that are not on the unsta-
ble manifold.
These results are generic for 1D Vlasov equations. It

will be of course important to assess if they can be
extended to two- and three-dimensional systems. The

structure of the reduced equation on the unstable man-
ifold, which underlies the asymmetric behavior, should
be valid in any dimension. However, the crucial physical
ingredient underlying our detailed computations leading
to the O(λ2) scaling is the absence (or the weak effect) of
resonance between the growing mode and the particles’
dynamics. This has to be carefully analyzed in higher
dimensions, and is left for a future study. Let us note
that the findings of [12] regarding the nonlinear evolu-
tion of the Radial Orbit Instability are in agreement with
this picture: they start from a weakly unstable spheri-
cal state; close to this reference state, they find an ax-
isymmetric weakly oblate stationary state; at finite dis-
tance from the reference state (outside the perturbative
regime), they find a stable prolate stationary state. This
is consistent with the asymmetric behavior we predict
on the unstable manifold. An open question regards the
stability of the new weakly oblate stationary state: in
our numerical examples, it seems stable, but very close
to threshold. In [12] they claim it is unstable, but since
their numerical simulations are much less precise, this
could be a numerical artefact.
Finally, the possibility of an infinite dimensional re-

duced dynamics, as in [11], remains open. We have also
restricted ourselves in this article to a real unstable eigen-
value. It is obviously worthwhile to investigate the bifur-
cation with a complex pair of eigenvalues. Resonances
should appear in this case, similar to those in the homo-
geneous case, but with a different symmetry: new fea-
tures are thus expected.
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VI. APPENDIX: COMPUTING THE
FUNCTION Λµ(λ) AND ITS ROOTS

Testing the predicted scaling A∞ ∝ λ2, as done in
Sec.IV, requires computing λ with a good accuracy. We
present our method in this appendix. In order to com-
pute the eigenvalue λ associated with a given initial dis-
tribution fµ(q, p) = Fµ(J), one has to find a positive root
of the dispersion function

Λµ(λ) = 1 + 2π
∑

m 6=0

∫
imF ′

µ(J)|cm(J)|2
λ+ imΩ(J)

dJ. (56)

The two main numerical obstacles are to compute effi-
ciently the functions cm(J), and the infinite sum in m.
Fourier expansions of sn2 (sn is the sine Jacobi elliptic
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function) are known [31], and can be used with [27] to
obtain the following expressions:

c0(k) =






2E(k)

K(k)
− 1, k < 1

2k2E(1/k)

K(1/k)
+ 1− 2k2, k > 1

(57)

and for m 6= 0





c2m(k) =
2π2

K(k)2
mq(k)m

1− q(k)2m
, k < 1

c2m+1(k) = 0, k < 1

cm(k) =
2π2k2

K(1/k)2
mq(1/k)m

1− q(1/k)2m
, k > 1

(58)

where K(k) and E(k) are the elliptic functions
of first and second kind respectively and q(k) =

exp
(
−πK(

√
1− k2)/K(k)

)
. Note that one may also use

the sn×dn and sn×cn Fourier expansions to obtain sim-
ilar expressions for the Fourier transform of sin q with
respect to θ. These explicit expressions allow efficient
computations of the cm and help in choosing a right trun-
cation for them summation. A standard numerical solver
then provides precise values of λ.
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