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Zeta functions and monodromy for surfaces

that are general for a toric idealistic cluster

Ann Lemahieu and Willem Veys∗

Abstract.— In this article we consider surfaces that are general with respect to a 3-

dimensional toric idealistic cluster. In particular, this means that blowing up a toric con-

stellation provides an embedded resolution of singularities for these surfaces. First we give a

formula for the topological zeta function directly in terms of the cluster. Then we study the

eigenvalues of monodromy. In particular, we derive a useful criterion to be an eigenvalue. In

a third part we prove the monodromy and the holomorphy conjecture for these surfaces.
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1. Introduction

In [We65], Weil introduced some zeta functions Z(K, f) that are integrals over
a p-adic field K and that are associated to a polynomial f(x) ∈ K[x]. Using
embedded resolution of singularities, Igusa showed that these zeta functions are
rational and he studied their poles (see [Ig75] and [Ig78]). One can define the
analogous integrals over K = R or C. Also these zeta functions are rational
(see for example [At70] and [BeGe69]) and it is known that their poles are
contained in the set of roots - and roots shifted by a negative integer - of the
Bernstein polynomial bf . By Malgrange ([Ma83]), if α is a root of bf , then e2πiα
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is an eigenvalue of the local monodromy of f at some point of f−1(0). So when
K = R or C, then the poles of the zeta function induce eigenvalues of the local
monodromy. This result was a motivation to study this relation at the p-adic
side. The study of concrete examples made it natural to propose the following
conjecture.

Monodromy conjecture. ([Ig88]) Let F ⊂ C be a number field and f ∈ F [x].
For almost all p-adic completions K of F , if s0 is a pole of Z(K, f), then
e2πiRe(s0) is an eigenvalue of the local monodromy of f at some point of the
hypersurface f = 0.

Loeser verified this conjecture for plane curves (see [L88]). He also gave a
proof for a class of polynomials in higher dimensions; the polynomial should be
nondegenerate with respect to its Newton polyhedron and should satify some
numerical conditions ([L90] and Section 3).

When Denef and Loeser introduced the topological zeta function in 1992
in [De,L92], an analogous version of the monodromy conjecture arose. This
monodromy conjecture relates the poles of the topological zeta function Ztop,f
associated to a polynomial function or a germ of a holomorphic function f with
the eigenvalues of monodromy of the hypersurface f = 0.

Monodromy conjecture. If s0 is a pole of Ztop,f , then e2πis0 is an eigen-
value of the local monodromy of f at some point of the hypersurface f = 0.

By the original definition of the topological zeta function, it follows that the
monodromy conjecture for the Igusa zeta function implies the monodromy con-
jecture for the topological zeta function. Artal Bartolo, Cassou-Noguès, Luengo
and Melle Hernández proved the monodromy conjecture for some surface sin-
gularities, such as the superisolated ones (see [A-B,C-N,Lu,M-H02]), and for
quasi-ordinary polynomials in [A-B,C-N,Lu,M-H06]. The second author pro-
vided results in [Ve93B], [Ve95] and [Ve06], and together with Rodrigues in
[RVe03]. In [LeVe07], the authors consider the same context as in this paper
but they had to impose a restricting condition on the surfaces. Via geometri-
cal arguments they showed that the monodromy conjecture holds for candidate
poles of the topological zeta function of order 1 that are poles.

There are more conjectures relating the poles of the topological zeta function
(Igusa zeta function) and the eigenvalues of monodromy. There exist the ratio-
nal functions Z(r)

top,f (r ∈ Z>0) that are variants of the topological zeta function
and that play a role in the holomorphy conjecture, which was stated by Denef.

Holomorphy conjecture. ([De91]) If r ∈ Z>0 does not divide the order
of any eigenvalue of the local monodromy of f at any point of f−1{0}, then
Z

(r)
top,f is holomorphic on C.

Originally the holomorphy conjecture was formulated for the Igusa zeta func-
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tion. We refer to [De91] for the inspiration. Denef showed that the conjecture
is true for the relative invariants of a few prehomogeneous vector spaces. The
second author proved the conjecture for plane curves (see [Ve93A]) and together
with Rodrigues for homogeneous polynomials (see [RVe01]).

Although the monodromy conjecture and/or holomorphy conjecture has been
proven for these kinds of singularities, one did not get a better understanding
of the deep reason why the conjectures hold for them. Until now, the attempts
are thus restricted to prove the conjecture for classes of singularities.

This article deals with the class of surfaces that are general with respect to
a 3-dimensional toric idealistic cluster. This implies that we work with surfaces
for which there exists an embedded resolution of singularities by blowing up in
points that are orbits for the action of the torus, i.e. in a toric constellation.
We refer to Section 2 for a recap about clusters and in Section 3 we explain the
objects that play the main role in the conjecture. In Section 4 we show how the
topological zeta function can be computed directly in terms of the toric cluster
for the surfaces that we consider. We use the embedded resolution provided by
the blowing up of the constellation. Let π : Z → C3 be that resolution of such
a surface f = 0 and let Ej , j ∈ S, be the irreducible components obtained by
this resolution of which E1, · · · , Er are the exceptional ones. We will denote
E◦j := Ej \ (∪i∈S\{j}Ei), for j ∈ S. We write Nj and νj−1 for the multiplicities
of Ej in the divisor on Z of f ◦π and π∗(dx∧dy∧dz), respectively. The numbers
−νj/Nj , j ∈ S, form a complete list of candidate poles of Ztop,f .

We compute in particular the Euler characteristic of the spaces E◦j , 1 ≤ j ≤
r, in terms of the cluster. They show up in A’Campo’s formula for the eigenval-
ues of monodromy and they are very relevant for the monodromy conjecture. In
a fifth section we analyse these Euler characteristics. Our goal is to determine
when these numbers are less than or equal to 0. A geometric argument will
show that we can reduce this job to the investigation of a finite number of fam-
ilies of constellations. We complete Section 5 with combinatorial preparations.
These make it possible to determine the sign of the Euler characteristics that
we are looking for. We carry this out in Section 6. We then prove the following
result.

Theorem. If χ(E◦j ) > 0, then e
−2πi

νj
Nj is an eigenvalue of monodromy of

f .

Using this result, we prove in Section 7 the monodromy conjecture for candidate
poles of order 1 that are poles and in Section 8 the monodromy conjecture for
candidate poles of order 2 or 3 that are poles. Hence, we obtain:

Theorem. Let f be a germ of a polynomial map that is general with re-
spect to a 3-dimensional toric idealistic cluster. If s0 is a pole of Ztop,f , then
e2πis0 is an eigenvalue of monodromy of f at some point of the hypersurface
f = 0.
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In Section 9 we prove the holomorphy conjecture for these surfaces.

Theorem. Let f be a germ of a polynomial map that is general with re-
spect to a 3-dimensional toric idealistic cluster. If r ∈ Z>0 does not divide the
order of any eigenvalue of the local monodromy of f at any point of f = 0, then
Z

(r)
top,f is holomorphic on C.

2. Toric clusters

In this section we introduce the terminology of infinitely near points, (toric)
clusters etc. according to [C,G-S,L-J96]. We would like to refer to [C,G-S,L-J96]
for some historical notes on clusters. See also [Ca90], [Ca00], [En,Ch15], [Li69],
[Li78], [Li94] and [Z38] for more details on the theory of clusters.

2.1. Clusters.— Let X be a nonsingular variety of dimension d ≥ 2 and let
Z be a variety obtained from X by a finite succession of point blowing-ups. A
point Q ∈ Z is said to be infinitely near to a point P ∈ X if P is in the image of
Q; we write Q ≥ P . A constellation is a finite sequence C := {Q1, Q2, · · · , Qr}
of infinitely near points of X with Q1 ∈ X =: X0 and each Qj+1 is a point on
the variety Xj obtained by blowing up Qj in Xj−1, j ∈ {1, · · · , r − 1}. The
variety X(C) := Xr obtained by blowing up Qr in Xr−1 is called the sky.

The relation ‘≥’ gives rise to a partial ordering on the points of a constella-
tion. In the case that they are totally ordered, so Qr ≥ · · · ≥ Q1, the constella-
tion C is called a chain. For everyQj in C, the subsequence Cj := {Qi | Qj ≥ Qi}
of C is a chain. The integer l(Qj) := #Cj − 1 is called the level of Qj . In par-
ticular Q1 has level 0. If no other point of C has level 0 then Q1 is called
the origin of C. We will always work with constellations that have an origin
and we will also denote the origin of the constellation by o. If Qj ≥ Qi and
l(Qj) = l(Qi) + 1, we will write Qj � Qi or j � i.

For each Qi ∈ C, denote the exceptional divisor of the blowing-up in Qi
by Ei, as well as its strict transform at some intermediate stage (including the
final stage) Xj , i ≤ j ≤ r. The total transform at some intermediate stage
(including the final stage) will be denoted by E∗i . If Qj ∈ Ei, then one says
that Qj is proximate to Qi. This will be denoted as Qj → Qi or j → i. As
Ei = E∗i −

∑
j→iE

∗
j , it follows that also {E∗1 , · · · , E∗r} is a basis of the group of

divisors with exceptional support ⊕rj=1ZEj .
A pair A := (C,m) consisting of a constellation C := {Q1, · · · , Qr} and

a sequence m := (m1, · · · ,mr) of nonnegative integers is called a cluster.
One calls mj the weight or multiplicity of Qj in the cluster and we write
D(A) :=

∑r
j=1mjE

∗
j . Introducing the numbers vj , 1 ≤ j ≤ r, by setting

mj := vj −
∑

j→i vi, allows us to write also D(A) =
∑r

j=1 vjEj .
The idea of clusters is to express that a system of hypersurfaces is passing

through the points of the constellation with (at least) the given multiplicities.
Blowing up a point Qi ∈ C induces a discrete valuation νi on C(X) \ {0}: for
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g ∈ C(X) \ {0}, the value νi(g) is the order of the pullback of g (at the stage
Xi) along Ei. To a cluster we can then associate the (complete) ideal

I(v1, · · · , vr) = {g ∈ OX,o | νj(g) ≥ vj , 1 ≤ j ≤ r} ∪ {0}.

If we want that these ideals principalise by blowing up the points of the con-
stellation, we require the ideals to be finitely supported. Formally, an ideal I
in OX,o is called finitely supported if I is primary for the maximal ideal m of
OX,o - so supported at the closed point - and if there exists a constellation C of
infinitely near points of X such that IOX(C) is an invertible sheaf.

On the other hand, given a finitely supported ideal I, one can associate
a cluster to it. Let CI =: {Q1, · · · , Qr} be the constellation of base points
of I, i.e. the minimal constellation C such that IOX(C) is an invertible sheaf.
Let mj be the order of the point Qj , 1 ≤ j ≤ r in the strict transform of the
ideal I in OXj ,Qj . Then the ideal sheaf IOX(CI) is associated to −D(AI) :=
−

∑r
j=1mjE

∗
j .

If C is a constellation with origin at Q1, the cluster A := (C,m) is called
idealistic if there exists a finitely supported ideal I in OX,Q1 such that IOX(C)
is the ideal sheaf associated to −D(A). For an idealistic cluster A, Lipman
proved that there exists a unique finitely supported complete ideal IA such
that IAOX(C) = OX(C)(−D(A)), namely that given by the direct image of
OX(C)(−D(A)) in X, see [Li78].

In the next subsection we will illustrate these notions in the context of our
results.

2.2. Toric clusters in C3.— From now on suppose that X is the affine toric
variety C3. Let Q1 be the origin of C3 = X0. A 3-dimensional toric constellation
of infinitely near points with origin Q1 is a constellation C := {Q1, Q2, · · · , Qr}
such that each Qj+1 is a 0-dimensional orbit in the toric variety Xj obtained
by blowing up Qj in Xj−1, 1 ≤ j ≤ r − 1. Blowing up in orbits of smooth va-
rieties corresponds to making star subdivisions of the fan corresponding to the
variety (see for example [O78]). In this way each blowing-up in a 0-dimensional
orbit induces the creation of three cones of dimension 3 and thus of three new
0-dimensional orbits. Hence, the choice of a point Qi in a toric chain is equiva-
lent to the choice of an integer ai ∈ {1, 2, 3}, which determines a 3-dimensional
cone in the fan. A tree with a root such that each vertex has at most three
following adjacent vertices is called a 3-nary tree. The above observation shows
that there is a natural bijection between the set of 3-dimensional toric constel-
lations with origin and the set of finite 3-nary trees with a root, with the edges
labeled with positive integers not greater than 3, such that two edges with the
same source have different labels.

A cluster A := (C,m) is called toric if the constellation C is toric. The
blowing-ups now induce monomial valuations (i.e. valuations determined by
their values on monomials) and the ideal I(v1, · · · , vr) associated to a toric
cluster is thus monomial.
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Suppose d = 3 and C is the constellation pic-
tured at the left. It represents the following res-
olution process: by blowing up in the origin Q1

we get an exceptional variety E1
∼= P2. In E1

there is one point in which we blow up, namely
Q2. The labels indicate in which affine chart the
points of the constellation are created.

We call the affine chart with label 1 that one in which the equation of E1 is
x = 0. In the chart with label 2 one has E1 ↔ y = 0 and in the chart with
label 3 one has E1 ↔ z = 0. The point Q2 is the origin of the affine chart
with label 1. After blowing up in Q2 we get an exceptional variety E2

∼= P2,
where we blow up in the point Q3 that is the origin of chart 1.2. There one has
E2 ↔ y = 0 and (the transform of) E1 ↔ x = 0.

We now point out how the induced valuations ν1, ν2 and ν3 act. For a, b, c ∈ Z≥0,
ν1(xaybzc) = a+ b+ c because the pullback of xaybzc in chart 1 is xa+b+cybzc.
The pullback in chart 1.2 becomes xa+b+cya+2b+2czc and thus ν2(xaybzc) =
a+ 2b+ 2c. Analogously we find ν3(xaybzc) = 2a+ 3b+ 4c. We can represent
these valuations by the following vectors in the lattice N3:

ν1 ↔ (1, 1, 1) ν2 ↔ (1, 2, 2) ν3 ↔ (2, 3, 4).

We have I(v1, v2, v3) = (xaybzc | a + b + c ≥ v1, a + 2b + 2c ≥ v2, 2a + 3b +
4c ≥ v3). To compute such an ideal, one can picture the hyperplanes induced
by the valuations. We compute this ideal for the cluster A := (C,m) with
(m1,m2,m3) = (2, 1, 1). Then (v1, v2, v3) = (2, 3, 6) and one can see from

that I(2, 3, 6) = (x3, y2, z2, xz, x2y, yz). One can verify that this ideal is finitely
supported and that the cluster associated to this ideal is exactly the cluster A.
Hence this cluster is idealistic.

Let us now consider the cluster B consisting of the above constellation and
for which (m1,m2,m3) = (4, 1, 2) or (v1, v2, v3) = (4, 5, 11). Analogously one
finds that I := I(4, 5, 11) is equal to

(x6, y4, z4, xy3, x3y2, x4y, x3z2, x4z, xz3, yz3, y2z2, y3z, xyz2, xy2z, x2yz).

One finds that this ideal is finitely supported but the cluster associated to this
ideal is

r
r
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@
@
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Q2 2

1
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rr Q41Q3 1

32
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From this we can deduce that B is not an idealistic cluster. Indeed, if B was
idealistic, then there would exist a finitely supported complete ideal J such
that JOX(C) = OX(C)(−D(B)) and we also know that J would be included in I.
As I and J are both complete ideals, they should be equal but we mentioned
already that IOX(C) 6= OX(C)(−D(B)).

Finally let us consider the cluster consisting of the constellation C with
(m1,m2,m3) = (2, 2, 2) or (v1, v2, v3) = (2, 4, 8). One can check that

I(2, 4, 8) = (x4, y3, z2, xy2, x3y, x2z, y2z, xyz)

and that this ideal is even not finitely supported. In the same way we can
conclude that this cluster is not idealistic. �

2.3. Properties.— In this subsection we recall some properties about clusters,
in particular about toric clusters.

(1) In the case of toric clusters, there exists a combinatorial characterisa-
tion for the idealistic clusters. Fix a point Qi in a toric 3-dimensional con-
stellation C and some integers a, b such that a, b ∈ {1, 2, 3} and a 6= b. For
s, t ∈ Z≥0, let Qi(as, bt) be the terminal point of the chain with origin Qi
coded by (a, · · · , a, b, · · · , b) where a appears s times and b appears t times.
If t = 0, it is denoted by Qi(as). The point Qi(as, bt) may not belong to C.
A point Qj ∈ C that is infinitely near to Qi is said to be linearly proximate
to Qi, if Qj = Qi(a, bt), with a, b and t as above. We denote this relation
by Qj � Qi or j � i. Then we have that Qj is linearly proximate to Qi
if and only if there exists a 1-dimensional orbit l in Bi such that Qj belongs
to the strict transform of the closure of l in Ei. This explains the terminol-
ogy. Denote MQi(a, b) :=

∑
t≥0mQi(a,bt). Campillo, Gonzalez-Sprinberg and

Lejeune-Jalabert show the following.

1. A toric cluster A = (C,m) is idealistic if and only if for each point Qi
of the constellation C and for each pair of integers a and b such that
a, b ∈ {1, 2, 3} and a 6= b, the following inequality is satisfied:

MQi(a, b) +MQi(b, a) ≤ mQi .

These inequalities are called the linear proximity inequalities.

2. Let A = (C,m) be a 3-dimensional toric idealistic cluster with associated
divisor D(A) =

∑r
j=1mjE

∗
j =

∑r
j=1 vjEj and let ν1, · · · , νr be the in-

duced discrete valuations. Such a valuation is called Rees for the ideal
I(v) := I(v1, · · · , vr) if it is a valuation induced by an irreducible compo-
nent of the exceptional divisor of the normalised blowing-up BlI(v)X of
I(v). Then

∀Qi ∈ C : m2
i ≥

∑
j→i

m2
j and (1)

νi is Rees for I(v) if and only if m2
i >

∑
j→i

m2
j . (2)
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(2) To a monomial ideal I one can associate a Newton polyhedron NI . It is the
convex hull of m + R3

≥0 as m runs through the set of exponents of monomials
in I. We refer to [Ke,Kn,M,S73] for the proofs of the following properties.

1. The compact facets of NI correspond with the Rees valuations of I.

2. A monomial ideal is complete if and only if it contains every monomial
whose exponent is a point of NI ∩ Z3

≥0.

(3) Campillo, Gonzalez-Sprinberg and Lejeune-Jalabert generate a very inter-
esting set of ‘general’ hypersurfaces in [C,G-S,L-J96]:

Theorem 1 The canonical map from the sky of the constellation of base points
of a finitely supported ideal I to X is an embedded resolution of the subvariety
of (X, o) defined by a general enough element in I.

We will call these ‘general enough’ elements general for I or general for CI . We
will prove the monodromy and holomorphy conjectures for the class of surfaces
that are general for a finitely supported monomial ideal. In particular this
means that our results apply to all surfaces for which there exists an embedded
resolution consisting of toric point blowing ups and for which the corresponding
toric cluster is idealistic. According to Theorem 1 such surfaces in a finitely
supported ideal form an open dense set.

Example 2
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Suppose d = 3 and C is the constellation pic-
tured at the left. It represents the following
resolution process: by blowing up in the origin
Q1 we get an exceptional variety E1

∼= P2. In
E1 there are two points in which we blow up,
namely Q2 and Q3. After blowing up in Q2 we
get an exceptional variety E2

∼= P2, where again
we blow up in two points.

The induced valuations are represented by the following vectors in the lattice
N3:

ν1 ↔ (1, 1, 1) ν2 ↔ (1, 2, 2) ν3 ↔ (2, 2, 1) ν4 ↔ (1, 3, 3) ν5 ↔ (2, 3, 4).

Consider the multiplicities (m1,m2,m3,m4,m5) = (3, 2, 1, 1, 1) for the points of
this constellation, equivalently (v1, v2, v3, v4, v5) = (3, 5, 4, 6, 9). By the linear
proximity inequalities it follows that the cluster A := (C,m) is idealistic. Now
let IA be the ideal generated by the monomials whose exponents are in the
associated Newton polyhedron. We find

IA = (x6, y3, z4, x3y, x2y2, yz2, y2z, x3z, xz2, xyz).

The blowing-up of the constellation gives an embedded resolution for a general
element of IA, such as for example h(x, y, z) := x6 + y3 + z4 + x3y + x2y2 +
yz2 + y2z + x3z + xz2 − xyz. �
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Example 3 Let us consider the non-complete ideal I = (x3, y2, z2, xz, x2y).
This ideal is finitely supported and the associated cluster is the idealistic clus-
ter A from Example 1. Theorem 1 says then that the blowing up of that
constellation gives an embedded resolution for a general element of I, such as
for example x3 + y2 + z2 + xz + x2y. �

(4) We now first recall the notion for a polynomial to be nondegenerate with
respect to its Newton polyhedron. Let f ∈ C[x1, · · · , xd] be a non-constant poly-
nomial vanishing in the origin. Write xk := xk11 · · ·x

kd
d and f :=

∑
k∈Nd ckx

k.
The support of f is supp(f) := {k ∈ Nd | ck 6= 0}. The Newton polyhedron Γ of
f is the convex hull of supp(f)+Rd

≥0. For a face τ of Γ we write fτ :=
∑

k∈τ ckx
k.

A polynomial f is called nondegenerate with respect to Γ if for every compact
face τ of Γ, the polynomials fτ and ∂fτ/∂xi have no common zeroes in (C∗)d,
1 ≤ i ≤ d.

Proposition 2 Every hypersurface that is general with respect to some 3-dimen-
sional toric idealistic cluster is nondegenerate with respect to its Newton poly-
hedron.

Proof. Let A = (C,m) be a toric idealistic cluster such that f is general with
respect to A. Suppose that f is degenerate with respect to N (f).
Let τ be a compact face of N (f) for which there exists a point p ∈ (C∗)3 such
that fτ (p) = ∂fτ/∂x(p) = ∂fτ/∂y(p) = ∂fτ/∂z(p) = 0.
If τ is a facet, then τ corresponds to some exceptional irreducible component
created by the blowing up of the constellation, say to Ei. More specifically, the
strict transform of fτ is equal to E0∩Ei. As p is not an orbit, it follows that there
exists a point in which E0 ∩Ei does not have normal crossings and that is not
an orbit. If the dimension of τ is one and if τ is the intersection of two compact
facets, then analogously we have that there exist two irreducible exceptional
components Ei and Ej such that E0 ∩ Ei ∩ Ej does not have normal crossings
in a point that is not an orbit. Remains the case that τ is the intersection
of a compact facet and a coordinate plane. Suppose that that compact facet
corresponds to Ei and that the coordinate plane is given by {x = 0}. Again
we get that then E0 ∩Ei does not have normal crossings in a point that is not
an orbit. Indeed, if Ei has equation y = 0 in some affine chart, then there is a
point (0, 0, pz) with pz 6= 0 in which there are no normal crossings. �

3. Conjectures

Let f be a complex polynomial in d variables and let π : Z → Cd be an embed-
ded resolution of singularities of f−1{0}. We write Ej , j ∈ S, for the irreducible
components of π−1(f−1{0}) and we denote by Nj and by νj − 1 the multiplic-
ities of Ej in the divisor on Z of f ◦ π and π∗(dx1 ∧ . . . ∧ dxd), respectively.
The couples (νj , Nj), j ∈ S, are called the numerical data of the embedded res-
olution (Z, π). We denote also E◦j := Ej \ (∪i∈S\{j}Ei), for j ∈ S. Let the Ej ,
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j ∈ J := {1, · · · , r} ⊂ S, be the exceptional irreducible components of π−1({0}).

3.1. Monodromy.— We assume that f(b) = 0. Take ε > 0 small enough such
that the open ball Bε with radius ε around b in Cd intersects the fibre f−1(0)
transversally. Then choose ε� η > 0 such that for t in the disc Dη ⊂ C around
the origin, the fibre f−1(t) intersects Bε transversally. Write X := f−1(Dη)∩Bε,
Xt := f−1(t) ∩ Bε for t ∈ Dη and D∗η := Dη \ {0} for the pointed disc. Milnor
showed that f|X\X0

: X \X0 → D∗η is a locally trivial fibration, see [Mil68]. A
fibre Xt of this bundle is called Milnor fibre of f at b. We will denote it by Fb.
Consider the loop γ encircling the origin once counterclockwise. Since f|X\X0

is
a locally trivial fibration, the loop γ lifts to a diffeomorphism h of the Milnor
fibre Fb, which is well determined up to homotopy. In this way γ induces an
automorphism h∗ : H i(Fb,C)→ H i(Fb,C), i ≥ 0, that is called the monodromy
transformation.

The surfaces for which we will prove the monodromy conjecture have exactly
one isolated singularity in the origin. A result of Milnor (see [Mil68]) then says
that H i(F0,C) = 0, for i 6= 0 and i 6= d − 1, and H0(F0,C) = C with trivial
monodromy action. The formula of A’Campo ([A’C75]) describes the charac-
teristic polynomial of the monodromy action on Hd−1(F0,C) in terms of an
embedded resolution of the hypersurface f−1(0).
We may suppose that π is an isomorphism outside the inverse image of the
origin.

Theorem 3 (A’Campo) The characteristic polynomial of the monodromy ac-
tion on Hd−1(F0,C) is equal to[∏r

j=1(1− tNj )χ(E◦j )

1− t

](−1)d−1

.

3.2. Topological zeta function.— In 1992 Denef and Loeser created a new
zeta function which they called the topological zeta function because of the
topological Euler–Poincaré characteristic χ(·) turning up in it. It is associated
to a complex polynomial f with f(0) = 0. If EI := ∩i∈IEi and E◦I := EI \
(∪j /∈IEj), then they introduced it in [De,L92] in the following way.

Definition 4 The local topological zeta function associated to f is the rational
function in one complex variable

Ztop,f (s) :=
∑
I⊂S

χ(E◦I ∩ π−1{0})
∏
i∈I

1
Nis+ νi

.

Denef and Loeser proved that every embedded resolution gives rise to the same
function, so the topological zeta function is a well-defined singularity invari-
ant (see [De,L92]). Once the motivic Igusa zeta function was introduced, they
proved this result alternatively in [De,L98] by showing that this more general
zeta function specialises to the topological one. There exists a global version,
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replacing E◦I ∩ π−1{0} by E◦I .

3.3. Monodromy conjecture.— One calls α an eigenvalue of monodromy of
f at b ∈ f−1{0} if α is an eigenvalue for some h∗ : H i(Fb,C)→ H i(Fb,C).

Conjecture 5 (Monodromy Conjecture) If s0 is a pole of Ztop,f , then e2πis0

is an eigenvalue of monodromy of f at some point of the germ at 0 of the
hypersurface f = 0.

Let f be a polynomial that is general with respect to a 3-dimensional toric
idealistic cluster. Consider the embedded resolution π : Z → C3 of f−1{0} that
corresponds to the blowing up of the constellation. We fix a candidate pole
s0 = −νj/Nj of Ztop,f . If Ej is not an exceptional component, then ν1 = 1
and N1 = 1. As 1 is always an eigenvalue of the local monodromy of f , this
candidate pole does not pose any difficulty. If s0 = −νj/Nj is a candidate pole
of Ztop,f induced by an exceptional component Ej , then we write νj/Nj as a/b
such that a and b are coprime. We define the set Jb := {j ∈ J | b divides Nj}.
It follows from A’Campo’s formula that

e2πis0 is an eigenvalue of monodromy of f at the origin 0
m∑

j∈Jb χ(E◦j ) 6= 0.

In general there can be a lot of cancelations which make that
∑

j∈Jb χ(E◦j ) = 0.
To control this, we will determine when χ(E◦j ) is positive, negative or zero. We
will see that the cases where χ(E◦j ) ≤ 0 are very rare in this context.

3.4. Holomorphy conjecture.— For every r ∈ Z>0, one can define a vari-
ant Z(r)

top,f of the topogical zeta function that is also a rational function in one
complex variable.

Definition 6

Z
(r)
top,f :=

∑
I⊂S

∀i∈I:r|Ni

χ(E◦I ∩ π−1{0})
∏
i∈I

1
Nis+ νi

.

The functions Z(r)
top,f are limits of more general Igusa zeta function associated

to a polynomial and a character (see [De91]). In particular Z(1)
top,f = Ztop,f .

Clearly they are holomorphic on C if and only if they do not have a pole. The
holomorphy conjecture stated by Denef predicts the following relation.

Conjecture 7 (Holomorphy conjecture) If r ∈ Z>0 does not divide the order
of any eigenvalue of monodromy of f , then Z

(r)
top,f is holomorphic on C.

In Section 9 we provide a proof of the holomorphy conjecture for the surfaces
we are studying. Again, the classification of χ(E◦j ) according to the sign will
be the key to solve the conjecture.
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