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In this work we investigate, by means of direct numerical hyperviscous simulations, how rotation
affects the bi-dimensionalization of a turbulent flow. We study a thin layer of fluid, forced by a
two-dimensional forcing, within the framework of the ”split cascade” in which the injected energy
flows both to small scales (generating the direct cascade) and to large scale (to form the inverse
cascade). It is shown that rotation reinforces the inverse cascade at the expense of the direct
one, thus promoting bi-dimensionalization of the flow. This is achieved by a suppression of the
enstrophy production at large scales. Nonetheless, we find that, in the range of rotation rates
investigated, increasing the vertical size of the computational domain causes a reduction of the flux
of the inverse cascade. Our results suggest that, even in rotating flows, the inverse cascade may
eventually disappear when the vertical scale is sufficiently large with respect to the forcing scale.
We also study how the split cascade and confinement influence the breaking of symmetry induced
by rotation.

I. INTRODUCTION

All turbulent processes are characterized by a trans-
fer of kinetic energy among scales. However, depending
on the dimension of the space, completely different phe-
nomenology appear. In three dimensions (3D), energy is
transferred in a direct cascade towards small scales [? ?

], whereas in two dimensions (2D) energy undergoes an
inverse cascade towards large scales [? ? ]. Numerical
simulations have confirmed this picture in both 3D [? ]
and 2D turbulence [? ? ] but they have also shown that
the two processes are not mutual exclusive and the coex-
istence of both a downscale and upscale energy transfer
has been observed [? ? ? ? ? ].

Previous numerical investigations [? ? ] studied the
cross-over between 2D and 3D dynamics by considering
triply-periodic domains where one dimension was increas-
ingly contracted. As the ratio S = Lz/Lf between the
geometrical dimension of the compactified direction, Lz,
and the length scale of the forcing, Lf , decreased below
∼ 0.5, a mixture of 2D and 3D dynamics was observed
with a coexistence of a forward and an inverse energy
cascade.

In a similar way, also rotation favors a two-
dimensionalization of the flow, generally supported by
the Taylor-Proudman theorem [? ]. Experiments of de-
caying turbulence in rotating tanks show the growth of
length scales aligned with the rotation axis, giving evi-
dence that turbulence developing in rotating systems is
highly anisotropic. Both linear [? ? ] and non-linear
[? ? ] mechanisms have been advocated to explain
the observed growth. Numerical simulations of rotating
flows have also indicated a general trend towards two-
dimensionalization [? ? ] and some studies [? ] have
reported a split of the energy cascade into a downscale
and an upscale process. Other studies [? ] have found
that, as the rotation rate Ω increases, the flows exhibit a
dynamics very similar to what is found in a 2D system,

with the vertical velocity behaving as a passive scalar [?
]. Bourouiba & Bartello [? ] reported a strong transfer
of energy from 3D modes to 2D modes at intermediate
rotation rates, whereas at large rotations a decoupling of
the dynamics was observed. The localness of such energy
transfer has been investigated in [? ].

However, it is not obvious how, starting from a 3D
flow fields, the actual two-dimensionalization would oc-
cur. The effect of rotation in a turbulent system has
recently been a matter of debate. In the strongly ro-
tating limit, energy transfer among scales is supposedly
dominated by resonance triad interactions between iner-
tial waves [? ]. Even though such interactions can move
energy towards the 2D plane [? ], triadic resonance can-
not transfer energy into/out of the kz = 0 plane, which
in fact constitutes a closed resonant set. If only inter-
actions among resonant triads are allowed, 2D modes
should thus be dynamically decoupled from 3D modes
[? ? ]. Sometimes, it is advocated that nearly-resonant
interactions [? ], for which the resonance condition is
satisfied only to a certain degree, and higher-order reso-
nance interactions [? ] can explain the transfer of energy
into the kz = 0 plane. However, as the flow tends to-
wards two-dimensionalization, the advective time scale,
ta ∼ U/lh, and the inertial wave time scale, tw ∼ lz/Ωlh,
approach each other and transfer of energy may not only
be determined by resonant triads. Cambon et al. [? ]
suggested that in the framework of wave turbulence the-
ory, two-dimensionalization cannot be achieved for un-
bounded domains, even in the limit of infinite rotations,
and a coupling between 2D and 3D modes always exists.

The interest in three-dimensional dynamics in rotating
turbulence has recently been revived also by experiments
carried out on a large-scale Coriolis platform. Moisy
et al. [? ] have shown that flow fields originating from
grid-generating decaying turbulence remain highly 3D,
even at large rotation rates. Vertical velocity was not be-
having as a passive scalar and its coupling with the large-
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scale flow was suggested to trigger shear instabilities.
Thus, it is not clear whether rotating flows would ap-
proach a 2D-like dynamics and whether 2D modes would
ever dynamically decouple from the 3D flow field.

The effects of rotations are even more complex in the
case in which the flow is confined between two paral-
lel walls perpendicular to the rotation axis. Numerical
simulations have shown reflections of inertial waves on
the walls and a transition to an almost two-dimensional
state[? ]. The wave turbulence regime which develops
in the limit of strong rotation in a flow confined in the
direction of the rotation axis has been recently studied
[? ].

Another remarkable feature of rotating turbulent flows
is the breaking of symmetry between cyclonic and anti-
cyclonic vortices. The predominance of cyclonic vortices
(i.e. those which spin in the same direction of Ω) has
been observed both in experiments [? ? ? ? ? ] and nu-
merical simulations [? ? ? ]. Several explanations have
been proposed to explain this phenomenon. In particu-
lar, it has been shown that the cyclones and anticyclones
have different stability properties [? ] and different prob-
abilities to be generated at finite Rossby number [? ].
Moreover, the correlations between the strain tensor and
the vorticity in isotropic turbulence can be responsible for
the development of a positive skewness of vertical vortic-
ity when the flow is suddenly subjected to rotation [?
]. Interestingly, a similar asymmetry has been observed
also in the tropopause [? ] and in the stratosphere [?
], even though the physical mechanisms acting in the at-
mosphere are more complex than in idealized rotating
turbulence.

Previous works have investigated the dependence of
the asymmetry on intensity of rotation. In particular
it has been shown that the skewness of vertical vorticity
has a non monotonic behavior as a function of the Rossby
number [? ]. The asymmetry disappear both in the limit
of strong and weak rotation and it attain its maximum
for intermediate rotation rates [? ]. On the contrary it is
still unclear how this asymmetry depends on the aspect
ratio S of the flow.

In this paper we investigate how the combined effect
of rotation and a periodic confinement affects the tur-
bulent dynamics. We consider the case of intermediate
rotation intensities, such that the Coriolis forces are nei-
ther too weak to be neglected nor too strong to over-
whelm non-linear interactions. We mainly focus on the
transfer of energy and we investigate whether statistically
steady regimes, where all the injected energy is trans-
ferred towards small scales, can be achieved in rotating
confined flows. We also investigate how the parity sym-
metry breaking on the horizontal plane induced by rota-
tion is affected by the rotation and by the aspect ratio of
the flow.

The paper is organized as follows: Section II discusses
the numerical code and the parameters used in the sim-
ulations; Section III is devoted to the effect of rotation
and confinement on the upscale and downscale cascades.

Section IV studies the asymmetry in the vorticity field
induced by rotation and confinement and Section V is
devoted to conclusions.

II. NUMERICAL SIMULATIONS OF

ROTATING TURBULENCE

We consider the 3D Navier-Stokes equations for an in-
compressible velocity field u(x, t) (i.e. ∇ · u = 0) in a
rotating frame of reference,

∂u

∂t
+ u ·∇u+ 2Ω× u = −∇p+ ν∇2u+ f , (1)

where the constant density has been absorbed into the
pressure p, ν is the kinematic viscosity and Ω = Ωz
represents the constant rotation along the vertical direc-
tion aligned with the unit vector z (we remark that here
”vertical” is used only in analogy with the direction of
confinement in experiments as gravity does not explic-
itly appear in equation 1). The forcing field f(x, t) is
a stochastic Gaussian, white in time noise, active only
on the horizontal components ux, uy of the velocity and
depends on the horizontal components x, y only. The
forcing is localized in Fourier space in a narrow band of
wave numbers around kf = 2π/Lf and injects energy
into the system at a fixed rate εI [? ].
Direct numerical simulations of (1) are performed by

means of a 2/3-dealiased, parallel, pseudo-spectral code
in a triply periodic domain with various aspect ratios,
r = Lx/Lz, and rotations. Simulations are carried out
with uniform grid spacing at resolution Nx = Ny = rNz

with fixed Nx = 512, Lx = 2π and forcing wavenumber
kf = 8. The linear rotation and viscous terms are in-
tegrated using an exact factor technique, thus removing
them from the explicit time integration scheme which
uses a second-order Runge-Kutta [? ]. The viscous
terms in (1) is replaced by a second-order hyper-viscosity
(Laplacian square) to increase the extension of the iner-
tial range. The hyper-viscosity coefficient ν is chosen

such that kmaxη ≈ 1.3, with η =
(
ν3/εI

)1/10
, similar to

what is required in a resolved DNS.
Previous simulations in the absence of rotation [? ?

] showed that the ratio between the vertical scale and
the forcing scale S = Lz/Lf controls the relative amount
of energy that flows to large scales. In particular, it has
been shown that for S ≥ 1/2 the inverse energy flux van-
ishes and the turbulent flow recovers a 3D phenomenol-
ogy [? ]. A second dimensionless parameter in our sim-
ulations is provided by the rotation rate which defines a
rotation number when made dimensionless with the char-
acteristic time at the forcing scale, R ≡ Ω/(k2fεI)

1/3 (R
is essentially the inverse of the Rossby number defined as
in [? ]). In table I we show the range of parameters in
the (S,R) plane in which we performed our simulations.
We study the transition from 2D to 3D turbulence

by looking at the evolution of the mean kinetic en-
ergy E(t) = 〈|u(x, t)|2〉/2 for a flow starting from low-
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R\S 0.125 0.188 0.250 0.375 0.50 0.75 1.0 2.0 4.0 8.0

0.0 0.24 0.71 0.91 0.97 1 1 1 1 - -

0.5 0.22 0.66 0.81 0.95 1 - 1 1 - -

0.75 0.18 0.61 0.73 0.89 0.89 0.94 1 1 - -

1.0 0.17 0.45 0.64 0.76 0.77 0.82 0.86 0.87 0.95 1

1.5 0.14 0.31 0.42 0.46 0.49 0.52 0.52 0.58 0.66 0.89

5.0 - - - - - - 0.02 0.02 0.08 0.14

10.0 - - - - - - 0.01 0.01 0.01 0.02

TABLE I. Parameter space of the simulations. Each number
represents the fraction of energy dissipated at small scales,
εν/εI , as a function of R = Ω/(k2

f εI)
1/3 and S = Lz/Lf .

The value 1 means that the measured value is compatible with
εinv = 0 and therefore a case with pure 3D phenomenology.

amplitude random noise. For a 3D turbulent flow, after
an initial transient, the mean kinetic energy attains a sta-
tistically steady state and the viscous energy dissipation
εν = ν〈(∇u)2〉 balances the input εI . In presence of an
inverse cascade, a part of the injected energy, εinv, flows
to large scales and is not dissipated by viscosity. Energy
conservation requires that εI = εinv + εν . Therefore, a
signature of an inverse cascade is a linear growth of the
mean kinetic energy, εinv = dE/dt, and consequently a
viscous dissipation εν < εI . We remark that in the pres-
ence of an inverse cascade, the flow does not attain a
statistically stationary state, as kinetic energy continues
to grow and larger and larger scales are generated. This
process is nonetheless very slow as the characteristic time
grows with the scale r following Kolmogorov scaling r2/3.
Therefore, even in this case we observe a quasi-stationary
regime in which, on the time scale of the largest active
modes, small scale statistics can be averaged.

III. DIMENSIONAL TRANSITION AND THE

EFFECT OF ROTATION

Figure 1a shows the evolution of the mean kinetic en-
ergy, E(t), for different values of the aspect ratio S in the
absence of rotation (R = 0). After an initial transient (of
duration independent on S) in which turbulence devel-
ops, we observe a linear growth of the kinetic energy at a
rate which is smaller than the input. The linear growth
rate, which defines εinv, diminishes as the aspect ratio S
increases and eventually vanishes for S ≃ 1/2 as shown
in previous work [? ? ]. The value of εinv has been
estimated with a linear least-square fit of E(t). We re-
mark that the threshold, S = 1/2, is not expected to
be an universal value, as it depends on the particular
forcing and also on the precise definition of kf . Indeed
it has been shown that different forcing schemes lead to
different values of S at which the inverse flux vanishes [?
].
Figure 1b illustrates the effect of rotation on the split

of the energy cascade. At fixed S = 1/2, by increasing R
above zero, an inverse cascade is recovered (for R > 0.5
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FIG. 1. (a) Time evolution of mean kinetic energy for runs at
R = 0 and different values of S = 0.125, 0.1875, 0.25, 0.5 (from
top to bottom). (b) Time evolution of mean kinetic energy for
runs at S = 1/2 and different values of R = 0.5, 0.75, 1.0, 1.5
(from bottom to top). Time is normalized with the charac-

teristic forcing time τf = (k2εI)
−1/3. The dotted straight line

in both plots represents the energy injection rate.

approximately) with a flux which increases with R. This
scenario is reproduced at all values of S which we have
investigated: for sufficiently large values of rotation an
inverse cascade is recovered, as shown in table I.
We remark that, because we are in quasi-stationary

conditions, we can measure the inverse cascade flux also
as εinv = εI − εν . The two values obtained differ by a
few percent, because of the errors in the linear fit of the
energy growth and the statistical uncertainty of εν . In
the following we use this difference as a measure of the
errors in the calculation of εI and εν . In table I the values
of εν in the S −R parameter space are reported.
The results obtained by this procedure are shown in

Fig. 2 where the ratio εν/εI is plotted as a function of
S for different values of R. For the case without rota-
tion, R = 0, we see that for S ≥ 0.5 the inverse cascade
vanishes, as shown in Fig. 1a. Figure 2 shows that an in-
crease of the rotation rate R gives a transition to a pure
3D regime at larger values of S. The runs with strong



4

 0.2

 0.4

 0.6

 0.8

 1

 0.1  1  10

ε ν
/ε

I

S

FIG. 2. Ratio of small-scale energy dissipation εν to the en-
ergy input εI as a function of the aspect ratio S for different
rotation numbers, R = 0, 0.75, 1, 1.5 (from top to bottom).
For each R we plot two lines, one given directly by εν/εI ,
the second by εinv/εI in order to have an estimation of the
statistical errors.

rotation, R ≥ 1.5 (see table I), show no dimensional tran-
sition in S. Nonetheless, the small-scale energy dissipa-
tion fraction always increases with S and no saturation
at a value of εν/εI < 1 is evident. This observation sug-
gests that dimensional transition is always present in this
system, even for strong rotation rates, for large enough
S. Of course, this possibility could be confirmed only by
increasing S but this would require simulations at larger
resolutions (at S = 8 we already have Nz = Nx).

The fact that part of the energy is not dissipated at
small scales is not sufficient to guarantee the presence of
an inverse cascade as observed in 2D turbulence. Indeed,
an inverse cascade means a transfer of energy to larger
scales which can be observed only by looking at the flux
of energy at different wave numbers. We have therefore
computed the spectral flux of kinetic energy for differ-
ent values of R at given aspect ratio S = 2 (shown in
Fig. 3a) and for different S at fixed rotation R = 1 (see
Fig. 3b). For R = 0, because S = 2 is above the dimen-
sional transition, we have a vanishing inverse flux to wave
numbers k < kf and a positive energy fluxes (equal to
the energy input) to wave numbers k > kf , typical of a
three-dimensional scenario with a direct cascade to small
scales. By increasing R the flux to small scales reduces
(in agreement with Fig. 2), nonetheless, in all cases we
observe a clear plateau for wave numbers k > kf . It is
interesting to observe that for strong rotation rate (run
at S = 2 and R = 5), the direct flux almost vanishes, as
predicted in a pure 2D scenario. At small wave numbers,
k < kf , and for R > 0, we observe the development of
an inverse cascade produced by rotation. In this range of
wave numbers the fluxes are more noisy but nonetheless
they are negative, which is the signature of an energy
cascade towards large scales. We recall that the range
of scales available for the inverse cascade is quite small,
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FIG. 3. (a) Spectral flux of kinetic energy for different values
of R = 0, 1, 1.5, 5 (following the arrow) at fixed S = 2. (b)
Spectral flux of kinetic energy for different values of aspect
ratio S = 0.5, 1, 4, 8 (following the arrow) at fixed R = 1. All
fluxes are normalized with energy input εI .

since kf = 8. Figure 3b shows the fluxes for different
aspect ratios at fixed R = 1. Again, for all the simula-
tions we have a clear plateau for k > kf , at a value εν
which increases with S (see Fig. 2). The inverse cascade
to wavenumber k < kf is suppressed by increasing S and
eventually vanishes for S = 8.

Figure 4 shows the kinetic energy spectra correspond-
ing to different simulations at S = 2. The spectra of
both the horizontal components, Eh(kh), and the verti-
cal component, Ev(kh), of the energy are plotted as a

function of the horizontal wavenumber kh =
√

k2x + k2y

with kz = 0. The horizontal spectra, Eh(kh), display a
clear peak around the forcing wavenumber kf and a nar-
row power-law scaling at larger wavenumber. For k < kf
the energy spectra Eh(kh) strongly depends on rotation:
by increasing R we observe that more energy is present in
the large scale modes. Because of the limited scale sepa-
ration between the forcing and the box scale (kf = 8) we
are not able to observe a clear Kolmogorov-like spectrum
in the range of wavenumbers k < kf .
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FIG. 4. Kinetic energy spectra of the horizontal components
Eh(kh) (solid lines) and of the vertical component Ev(kh)
(dotted lines) as a function of the horizontal wavenumber kh
with kz = 0 for different rotations at S = 2. Non-rotating
case R = 0 (red), R = 1.0 (blue), R = 1.5 (pink) and R = 5
(black). Rotation increases from bottom to top for continuous
lines and decreases from top to bottom for dotted lines (the
vertical spectrum at R = 5 is below 10−7 and is not shown in
the plot).

In the range of small wavenumbers, the spectrum of
the vertical component, Ev(kh), is strongly suppressed
with respect to the horizontal ones, Eh(kh), becoming
even smaller as R increases. At large wavenumber, the
vertical spectra become comparable (or even larger) than
the horizontal spectra and the R dependence becomes
weaker.

The fact that both the confinement and the rotation
favor the development of the inverse cascade leads to an
interesting consideration. Different flows can have the
same ratio between inverse and direct energy fluxes for
different values of S and R, as it evident from Figure 2.
In particular a non-rotating thin layer can have the same
flux ratio as a thick rotating one. In order to understand
the similarities and differences between these two cases
we need to investigate the mechanisms which are respon-
sible for the transfer of energy towards large scales.

The main difference between 3D and 2D Navier–Stokes
equations, written for the vorticity field, is the absence
of the vortex stretching term, ω ·∇u, in the latter. As
a consequence, the enstrophy, i.e. mean square vortic-
ity, is conserved in the inviscid limit in 2D flows. In
the forced-dissipated case, the presence of two positive-
defined inviscid invariants (energy and enstrophy) causes
the reversal of the direction of the energy cascade with
respect to the 3D case, and the simultaneous develop-
ment of a direct enstrophy cascade [? ? ]. It is therefore
natural to investigate if a similar phenomenology can be
observed also in thin fluid layers. In particular, we con-
jecture that the development of the inverse cascade can
be accompanied by a partial suppression of the enstrophy
production induced either by the confinement or by the
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Π
Z
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η I
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Σ Z

(k
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k/kf

FIG. 5. Spectral flux of enstrophy ΠZ(k) (solid lines) and
enstrophy production ΣZ(k) (dashed line) for two flow con-
figuration: R = 0, S = 0.188 (lower, red lines) with kz = 42.7
and R = 1.5, S = 4 (upper, black lines) with kz = 2. All
quantities are normalized with the enstrophy input ηI .

rotation.
To address this issue we computed the spectral flux

of enstrophy ΠZ(k) and enstrophy production ΣZ(k) de-
fined as:

ΠZ(k) =

∫

|q|≤k

̂u · ∇ω (q) ω̂∗ (q) dq, (2)

ΣZ(k) =

∫

|q|≤k

̂ω · ∇u (q) ω̂∗ (q) dq, (3)

where ·̂ represents the three-dimensional Fourier trans-
form. In Figure 5 we show both quantities for a non-
rotating thin layer (R = 0, S = 0.188) and a rotating
thick layer (R = 1.5, S = 4). As shown in table I, these
two flows have approximatively the same ratio between
the fluxes of the inverse and direct energy cascade.
In the non-rotating case we find that the vortex

stretching (enstrophy production) is completely sup-
pressed for k < kz ≃ 5.3kf (kz = 2π/Lz) and a direct
cascade with almost constant flux of enstrophy is ob-
served for kf < k < kz . Therefore in a thin fluid layer
the enstrophy behaves as a quasi-invariant, i.e. it is al-
most conserved by the dynamics at scales lager than Lz.
In analogy with an ideal 2D flow, the partial conserva-
tion of enstrophy is responsible for the development of
the inverse energy cascade.
It is worth emphasizing that the total enstrophy be-

haves as a quasi-invariant, indicating that the develop-
ment of the inverse energy cascade is not caused directly
by the two-dimensionalization of the flow, but rather by
the presence of a second sign-definite conserved quan-
tity which can be related in spectral space to the energy.
Such mechanism is consistent with the previous findings
reported in [? ? ], which showed that an inverse energy
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FIG. 6. Horizontal cuts of vertical vorticity ωz for two flow configurations (R = 0, S = 0.188) (left) and (R = 1.5, S = 4)
(right).

cascade develops also in homogeneous isotropic 3D tur-
bulent flow when mirror symmetry is broken such that
helicity has a well-defined sign at all wave numbers.

In the rotating, thick case we observe that the vortex
stretching is also suppressed, but this phenomenon oc-
curs on a broad range of scales and there is no evidence
of an inertial range in which enstrophy is conserved. Our
findings seem to indicate that, unlike confinement, mod-
erate rotation is not sufficient to develop a direct cascade
of enstrophy with constant flux. Nevertheless, the mech-
anism by which rotation enhances the transfer of energy
towards large scales is similar to the one which is in-
duced by confinement, i.e. via suppression of the vortex
stretching term. It is worth noticing that the enstrophy
production and enstrophy flux of the two cases are almost
indistinguishable at small scales.
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FIG. 7. PDFs of vertical vorticity for S = 2, R = 0 (red
dotted line) and S = 2,R = 1.5 (black solid line).

IV. CYCLONIC-ANTICYCLONIC

ASYMMETRY

The breaking of asymmetry between cyclonic and an-
ticyclonic vortices, which has been observed both in ex-
periments [? ? ? ? ? ] and numerical simulations [?
? ? ], is a distinctive feature of rotating turbulent flows.
Here we are interested to investigate how this asymmetry
is influenced both by the rotation and the confinement of
the flow. In Figure 6 we show two horizontal cuts of the
vertical component of the vorticity, ωz, for the two runs
discussed in section III, i.e. a thin non-rotating layer
and a thick rotating layer with a similar fraction of en-
ergy dissipated at small scales. In the non-rotating, thin
layer (R = 0,S = 0.188, left panel) vortices with positive
and negative sign are equally distributed. In contrast to
this, the thick rotating flow (R = 1.5,S = 4, right panel)
shows a clear asymmetry between cyclonic and anticy-
clonic vortices. In particular the cyclonic vortices are
enhanced while anticyclonic vortices are suppressed.
In Figure 7 we compare the probability density func-

tion (PDF) of vertical vorticity of the two flows. In the
non-rotating case the PDF is symmetric, while in the ro-
tating case it shows a clear asymmetry. Cyclonic vortices,
corresponding to the right tail, are much more probable
than anti-cyclonic ones. We remark that in both cases
the mean vertical vorticity ωz vanishes and therefore a
quantitative measure of the asymmetry is provided by
the skewness

Sω =
〈ω3

z〉

〈ω2
z〉

3/2
. (4)

In the non-rotating case Sω = 0 while in the rotating
cases one has Sω > 0. Figure 7 suggest that a significant
contribution to the skewness Sω comes from the tails of
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the PDF of ωz. The R-dependence of the skewness is
shown in Fig. 8a and it is found to be non-monotonic,
with an increase for moderate rotations followed by a
subsequent decrease for larger rotation rates. This is
in agreement with previous findings [? ] for which the
strongest symmetry breaking is observed at intermediate
R, corresponding to Ro = 0.2.
It is interesting to point out that the asymmetry also

depends on the aspect ratio S of the flow. Indeed, in the
two-dimensional limit (S → 0) rotation cannot induce an
asymmetry in ωz as the Ω×u term disappears in the 2D
version of the Navier-Stokes equation (1). Therefore, we
expect the skewness Sω to be an increasing function of S
at fixed R. This is confirmed by our numerical results, as
shown in Fig. 8b. Further, our findings suggest that for
S > 1 the skewness saturates as S increases, although we
cannot exclude a different behavior for values of S larger
than 8. That the asymmetry vanishes for S → 0 also
suggests a possible interpretation of the decreases of the
skewness for large R as a signature of the bidimensional-
ization of the flow.
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FIG. 8. Skewness of vertical vorticity Sω as a function of
(a): rotation R for fixed S = 2 and (b): S at fixed R = 1.5.
The error bars represent the error of the mean value over a
time interval.
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does not manifests only at small scales but also on large-
scale structures, as it is evident in Figure 6. In three-
dimensional turbulence, the leading contributions to the
vorticity field comes from small-scale structures, and
therefore a criterion based on (4) could be not adequate
to capture the asymmetry at large scale. Moreover, it
is likely to be influenced by the Reynolds number as ωz

is a small-scale quantity. An alternative measure of the
cyclonic-anticyclonic asymmetry can be provided by the
skewness of the azimuthal velocity increment δuT ,

ST =
〈δu3

T 〉

〈δu2

T 〉
3/2

, (5)

where δuT = (u (x+ r)− u (x)) · t, with t being the
horizontal unit vector in the cyclonic direction, that is
(r/r, t, z) forms a right-handed system of reference. As
opposed to (4), (5) is a scale-dependent quantity and it
is thus more informative. The statistics of azimuthal ve-
locity increment has been fruitfully used to analyze mea-
surements in the stratosphere [? ] and numerical simu-
lations of rotating and stratified turbulence [? ] which
show quadratic dependence in r.

In our simulations, we find positive values of ST of the
order of unity for rotating flows, (Figure 9), indicating
that cyclonic motions are dominating at all scales. As
for the skewness of vorticity, also in this case we observe
a non-monotonic behavior of ST with R (the maximum
value is reached for R = O(1)). Moreover, for all the
values R > 0, we observe a r dependence of the skewness
which shows a maximum at a scale which increases with
R. It is worth noticing that for R > 1 the asymmetry
persists at scales larger than the forcing scale Lf , i.e. in
the energy inverse-cascade range.
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V. CONCLUSION AND DISCUSSION

In this work we investigated by means of numerical
simulations how rotation affects the turbulent cascade
of kinetic energy in a thin fluid layer. We have shown
that rotation enhances the inverse energy cascade. This
is achieved by a mechanism which is similar to what is
observed when the flow is confined, i.e. by suppressing
the production of enstrophy at large scales. For thick
fluid layers such suppression is sufficient to allow the de-
velopment of an inverse cascade even in cases in which it
would not be observable in the absence of rotation. On
the other hand, for a fixed rotation number, we observe
that increasing the aspect ratio causes a suppression of
the inverse energy cascade.
Rotation also breaks the symmetry of horizontal flow,

inducing a predominance of cyclonic vortices over anti-
cyclonic ones. Our results confirms that this asymme-
try is maximum at intermediate rotation rates and van-
ishes both for weak and strong rotation. The analysis
of the skewness of transverse velocity structure functions
reveals that the asymmetry is not only present at small
scales, but can be observed also in large-scale structures
of the flow. Interestingly, we find that the cyclonic-
anticyclonic asymmetry at fixed rotation vanishes as the
thickness of the fluid layer is reduced, consistently with
the fact that in ideal two-dimensional flows the rotation
effects disappear.

When carrying out numerical simulations and experi-
ments in rotation fluids, great care should thus be taken
in setting up the boundary conditions in the direction
parallel to the rotation axis. In experiments, bottom and
top Ekman boundary layers can strongly influence the
dynamics [? ? ? ]. Numerical simulations can similarly
be affected by the finite size of computational domains
and confinement effects can effectively influence the dy-
namical picture. In rotating flows, bounded domains may
also set the minimum frequency for non-stationary iner-
tial waves, ω ∼ fkz,min/k. This value can nevertheless
be very large at large rotation rate, therefore enforcing a
decoupling with the 2D modes which have zero frequency.
Our findings pose interesting questions. In particu-

lar one may ask whether there would always exist, irre-
spective on how large the rotation rate is, a dimensional
transition between a 2D dynamics, with an inverse en-
ergy cascade, and a 3D dynamics, with a direct energy
cascade. More generally, it would be interesting to derive
theoretical predictions on the scaling of the critical curve
in the (S,R) parameter space which borders the region
in which the inverse cascade exists.
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