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Large-scale confinement and small-scale clustering of floating particles in stratified turbulence

We study the motion of small inertial particles in stratified turbulence. We derive a simplified model, valid within the Boussinesq approximation, for the dynamics of small particles in presence of a mean linear density profile. By means of extensive direct numerical simulations, we investigate the statistical distribution of particles as a function of the two dimensionless parameters of the problem. We find that vertical confinement of particles is mainly ruled by the degree of stratification, with a weak dependency on the particle properties. Conversely, small scale fractal clustering, typical of inertial particles in turbulence, depends on the particle relaxation time and is almost independent on the flow stratification. The implications of our findings for the formation of thin phytoplankton layers are discussed.

Particles of density different from the surrounding fluid do not follow the motion of fluid particles, and generate inhomogeneous distributions even in incompressible flows [1]. This phenomenon is crucial in a variety of instances, from cloud formation in the atmosphere, to the dynamics of plankton in the ocean and lakes, to industrial applications e.g. in reactors [2]. Inhomogeneous distribution in turbulent flows is also of interest from a theoretical point of view. In recent years, analytical, numerical and experimental studies led to significant advances in the understanding of this process [3][4][5][6][7][8]. In an incompressible turbulent flow, non-inertial, fluid particles follow the flow streamlines and remain by definition homogeneously distributed. In contrast, inertial particles with density different from the fluid, are known to accumulate in regions of high vorticity (light particles) or high strain (heavy particles) [3,5,9], as a consequence of the accelerations induced by the flow. Recent analytical and numerical works have shown that gravity interacts with turbulent accelerations to increase clustering of inertial particles. Moreover, turbulence can increase the settling velocity with respect to still fluid, by pushing particles in regions of downward flow [10,11]. In presence of density fluctuations, gravity also affects the flow itself as in the case of stratified turbulence which finds many applications in natural and technological flows [12,13]. One important example is ocean dynamics which is strongly affected by the presence of the pycnocline resulting from temperature and salinity variations [START_REF] Thorpe | An Introduction to Ocean Turbulence[END_REF][START_REF] Williams | Ocean Dynamics and the Carbon Cycle[END_REF].

Remarkably, very little is know about the distribution of inertial particles in stratified turbulence, in spite of its relevance for oceanic and other applications. Recent works have studied the effect of stratification on the clustering of heavy [START_REF] Van Aartrijk | [END_REF] and light [17] particles and the effect of a vertical confinement in homogeneous turbulence [18]. In this Letter we investigate, by means of direct numerical simulations, the distribution of small buoyant particles transported in a turbulent stratified flow. We study both the large scale vertical distribution and the small scale clustering of particles as a function of the relevant parameters. Unexpectedly, we find that small scale (fractal) clustering is determined by the particles relaxation time and is almost independent on the degree of stratification. Conversely, the vertical confinement of particles is mostly controlled by the degree of fluid stratification, and weakly depends on the particle properties. The dependence of the confinement on Froude number is interpreted within the framework of stratified turbulence phenomenology. We consider a cubic box of size L of fluid linearly (and stably) stratified in the direction z of gravity g = (0, 0, -g) with a constant mean density gradient dρ/dz = -γ. Within the Boussinesq approximation, the motion for the incompressible velocity field u(x, t) is ruled by

∂u ∂t + u • ∇u = - 1 ρ 0 ∇p + ν∇ 2 u -N 2 θẑ + f (1) ∂θ ∂t + u • ∇θ = u • ẑ + κ∇ 2 θ (2) 
together with ∇ • u = 0. The scalar field θ(x, t), which in the above equations has the dimension of a length, represents the deviations of the local density from the linear vertical profile, ρ = ρ 0 -γ(z-θ). ν is the kinematic viscosity, κ the density diffusivity and N = (γg/ρ 0 ) 1/2 is the Brunt-Väisälä frequency. f represents an external mechanical forcing needed to sustain turbulence. In the inviscid, unforced limit (ν = κ = f = 0) equations (1-2) conserve the total energy, sum of kinetic and potential contributions, E = 1 2 |u| 2 + 1 2 N 2 θ 2 where ... denotes the average over the domain.

The velocity v of a small inertial particle transported by the flow u generated by (1) evolves according to [19] 

dv dt = β du dt - v -u τ p + (1 -β)g (3) 
where β = 3ρ/(ρ + 2ρ p ) is the density ratio (ρ p is the density of the particle of radius a) and τ p = a 2 /(3νβ) is the viscous relaxation time. We consider the limit of small particles (i.e. with small τ p for which one can approximate du dt ≃ dv dt [19]) of density ρ p = ρ 0 so that we can rewrite (3) as

v = u -τ p (1 -β) dv dt + τ p (1 -β)g (4) 
Consistently with the Boussinesq approximation, in the limit of small τ p , we can neglect the second term in the r.h.s. of (4) and, since (1 -β)g ≃ -2 3 N 2 (z -θ)ẑ, we obtain a simplified expression for the velocity of the floater whose position x evolves according to

dx dt = v = u - 1 τ (z -θ)ẑ (5) 
where τ ≡ 3/(2N 2 τ p ) represents the relaxation time of the particle onto the isopycnal surface of density ρ = ρ 0 . This surface, defined implicitly by the relation z = θ(x, y, z), will be denoted as h(x, y), keeping in mind that in general it can be multivalued. We remark that more general models for the motion of floaters in stratified turbulence are possible, at the price of increased complexity and number of parameters [17].

Although the fluid velocity u is incompressible, the velocity field transporting the floaters is not since this expression represents the rate of contraction of the phase space (here the configuration space) under the dynamics. When it is negative we expect that trajectories of floaters will collapse on a (dynamical) fractal attractor in the phase space. An example of the attractor is displayed in Fig. which shows that the large scale confinement in the vertical direction coexists with a small scale clustering with fractal distribution on the isopycnal surface.

∇ • v = -(1 -∂θ/∂z)/τ which is in general nonzero. Formally,
We have integrated the Boussinesq equations (1-2) in a domain of size L = 2π with periodic boundary conditions by means of a fully parallel pseudo-spectral code at resolution up to N = 256. Turbulence is generated by a δ-correlated in time isotropic forcing f which is active on a spherical shell of wavenumber around k f = 1 and which pumps energy at the fixed rate ε. These parameters define, together with the Brunt-Väisälä frequency, the Froude number F r ≡ (ε 1/3 k 2/3 f )/N which measures the (inverse) stratification. We remark that, in stratified turbulence, the mean kinetic energy dissipation at small scales ε ν is typically smaller than the input ε and depends on F r, because a fraction ε κ of the energy input is converted into potential energy during the turbulent cascade and dissipated by diffusivity [20]. Another relevant parameter in stratified turbulence is the buoyancy Reynolds number Re b = ε/(νN 2 ) defined in terms of the ratio of the buoyancy (Ozmidov) scale In Figure 2 we show vertical sections (at y = 0) of the isopycnal surface h (obtained from the solution of z = θ(x, y, z)) together with positions of the particles on the same sections, for different values of the parameters F r and τ . It is evident that the isopycnal surface h is almost flat for strong stratification and it becomes more bent (and multivalued) as F r increases. Figure 2 shows also the effect of the relaxation time τ on the particles. When τ /τ η < 1 the particles are practically attached to the isopycnal surface, while their positions depart from the surface h by increasing τ . The probability density functions (PDF) of the vertical displacement of particles with respect to their equilibrium position z = 0 in the absence of turbulence is shown in Fig. 3 for different values of Re, F r and τ . We found that in the wide range of parameters investigated these distributions are close to Gaussian (with some possible deviations in the tails).

ℓ B = ε 1/2 /N 3/2 to the dissipative scale ℓ D = ε 3/4 /ν 1/4 as Re b = (ℓ B /ℓ D ) 4/
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The standard deviations σ z of these vertical distribution of particles for different values of F r and St are shown in Fig. 4. We obtain a linear scaling of σ z on F r, with a coefficient which shows a (weak) dependency on St. For stronger stratification, F r ≤ 0.3, the standard deviation is almost independent on St, a feature which can be understood by looking at the plots in Fig. 2. It is indeed evident that for St not too large, the effect of the relaxation term in ( 5) is to allow the particle to detach from the level z = θ and to remain "suspended" for a time of order τ before feeling the vertical velocity towards the isopycnal surface. Because in stratified turbulence vertical velocity and vertical gradient of vertical velocity are suppressed [21], there is no mechanism which ejects particles far from the surface. Therefore, as shown by Fig. 2, the vertical region visited by particles reflects the vertical extension of the isopycnal surface and, therefore, is independent on τ . By increasing F r, the vertical components of the velocity and of the velocity gradient increase and this produces a displacement of particles from the isopycnal surface when the relaxation time τ is sufficiently large.

In the limit of small St, the standard deviations of particles σ z collapse on the standard deviation σ h of the isopycnal surface. The linear dependence on F r shown in Fig. 4 can be understood within the framework of stratified turbulence, as a manifestation of the presence of the so-called vertical shear layers [22] and the associated vertical correlation scale of velocity L v . Physically this scale represents the vertical displacement for converting injected kinetic energy into potential energy and can be estimated simply as L v ≃ U/N (U is a typical large scale velocity) and therefore one obtains L v ∝ F r, i.e. linear scaling as shown in Fig. 4. The deviation of the particles form the isopycnal surface can be investigated by looking at the statistics of the variable ζ = z -θ. The evolution of this quantity is obtained by the time evolution of the field θ along the trajectory of a floater moving with the velocity v and which gives (neglecting the diffusive term) d(z -θ)/dt = -(z -θ)(1 -∂θ/∂z)/τ . In the absence of fluctuations (θ = 0) this equation would simply represent the linear relaxation of particles towards the isopycnal layer z = 0 [18]. This is not achieved since the term ∂θ/∂z is fluctuating without a definite sign. Figure 5 shows the normalized PDF of the variable ζ for three different values of τ at F r = 1.0. It is evident that the statistics is neither Gaussian nor scale invariant and the PDF develops large tails for small relaxation times. These large fluctuations are due to the folding of the isopycnal surface. Particles located in the neighborhood of a fold in which the isosurface is almost vertical (see examples in Figure 2) are not restored horizontally to the close-by branch they just left, but rather displaced vertically by buoyancy toward the nearest branch above or below them. This mechanism, which is enhanced at large F r, produces a sudden increase in the distance between the particles and the isopycnal surface, and causes the development of large tails in the PDF of ζ. As already discussed, floating particles moving according to (5) are transported by a compressible velocity field and are therefore expected to relax on a (dynamical) fractal subset of the physical space, as shown in the examples of Fig. . In order to characterize this subset, and its dependence on the parameters, we have measured the correlation dimension D 2 of particle distribution, defined as the scaling exponent of the probability of finding two particles at distance less than r: P (|x 1x 2 | < r) ∝ r D2 as r → 0 [23]. The maximum value D 2 = 3 denotes uniformly distributed particles, while D 2 < 3 indicates fractal patchiness with smaller D 2 corresponding to more clustered distributions and increased probability of finding pairs of particles at close separation. Figure 6 shows D 2 as a function of St for different values of F r. In the limit St ≫ 1, for which v → u in (5), floaters move as fluid particles in an incompressible velocity and therefore remain uniformly distributed in the volume with D 2 = 3. The fractal dimension is found to be monotonic in St and attains a minimum value D 2 ≃ 1 for the smallest relaxation time. This value indicates distributions of particles on quasi-one-dimensional structures (as shown qualitatively in Fig. ) which is almost independent on F r. This is a remarkable result, as one could expect that for strong stratification and small τ , in which particles lie on the isopycnal surface which is almost flat, the fractal dimension would be close to D 2 = 2. The fact that we find D 2 ≃ 1 indicates that the dynamics on the surface is dissipative and therefore the horizontal velocity field is compressible.

The weak dependence of the correlation dimension on the stratification extends also to larger values of St and we find that, in general, D 2 is virtually independent on F r for F r ≥ 0.5. This is in contrast with the (large scale) vertical confinement shown in Fig. 5 which displays a strong (linear) dependence on F r and a weak dependence on St.

In conclusion, we have investigated the dynamics of neutrally buoyant particles in a turbulent stratified flow. We have shown that the extension σ z of the vertical layer in which the particles are confined depends on the characteristics of the flow and moderately on the size of the particles. On the contrary, the small scale patchiness inside this layer, expressed by the correlation dimension, strongly depends on the particle size and only weakly on the stratification of the flow.

One of the most remarkable examples of confinement of particles in the ocean is the formation of the so-called thin phytoplankton layers (TPL): aggregations of phytoplankton and zooplankton at high concentration with thickness from centimeters to few meters, extending up to several kilometers horizontally and with timescale from hours to days [24].

Among the different mechanisms proposed for the formation of TPLs, buoyancy force in stratified flow is particularly relevant for non-swimming species and aggregates, such as diatoms and marine snow, which are often observed to accumulate in correspondence of strong stratification [25]. In order to test the applicability of our model in the aquatic ecosystems we provide a simple example using the typical values observed for diatom-dominated marine snow [25]. Assuming an energy dissipation rate ε ∼ 10 -8 m 2 s -3 (τ η ≃ 10 s) and a Brunt-Väisälä frequency N ∼ 0.1 s -1 , aggregates of size a ≃ 0.5 cm have a relaxation time τ ≃ 18 s which corresponds to St = 1.8, inside the range in which we observe clustering at small scales (Fig. 6) for all the values of F r. Smaller aggregates or single cells of size a = 0.1 cm correspond to St ≃ 45 and, according to our results, would distribute almost homogeneously (with a fractal dimension close to 3) within the thin layer.

Beside the applications to thin layers, our results are of general interest as they describe quantitatively and for the first time how the combination of turbulence and stratification generates both large scale confinement and small scale fractal patchiness in a suspension of buoyant particles.
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 1 FIG. 1. Isopycnal surfaces θ = z corresponding to the particle density ρ0 for two runs at F r = 0.2 (upper plot) and F r = 0.3 (lower plot). The points represent the (fractal) distribution of particles with τ = 0.01 in the stationary state.
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 53 10 -3 1.0 0.195 0.028 0.16 430 0.2 -1.0 0.01 -10.0 256 4 × 10 -3 1.0 0.195 0.024 0.14 540 0.2 -1.0 0.01 -10.0 TABLE I. Parameters of the simulations. N resolution, ν and κ kinematic viscosity and diffusivity, k f forcing wavenumber, εI energy input rate, η = (ν 3 /εI ) 1/4 Kolmogorov scale, τη = (ν/εI ) 1/2 Kolmogorov timescale, Re = UrmsL/ν and F r = ε 1/3 k 2//N . Re is computed at F r = 1 at which the flow is almost isotropic, as Urms varies with F r. The forcing scale is defined as L = π/k f . All the simulations are performed at Schmidt number Sc = ν/κ = 1.

  3 , in analogy to the usual Reynolds number Re = (L/ℓ D ) 4/3 . These three numbers are not independent since Re b = F r 2 Re[21] and Re b = 1 discriminates between stratified-viscous flow (Re b < 1) and stratified turbulence (Re b > 1)[21]. Our simulations are within the turbulent regime, as Re b is in the range 17 ≤ Re b ≤ 540. Together with the (1-2), we integrated the equation (5) for the particle motion for a set of 10 classes of particles characterized by different values of τ in the range 0.01 ≤ τ ≤ 10.0. In presenting the results, this time will be made dimensionless with the Kolmogorov time τ η = (ν/ε) 1/2 by introducing a "Stokes number" St ≡ τ /τ η . Table I reports the most important parameters of the simulations.
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 2 FIG. 2. (Color online) Vertical (x, z) sections of isopycnal surfaces h (black points) for F r = 0.3 (upper row) and F r = 1.0 (lower row) together with the positions of particles (green points) with St = 0.6 (left column) and St = 60.0 (right column).
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 34 FIG. 3. Probability density functions of vertical positions of tracers for Re = 430, F r = 0.3 (upper plot) and Re = 540?, F r = 1.0 (lower plot). In both cases the PDF for different classes of floaters, corresponding to St = 0.06, 0.6, 6.0 and 60.0 are shown.
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 5 FIG. 5. Probability density functions of the variable ζ = z -θ for Re = 540, F r = 1.0 and St = 1.4 (red line with square), St = 7.0 (blue line with circle) and St = 70 (pink line with triangle). The black line is a Gaussian.
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 6 FIG. 6. Correlation dimension D2 versus relaxation time St for different values of stratification parameter F r.
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