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Coastal water mapping from remote-sensing hyperspectral data suffers from poor re-
trieval performance when the parameters to estimate do not affect much the subsurface
reflectance, especially due to the ill-posed nature of the inversion problem. For exam-
ple, depth cannot accurately be retrieved in deep water, when the bottom influence
becomes negligible. Similarly, in very shallow water, it is difficult to estimate the wa-
ter quality because the subsurface reflectance is more affected by the bottom than by
optically active water components.

Most methods based on radiative tranfer model inversion actually do not consider the
distributions of targeted parameters within the inversion process, thereby implicitly
assuming that any parameter value in the estimation range has the same probability.
In order to improve the estimation accuracy for the above limiting cases, we propose
to regularise the objective functions of two estimation methods (Maximum Likelihood
or ML, and Hyperspectral Optimization Process Exemplar or HOPE) by introduc-
ing local prior knowledge on the parameters of interest. To do so, loss functions are
introduced into ML and HOPE objective functions in order to reduce the range of
parameter estimation. These loss functions can be characterized either by using prior
or expert knowledge, or by inferring this knowledge from the data (thus avoiding the
use of additional information).

This approach was tested both on simulated and real hyperspectral remote sensing
data. We show that the regularised objective functions are more peaked than their
non-regularised counterparts when the parameter of interest does not affect much the
subsurface reflectance. As a result, the estimation accuracy of regularised methods
is higher for these depth ranges. In particular, when evaluated on real data, these
methods were able to estimate depth up to 20 m, while corresponding non-regularised
methods were accurate up to 13 m on average for the same data.

This approach thus provides a solution to deal with such difficult estimation condi-
tions. Furthermore, because no specific framework is needed, it can be extended to
any estimation method that is based on iterative optimisation.

Keywords: bathymetry; hyperspectral; maximum likelihood estimation;
regularisation; remote-sensing; water quality retrieval

1. Introduction

For the last decades, hyperspectral airborne remote-sensing has been much used
for mapping of water composition and bathymetry. To do so, various models
have been developed to describe the relation between the bottom reflectance and
remote-sensing reflectance by taking into account water attenuation (Maritorena,
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Morel, and Gentili 1994; Lee et al. 1998). These models usually consider that four
variable parameters affect the water-leaving radiance: depth and concentrations of
optically active constituents, i.e., phytoplankton, coloured dissolved organic matter
(CDOM) and non-algal particles (NAP). Because each parameter has specific
effects on spectra, it is thus possible to retrieve such water column properties
from spectral shape under some conditions imposed by physical limitations. For
example, depth cannot be retrieved in very optically deep water when the bottom
influence becomes negligible.

Most methods can be classified into statistically- and physically-based methods
(Dekker et al. 2011). On the one hand, statistical methods have been widely used
for the estimation of bathymetry (Lyzenga 1978; Philpot 1989; Minghelli-Roman
et al. 2007) or water constituents (O’Reilly et al. 1998; Matthews, Bernard,
and Winter 2010; Ferreira et al. 2013; Loisel et al. 2014; Zhu et al. 2014; Tian
et al. 2014). They aim at finding statistical relationships between spectral data
(generally a few spectral bands) and the parameter of interest. On the other hand,
physically-based methods lie in the use of radiative transfer models that simulate
light propagation within the water body. These models can be inverted for each
spectral measurement so as to retrieve model parameters such as depth or concen-
trations of water constituents. The inversion scheme can be performed using either
look-up tables or iterative optimisation. For the look-up table approach (Louchard
et al. 2003; Mobley et al. 2005; Hedley, Roelfsema, and Phinn 2009), the radiative
transfer model is used in a forward mode so as to build a pre-computed data base
of spectra corresponding to different combinations of depth, concentrations and
bottom type. Every pixel of the image is then matched with its nearest neighbour
in the data base. For iterative optimisation methods, the inversion process is
performed by optimising an objective function relating modelled and measured
spectra (inverse mode). The pixel-wise method developed by Lee et al. (1999)
is based on least squares optimisation. Many authors have then extended this
method to different applications (Klonowski, Fearns, and Lynch 2007; Brando
et al. 2009; Giardino et al. 2012). Recently (Jay, Guillaume, and Blanc-Talon 2012;
Jay and Guillaume 2014), we have developed a hybrid method, in which estimates
of water column parameters are retrieved by maximizing the likelihood function
based on a statistical sample and a radiative transfer model. This likelihood
function is computed on a local neighbourhood and the estimation performance is
increased by the information redundancy contained in these neighbouring pixels
and the adequacy of the statistical model.

Every above mentioned method is effective over a wide range of depths. However,
there are some limiting cases when the parameters to estimate do not affect much
the subsurface reflectance.

First, the retrieval uncertainty generally increases when the values of the param-
eters to estimate (depth and/or concentrations of optically-active constituents)
increase (Volpe, Silvestri, and Marani 2011; Garcia, Fearns, and McKinna 2014;
Dekker et al. 2011). Indeed, high parameter values lead to a high attenuation that
tends to saturate. In particular, for any water quality, there exists an intermediate
depth range comprised between optically shallow water (in which the bottom-
related signal is high) and optically deep water (in which the bottom-related signal
is null). In this intermediate range, the bottom influence is low so most methods
lead to poor bathymetry retrieval and high uncertainty.

Second, in very shallow water, the water column is so thin that constituents do not
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affect much the subsurface reflectance (Cannizzaro and Carder 2006). Moreover,
the bottom reflectance has to be perfectly known in order to retrieve such tiny
effects caused by these constituents. Consequently, the accuracy of water quality
retrieval is usually low in very shallow water.

In these two cases, for inversion optimisation methods, it is worth guiding the esti-
mation process by enhancing the parameter influence on objective functions, thus
reducing the uncertainty and the number of possible solutions to the inverse prob-
lem. To do so, regularisation has been used in many remote sensing applications for
which the problem is ill-posed in the sense of Hadamard, e.g., for inversion of canopy
radiative transfer model (Baret and Buis 2008) or unmixing of hyperspectral data
(Huck, Guillaume, and Blanc-Talon 2010). For inversion of radiative transfer mod-
els, regularisation consists in introducing some constraints about the distributions
of the parameters to estimate, i.e., specifying the ranges in which these parameters
are more likely to vary. These ranges can be known either by using prior or expert
knowledge, or by inferring this knowledge from the data (Defoin-Platel and Chami
2007).

In this paper, we propose to regularise the two objective functions respectively
developed by Jay and Guillaume (2014) (referred to as Maximum Likelihood or
ML) and Lee et al. (1999) (referred to as Hyperspectral Optimization Process Ex-
emplar or HOPE by Dekker et al. (2011)). In the first case, the likelihood function
is weighted by parameter probability distributions so, as a result, ML estimates
are replaced by maximum a posteriori (MAP) estimates. In the second case, the
HOPE error function is replaced by a Lagrangian function combining the original
error function and loss functions.

2. Data

The field measurement campaign and data set construction were made by the
company Actimar within the framework of the HypLitt project. This data set
contains remotely sensed hyperspectral images of coastal zones with the associated
ground truth (Smet, Sicot, and Lennon 2010). It also includes a library of reference
spectra measured at the ground level, as well as water analyses.

2.1. Study area

As observed in Fig. 1, the test site was located in the Quiberon Peninsula on the
French west coast (around 47°28'11”N, 3°02'18”W) and was part of a large sandy-
bottom area. The test site was covering an area of 0.17 km?, with depths ranging
from 3 m to more than 20 m as shown on the associated bathymetric chart in Fig. 2.
A shallow zone was situated in the center. High depth gradients were situated in
the right part and the left part.

In Fig. 3a and Fig. 3b, we display the two hyperspectral images D and D4 that were
acquired on Day 1 and Day 2 respectively and that were used to assess the proposed
methods. Both images D1 and Do were acquired four days apart over the same zone
and at low and high tides respectively. The actual sea levels were approximately
1.50 m and 4.10 m higher for images D; and Dy respectively compared to the
bathymetric chart in Fig. 2. Lastly, a third extra image was used to show the
framework of the proposed methods in Section 4.2. This image is denoted Do
because it was acquired a few minutes after image Do. However, the flight path of
image Dy  was perpendicular to the flight path of image D9, therefore showing
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Figure 1. Location of the study area. The highlighted area at the bottom right is the test site (top left
corner: 47°28'16""N, 3°02’36""W; bottom right corner: 47°28' 7N, 3°02'2"W).
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Figure 2. Bathymetric chart of the overall area (expressed in metres) with a zoom on the test site. The
four red stars indicate the spots where the ground truth was measured.

other bathymetric features.

2.2. Spectral data acquisition

Both images D; and Dy were acquired in September 2010 using an airborne
Hyspex VNIR-1600 camera (Norsk Elektro Optikk, Norway). The weather was
sunny and there were no clouds and cloud shadows. The spatial resolution was
0.5 m and the FWHM spectral resolution was 4.5 nm, which corresponds to
160 spectral bands between 410 and 1000 nm. However, the near infrared signal
attenuation is so high that this wavelength range is useless for such applications,
even in shallow water. As a matter of fact, only 81 spectral bands between 410
and 700 nm were considered. Some spectra measured along an horizontal depth
gradient in both images are plotted in Fig. 3b. The associated signal-to-noise ratio
(SNR) ranged from about 15:1 to 120:1 depending on considered depth (using

_ 2 2 2 2 : : :
SNR = O ignal /07 iser Where O ignal and o ... are respectively the signal and noise
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Figure 3. Remote sensing hyperspectral images used for mapping and corresponding exactly to the same
test site: (a) True colour composite image D1, (b) True colour composite image D2, and (c) Reflectance
spectra extracted from Dj and Ds along a horizontal transect located at a distance of 150 m from the
origin.

sample variances computed over all the spectral bands). These spectra show that
the noisiest bands were in the blue region (410-430 nm), where the sensitivity
of the CCD camera was the lowest. The noise level was constant in remaining bands.

Some spectroradiometric measurements were also carried out beneath and over
the water surface using a SVC-GER1500 spectroradiometer. They allowed the
constitution of a reference spectral library that contains various ground-based
materials such as sand and rocks. In particular, this reference spectral library in-
cluded a sand spectrum measured over a very thin water column (few millimetres).
This spectrum was used to model the bottom in the entire article. This spectral
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Figure 4. Example of in-situ subsurface reflectance (in blue) and retrieved subsurface reflectance (in red)
in D1 B

library also contained several target spectra (tarpaulins of different colours). These
targets were located on the sea shore and were used to adjust the atmospheric
correction. To retrieve the reflectance spectrum of each material, at least five
radiance measurements were performed about one metre above the considered
material. These measurements were averaged into a single radiance spectrum so as
to decrease the influence of unmodelled variability (e.g., wave focusing effects for
subsurface measurements). The resulting radiance spectrum was then converted
into reflectance using a Spectralon white reference placed close to this material.

Several pre-processing steps were necessary before using hyperspectral images.
First, data were converted into radiance, geometrically corrected, and georef-
erenced. The atmospheric correction was performed using the ATCOR model
(Richter 2012). A set of multiplicative factors (one for each spectral band) were
then derived from ground-based and ATCOR apparent reflectance spectra of refer-
ence targets (Clark et al. 2002). They were finally applied to the entire flight data
set to correct from residuals from the radiative transfer algorithm and to obtain
the reflectance images. The sun glint correction was performed with the method
developed by Lee et al. (1999) and modified by Goodman, Lee, and Ustin (2008).
Finally, we used the expression of Lee et al. (1999) (Eq. 2) to model the air-water
interface. The quality of these corrections over the whole original spectral ranges
is illustrated in Fig. 4: between 410 and 700 nm, one sees that there is a close
fit between the actual in-situ subsurface reflectance measured with the spectrora-
diometer and the remote-sensing subsurface reflectance retrieved with the above
pretreatments (the noisiest parts outside the 410-700 nm range being removed as
mentioned above).

2.3. Reference depth and water quality measurements

For both images D; and Do, a sonar was used to measure depth in the four
locations indicated in Fig. 2. Because of different tide heights, depth values were
different for images Dy and Ds. For image D4, depth values were 4.70 m, 6.70 m,
11.80 m and 16.80 m, while for image Do, they were 7.30 m, 9.30 m, 14.40 m
and 19.40 m (when going from the right-hand side to the left-hand side of the
bathymetric chart).

For image D1, water quality was also evaluated in the same four locations by mea-
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Table 1. Concentrations measured at different depths for image D,
(Cpuy in pgl~!, Cnap in mgl™1).

Variable 4.70m 6.70 m 11.80m 16.80 m

Cpuy 1.5 1.5 1.6 3.0
Bottom o b <2.0 <2.0 <2.0 <2.0
Cpry 1.5 2.4 2.2 2.0
Surface CNAP 3.0 <2.0 <2.0 <2.0
Cpry 1.5 2.0 1.9 2.5
Mean CNaP <25 <2.0 <2.0 <20
(a) (b)
25 — 60
20t | B
o 1of 15}
£ ot
810/ ;
s o 20
5.
0 A 0 N [ A
0 1 2 3 4 5 6 0 2 4 6 8 10 12
C,y (ng.17 M) Turbidity (NTU)

Figure 5. Histograms of Ifremer measurements: (a) Cpyy (in pg.1=1), and (b) Turbidity (in NTU, Neph-
elometric Turbidity Unit).

suring phytoplankton and NAP concentrations. Note that unfortunately, CDOM
concentration (CCDOM) was not measured. These measurements are presented in
Table 1. Water samples were collected at surface and bottom levels, and analysed.
Chlorophyll-a and pheopigment were measured according to the French Standard
NF T 90-117 (AFNOR December 1999). Phytoplankton concentration (Cpmy)
was given by the sum of chlorophyll-a and pheopigment concentrations. NAP
concentration (Cxap) was measured according to the French Standard NF EN 872
(AFNOR June 2005). For both Cppy and Cxap, we used the means of surface
and bottom measurements as reference values.

For image D-, unfortunately, no water quality measurements were available.

We also used another set built by Ifremer (2011) in order to know how concentra-
tion parameters were varying within the considered area. This database contains
hundreds of phytoplankton and turbidity measurements carried out between 1996
and 2003 in the Quiberon Peninsula (note that unfortunately, no CDOM measure-
ments were available). Turbidity is closely related to suspended matter (Doxaran
et al. 2009), and therefore to both Cpyy and Cnap. For each year, we kept the data
that had been collected between July and November, i.e two months before and
after the date of the HypLitt campaign. The histograms of these measurements are
displayed in Fig. 5.
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3. Methods

3.1. Bio-optical modelling

As previously mentioned, many authors have studied the potential of hyperspectral
data to retrieve water column properties. Various models of subsurface reflectance
have therefore been developed. For coastal environments, a realistic model has been
presented by Lee et al. (1999) and has been widely used during the last decade
(Xiu et al. 2009; Brando et al. 2009; Volpe, Silvestri, and Marani 2011; Garcia,
Fearns, and McKinna 2014):

runaa(3) = 1ao() (1 e~ RO HROIH) 4 %%We—wdmw:mw (1)

where A is the wavelength, 7,04(\) is the modelled subsurface remote-sensing re-
flectance, and 7o, (A) is the modelled subsurface remote-sensing reflectance over an
optically deep water column. R g(A) is the bottom albedo (the bottom is assumed
to be a Lambertian reflector). kq(A) is the attenuation coefficient of downwelling
photons. k2(\) (resp. k¢())) is the attenuation coefficient of upwelling photons that
interact (resp. do not interact) with the bottom. H is the depth. The first term in
Eq. 1 is the water column contribution (predominant in deep water) whereas the
second term is the bottom contribution.

The previous equation is expressed in matrix notation as follows:

Tmod = Too T KBT'O,B - KCT'OO (2)
where Tmod = [Tmod(M), -y Tmod(Az)]T is the modelled subsurface remote-
sensing reflectance spectrum (superscript i referring to transposition),

Too = [Too(A1)s .o, Too(AL)]T is the modelled subsurface remote-sensing reflectance
spectrum over an optically deep water column, L is the number of spectral bands,
B = [RU*‘;()“), e RU’%E)‘L)]T is the bottom reflectance spectrum, and Kg and K¢

are the attenuation matrices of photons that interact and respectively do not inter-
act with the bottom. Kz and K¢ are given by Kp = diag [e_(kd(AlHkE()‘l))H]
and K¢ = diag[e_(kd(’\lHkE(/\l))H}le[[l-L]]'

The attenuation coefficients kq(\), k2(\), and kS(\), as well as the reflectance of
an infinitely deep water column 7., (A) have been given by Lee et al. (1999):

le[1;L]’

a(A) + bp(A)

) = “O D ®)
() = Cosl g (L04(a(Y) + By () <1 + 5.4%)0'5 )
k() = Coi - (L03(a() + by (V) <1 + 2.4%)0'5 (5)
roo(A) = <0.084 01T A;’ﬁl : A)> - Af‘ﬁl 5 (6)

in which 65 and 6, are respectively the solar zenith angle and view angle. Absorption
and backscattering coefficients a()\) and b,(\) mentioned in the above equations
characterize physical interactions between light and water. They are mainly depen-
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dent on three optically active constituents: phytoplankton pigments, CDOM and
NAP. The absorption and backscattering coefficients are usually determined by the
sum of each constituent contribution. Ideally, area- and season-specific expressions
of absorption and backscattering properties should be used since for example, var-
ious phytoplankton species may have different specific absorption spectra (Ahn,
Bricaud, and Morel 1992). However, because such data were not available, in this
article, we have used the expressions proposed by Brando et al. (2009) and slightly
modified by introducing the phytoplankton absorption model of Lee (1994). This
modelling has already proven to give good estimation results for this area as ob-
served in our previous studies (Jay 2012; Jay and Guillaume 2014). In this study,
the absorption and backscattering coefficients are then given by:

a(A) = aw(A) + [ao(N) + a1 (A) In (0.06 Cpry®®°)] 0.06 Cpuy®

+ Copom e~ Seron@=20) 4t O p afap(Ag) e INar=20) (7

A Ypuy by Ynar
by(N) = b (V) + Coaryb,prry (M) (;1) + Onapbi nap (1) < 3 ) ®)

where reference wavelengths are fixed: A\yg = 440 nm and A\; = 542 nm.

aw(A) is the absorption spectrum of pure water and has been given by the average
of three of the most frequently used spectra in the literature, namely the one of
Pope and Fry (1997), the one of Smith and Baker (1981) and the one of Buiteveld,
Hakvoort, and Donze (1994). The backscattering spectrum of pure water by, ()
has been given by Morel (1974), this spectrum being used in numerous studies
(Carder et al. 2004; Brando et al. 2009; Richardson and LeDrew 2006). ag(A) and
a1 () are the empirical coefficients provided by Lee (1994).

bE,PHY(A1)7 ai{IAP()\O), bE,NAP(A1)7 SCDOM; SNAP; YPHY and YNAP have been pro-
vided by Brando et al. (2009). bj, pyyy (A1) is the specific backscattering coefficient
of phytoplankton at the reference wavelength A1. alp(Ao) and bf \yp(A1) are
respectively the specific absorption and backscattering coefficients of NAP at the
reference wavelengths \g and A1. Scpom and Sxap are the spectral slope constants
for CDOM and NAP absorption coefficients respectively. Yppy and Ynap are the
power law exponents for phytoplankton and NAP backscattering coefficients re-
spectively.

Therefore, every equation given in this section models the relationship between the
subsurface reflectance r and unknown parameters H, Cpyy, Copom, and Cnap.

3.2. Published estimation methods

In this study, regularised versions of two estimation methods are developed. The
first one is the ML method recently proposed by Jay and Guillaume (2014). The
second one is an inversion optimisation method that is derived from the original
method developed by Lee et al. (1999) and referred to as HOPE by Dekker et al.
(2011). We only make slight modifications to this method, for example, in order
to use it with the above mentioned bio-optical model. Both ML and HOPE are
described in the following sections.
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3.2.1.  Mazimum Likelihood (ML) method

Unlike most estimation methods, this method uses both the information provided
by the statistical model of reflectance variability, and the information redundancy
contained in neighbouring pixels, which are often affected by the same water column
if the spatial resolution is high enough. The basis has been introduced by Jay,
Guillaume, and Blanc-Talon (2012). A likelihood function P(xy|9) is computed
from a statistical sample xy = {71,..., /v } of N neighbouring pixels, which are
assumed to be realizations of a single random vector that follows a multivariate
Gaussian distribution:

— 3 (ri—w)TT (ri—p) (9)

o
Pxn|Y) = || ——==¢
bexte) 1:[ Vv (2m)*HT
where ¢ = [H, Cpuy, Ccpom, CNAP]T is the vector of unknown parameters, and
p = p(¥) and I' = T'(¥) are respectively the mean spectrum and the covariance
matrix of the Gaussian distribution. In real scenarios, pu(?) is expressed using the
bio-optical model presented in Section 3.1:

p(9) = oo (9) + Kp (9o — Ko (F)reo (9) (10)
where p g is the mean bottom spectrum which is assumed to be constant in the

statistical sample x . T'(9) is replaced by its ML estimate computed from the data
xn as follows:

2=

N
Tyn(xwi®) = — Y (1 — p(9))(ri — p(d))". (11)
=1

Note that the size of the sample xny has been already discussed for a specific
covariance model in a previous paper (Jay and Guillaume 2011).

The ML estimate @ML (xn) is the value of ¥ that maximizes the likelihood function
as follows:

I (xw) = argmax P(xn|9). (12)

Recently (Jay and Guillaume 2014), we have used this method to develop a multi-
resolution ML mapping method, in which the bathymetry resolution depends on
local depth. The entire image is first divided using appropriate meshes and ¥ is
then estimated in every mesh. On the one hand, in shallow water, the SNR is high
so local depth variations can be finely retrieved by introducing a linear depth model
into the likelihood expression, i.e., by replacing the single H value estimated in the
considered mesh by H;; = A x i+ B x j + Hy, where (i, j) refers to the mesh pixel
(i,7) and A, B and Hj are extra parameters describing the linear depth model.
On the other hand, in deep water, the SNR is lower so estimating the local mean
depth in the considered mesh using the original constant depth model is more ro-
bust and accurate. Final maps are obtained by combining these estimated maps
according to local depth.

Note that initialization is not a major problem for ML. Indeed, for a spatially ho-
mogeneous water column, the likelihood function is smooth (because it is averaged
on a sample of several pixels) and locally convex (Jay and Guillaume 2014).

10
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3.2.2. Hyperspectral Optimization Process Exemplar (HOPE) method

This pixel-wise method involves minimizing an error function relating the actual
spectrum to the modelled spectrum. In this article, because the wavelengths range
from 410 to 700 nm for the considered hyperspectral images, this function is re-
stricted to the following expression:

675 0.5
2 (70 ~ rmoa (s 9))?
frope(r;9) = =— o (13)
> (M)
=410

where 7();) is the measured subsurface reflectance at wavelength \;,
r = [r(A1),....,r(AL)]T, and Tmoa(Ni;9) is the modelled subsurface reflectance
given by the bio-optical model presented in Section 3.1.

The HOPE estimate dyopg(r) is the value of ¥ that minimizes the above error
function as follows:

ropr(r) = arg;nin faope(r;9). (14)

Compared to ML that takes into account spatial and spectral correlations, HOPE
works on a pixel-by-pixel basis and does not use correlation between bands.

In the original HOPE (Lee et al. 1999), the bottom reflectance value at 550 nm
is also estimated. However, because the objective of this study is to tackle the
limitations of this estimation method in very shallow water and in deep water, it is
worth limiting the number of unknowns and assuming that the bottom is known.
Choosing an appropriate initialization is more important for HOPE than for ML
because the latter uses more spatial and spectral information, thus reducing the
estimation uncertainty and the number of possible solutions to the inverse problem.
Indeed, various sets of input parameters can lead to roughly the same reflectance
spectrum (Sydor et al. 2004; Defoin-Platel and Chami 2007). In this paper, for
each pixel, initial values of H, Cpyy, Ccpom and Cyap are derived from those
proposed by Dekker et al. (2011):

|5 (r(440)\ M o
CPHY,init = [6 <T(550)> ] (15)

r(440)\ ~H7
CcpoM init = 0.075 <r§550§> (16)
8
CNAPinit = 73 Y r(660) (17)
b,NAP( 1)
g L (r(40) b (18)
0.3 \r(550)

where 7(440), r(550) and r(660) are the measured reflectance values at wavelengths
440, 550 and 660 nm. As recommended by Dekker et al. (2011), before inversion,
every spectrum is smoothed for wavelengths ranging from 600 to 675 nm. For this
purpose, we use the Savitsky-Golay algorithm (Savitsky and Golay 1964) with a
window width of nine bands and a second degree polynomial.

11
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3.3. Regularisation of estimation methods

3.8.1.  Mazimum A Posteriori (MAP) method

In Bayesian statistical inference, using parameter prior probability distributions
to obtain the Maximum A Posteriori (MAP) estimator can be regarded as reg-
ularising the likelihood function of Eq. 9. These prior distributions describe how
and within which range the parameters vary. Using this information thus prevents
from obtaining aberrant values when the estimation performance decreases and the
uncertainty increases (i.e., mainly for H in deep water, and for Cppy, Ccpom, and
Cnap in shallow water).

According to the Bayes’ theorem, the ML estimate TAC/’ML(XN) is transformed into
the MAP estimate 51\4 AP(Xn), which is the value of ¥ that maximizes the posterior
distribution P(d|xn):

P(xn|9) x P(9)
P(xn)

Duapr(xn) = argmax P(x9) x P(9) (20)

Inap(xn) = argglax P(Oxn) = argglax

that equals @ML(X ~) if the prior distribution P (1) is uniform within the estimation
range (i.e., if no information on parameter distribution is available).

In this article, we assume that every element of 19 is independent of each other.
This is especially acceptable for coastal water where concentrations of optically
active substances do not correlate (see for example Kutser (2004)). Therefore, the
prior distribution can be decomposed as follows:

P(9) = P(H, Cpuy, Ccpom, Onap) (21)
= P(H) X P(CpHy) X P(CCDOM) X P(CNAP)- (22)

Combining Eq. 20 and Eq. 22 and taking the logarithm lead to the following equa-
tion:

Iniap(Xy) = argglax{ln [P(xn|9)] +In[P(H)] + In [P(Cpny)] 25)
23
+In[P(Ccpom)] + In[P(Cnap)]}-

Inserting prior knowledge on parameter distributions thus amounts to adding some
regularisation terms to the original log-likelihood function.

3.3.2.  REGularised Hyperspectral Optimization Process Exemplar (REG-HOPE)
method

In mathematical optimisation, regularising an objective function can be done using
the method of Lagrange multipliers. The latter consists in adding a loss function f;
for every parameter of interest. Unlike for Eq. 23 in which every term corresponds
to a probability distribution and thus varies within the same range, these loss
functions have to be weighted using the Lagrange multipliers w;.

The REG-HOPE estimate Yrrpa.nope(Xn) is therefore given using a Lagrangian

12
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derived from Eq. 13 as follows:

IrEc-HOPE(T) = argglax{fHOPE(T§ 9) +wy fi(H) 4wz fo(Cpuy) o)
24

+ w3 f3(Ccpom) + wa f4(Cnapr)}

where fropg(r;?®) is the original function of Eq. 13 and (w;);=1.. 4 are positive
scalars.

3.8.3.  Implementation on a local scale

Appropriate loss functions for H, Cpuyy, Ccpom and Cyap have to be chosen
for both regularised methods. Importantly, note that every regularisation scheme
(one for each parameter) is independent from one another. Depending on data
availability, HOPE and ML can thus only be regularised with respect to part of
the parameters. From a probabilistic point of view, it amounts to considering
that, for MAP, remaining non-regularised parameters follow uniform distributions
within the estimation range (as implicitly assumed for ML).

In the following, one differentiates deep water from shallow water by regularising
either with respect to depth or concentrations respectively.

Concerning H, as mentioned in introduction, there is an intermediate depth

range in which the bottom influence on subsurface reflectance is very low but still
exists. In this case, the uncertainty of depth estimation is higher because of the low
reflectance sensitivity to an increase in depth (i.e., the so-called saturation effect
also observed for vegetation remote-sensing (Baret and Buis 2008)). Hereafter, the
idea is then to narrow the range in which H can vary by making the highest values
less probable.
In order to regularise the log-likelihood function, we use a Gaussian distribution
with mean m; and standard deviation o7 so as to limit depth variations. The
following objective function derived from Eq. 23 (in which P(Cpny), P(Ccpom)
and P(Cnap) are assumed to be uniform) is used to give the MAP estimate in
deep water:

EMAP(XN) = arglrgnax {ln [P(xn|9)] — %ln (27ra%) — % (H — m1)2} . (25)

Similarly, we use a quadratic loss function in order to regularise the HOPE error
function with respect to H:

~ 1
YrREG-HOPE(T) = argglax {fHOPE(T; 9) +wy 557 (H - m1)2} . (26)
i

Regularisation can also be performed with respect to concentration parameters,
especially for very shallow water. Importantly, the concentration distributions are
likely to be area-specific so they should be estimated for each study site. For the
Quiberon Peninsula, we found that Gamma distributions were fitting the Cpyy and
turbidity distributions presented in Fig. 5 better than normal distributions (signif-
icant with p < 0.001). If we assume that P(Cppy), P(Ccpom) and P(Cnap) are
Gamma, the MAP estimate when applied to the Quiberon Peninsula is given using
the following objective function derived from Eq. 23 (in which P(H) is assumed to

13
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be uniform):

Dniap(Xn) = argmax { In[P(xn|9)]
9

T In(Cpiry ™) — n(8y%) — In [y(an)] — P

if (27)
+In(Cepon @) — In(85™) —Infr(ag)] — =22
+In(Crap @) = In(8,™) —In [y(as)] - (’pr}

where v is the Gamma function, and «; and 3; are respectively the shape and scale
parameters of the Gamma distribution of parameter i. o; and [; can be related
to the mean m; and standard deviation o; of the Gamma distribution using the
method of moments (i.e., m; = a;3; and 0? = «;?). Note that, for example, if
only in situ Cpgy measurements are available, the regularised objective function
to optimise is only made of the first two rows in Eq. 27.

On the other hand, quadratic loss functions can still be used to regularise the
HOPE error function with respect to concentrations (similarly to Eq. 26).

3.8.4. Implementation for large-scale mapping

For both methods and each parameter, regularised and non-regularised maps have
to be combined to obtain a single map covering the whole depth range. Therefore,
depending on local depth, estimated parameters in a given pixel are given by one
of the following methods:

e In shallow water, no regularisation is performed so the original mapping
method (ML or HOPE) is used. For ML, depth is modelled with a linear
depth model within each statistical sample (Jay and Guillaume 2014).

e In very shallow water, if some prior knowledge of concentration distributions
is available, MAP or REG-HOPE is implemented by using these data to
regularise the corresponding objective function.

e In deep water, MAP or REG-HOPE is implemented by regularising the ob-
jective function with respect to depth. For MAP, depth is modelled with
a constant depth model within each statistical sample (Jay and Guillaume
2014).

In real scenarios, the three above depth ranges vary according to the considered
water turbidity and bottom type, and can be identified by observing the estimation
uncertainty on non-regularised depth and concentration maps. For a given param-
eter, regularised and non-regularised maps are computed and combined according
to local depth. For example, in order to combine the ML bathymetric map Hy,
obtained for shallow water and the MAP bathymetric map Hyap obtained for
deep water, the following equation is used:

Oé];AIMAP + (2 — a)fIML

H=
2
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with

0 if H<Hyr
o =a(H) = 2EHee) i fre < H < Hsup (29)
if H > Hgup.

in which the depth values Hing and Hsup split the whole depth range into three
parts so as to combine ML and MAP maps in a continuous way. Therefore, in
shallow water (H < Hing), H is given by the ML estimate Hyp, (using the linear
depth model). Between Hingp and Hgsyp, His given by a linear combination of
I:TML and ﬁMAp. In deep water (H > Hsyp), His given by the MAP estimate
I:TM Ap (using the constant depth model).

In the following, note that MAP indistinctly refers to both the local estimation
method (described in Section 3.3.3) and the overall mapping method (described
in this section).

The hyperparameters m;, o;, «; and (§; can be set differently for each depth

range. In very shallow water, for every concentration Cj, the hyperparameters
«; and f; can be tuned using the assessment of an experienced expert or extra
knowledge (such as the database built by Ifremer (2011) and presented in
Section 2.3).
In deep water, m; and o1 can be inferred from the non-regularised depth map,
especially from the maximum depth beyond which the estimation performance
becomes poor. They can approximately be set in such a way that depths higher
than this maximum depth are more penalized.

Ideally, for REG-HOPE, Lagrange multipliers (and parameters to estimate)

should optimally be found by setting the partial derivatives of objective function
(e.g., Eq. 26) to zero. Unfortunately, such equations are non-linear and cannot be
solved easily. In this article, we propose to experimentally set Lagrange multipli-
ers w; by using local prior knowledge. To do so, we assume that they are constant
within the whole image and that depth and/or concentrations are known in a small
area. Then, these weights are numerically estimated in this area and finally, these
approximate values are re-introduced into the regularised objective function so as
to estimate depth and/or concentrations in the whole image.
Conversely, MAP is easier to implement than REG-HOPE: indeed, as every term
in Eq. 23 is implicitly weighted by a factor equal to one, only the hyperparameters
m;, 0;, a; and B; have to be set beforehand. Therefore, for deep water, MAP does
not require any prior knowledge for retrieving depth and water quality, which is a
major advantage over REG-HOPE.

3.4. Method performance assessment

Simulated and real data were used to test our methods. Simulated data were gen-
erated from the sand spectrum introduced in Section 2.2. The bottom variability
was modelled with a white Gaussian noise (¢ = 0.01). After water attenuation
performed by Eq. 2, the same white Gaussian noise was added to model other
sources of variability, including sensor noise. The concentration values were sim-
ilar to those measured within the HypLitt data set introduced in Section 2, i.e.,
Cpuy = 1.7 ug.l_l, Ccpom = 0.02 m_l, and Cyap = 1.5 mg.l_l.

The Root Mean Square Error (RMSE) was used to compare the results. The RMSE
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obtained for the estimation of parameter X is defined as follows:

P
1 -
— _ . )2
RMSE =, | 5 ;ZI(X, X;) (30)

where P is the number of samples, and X; and )?Z are respectively the actual and
estimated values of X for sample 3.

4. Results and discussion

Both simulated and real data were used to show the regularisation contribution for
improving estimation performance.

4.1. On the interest of regularisation

Before showing the interest of regularising the ML and HOPE objective functions,
in Fig. 6, we illustrate how depth and concentrations affect the subsurface
reflectance model of Eq. 2 by studying the derivatives 65‘;}"‘ and 8"““’“ . Note that
in the following, we only focus on H and Cppy, but the same conclusions can
be drawn with other concentrations. The Ls norm ||87’m°d||2 (resp. || 60”:;(; l|2) is
plotted as a function of H and Cpyy in Fig. 6a (resp. in Fig. 6b). In both cases,
the lower the derivative, the lower the influence of these parameters on the model
and therefore, the lower the estimation accuracy. These two figures show the inner
reflectance variability only induced by the model parameters H and Cppy, so
other phenomena affecting estimation results, such as bottom variability, sensor
noise or estimation method, are not taken into account. However, it is worth
noting that any change in bottom variability (darker or brighter sand substrate,
other bottom types) or sensor noise level does not affect the shape of the functions
plotted in Fig. 6 (actually, such a change only modifies the overall function values).

Fig. 6a shows that Hag"ﬁng is very sensitive to H in shallow water, which
confirms that bathymetry can be accurately retrieved in this depth range. On
the other hand, the deeper the water, the lower the derivative. In this case, the
subsurface reflectance model is not much affected by variation in H, which proves
that depth cannot be estimated accurately since the bottom is barely visible. Note
that, relatively to H, Cpuy does not affect much ||25e¢(|5 in shallow water, which
shows that in this depth range, the H influence is so strong that depth estimation
accuracy only slightly depends on water turbidity. As expected, in deeper water,
the model sensitivity to variation in H is higher for clearer water (low Cppy
values) for which the bottom is more visible.
The same overall behaviour is observed between || 57

aT’mod

||2 and Cppy, and between

H%‘b and H. Indeed, Fig. 6b shows that || gg‘;;‘; Hg is high for low Cppy values
and decreases when Cpyy increases. This indicates that Cppy is better estimated
for low Cpyy values.

However, there are two noticeable differences between the two figures. First, it is
worth noting that ||25et(|; varies much more than || %=L ||, in the considered
ranges of depth and concentration (between 0 and 1.45 for Har”“)d |2, and between
0 and 0.25 for ||57 8"'“0(1 [|2). Again, this shows that H has a greater influence on
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Figure 6. Norm of the derivatives of model reflectance 7.,,q as a function of H and Cpgy
(Cecpom = 0.02 m~'; Onap = 1.5 mgl™1). (a) Derivative with respect to H; (b) derivative with re-
spect to Cpgy-
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Figure 7. Log-likelihood function (a) without regularisation and (b) with regularisation with respect to
H and Cpyy. The actual H and Cpyy values are 20 m and 1.7 pg.l~! respectively. We set m1 = 20 m,
o1 = 10% x m1, me = 1.7 ugl™!, oo = 10% x ma. The colour scale is the same for both figures.

subsurface reflectance than Cpyry, thus indicating that it can be better estimated

than Cppy.
Second, unlike for ||%52e¢||; and Cppy, Fig. 6b exhibits a strong relationship be-
tween || gg‘;;‘; ||o and H. For depths higher than a few metres, the Cppy estimation

accuracy decreases as depth increases (thus lowering the SNR). Moreover, Cppy
cannot be accurately retrieved in very shallow water, even for low Cpyy values. In
such a case, the water column is so thin that the constituents do not affect much the
subsurface reflectance model, which is mainly dominated by the bottom reflectance.

Therefore, these figures indicate that the estimation accuracy could be improved
at both ends of the depth range. Regularising the objective functions of Eq. 9 or
Eq. 13 is a way to lower the estimation uncertainty as shown in Fig. 7.

In this figure, simulated data are used to show how regularisation of ML works (the
same conclusions are drawn for HOPE regularisation). In Fig. 7a (resp. Fig. 7b),
the log-likelihood function (resp. regularised log-likelihood function) is plotted as
a function of H and Cpyy. The actual H and Cpyy values are 20 m and 1.7 pg.1™*
respectively. For both parameters, the mean of the prior distribution is the actual
value and the standard deviation is 10% of the mean.

One observes that the log-likelihood reached a plateau beyond 16 m for Cpyy
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STEP 1: Non-regularized maps
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Figure 8. Framework of the proposed methods (either MAP or REG-HOPE) for deep water. Step 1:
Maps obtained with the non-regularized method (black areas in the bathymetric map correspond to zones
deeper than 25 m); Step 2: Regularization procedure based on maps obtained at step 1; Step 3: Mapping
procedure combining regularised and non-regularised maps.

ranging from 1.5 to 2 pg.l~!. This figure confirms what is shown in Fig.6, i.e., in
deep water, every high depth value is almost equally likely, so aberrant values can be
obtained using ML estimation. On the other hand, this function was more peaked
with respect to Cpgy for depths around 20 m, which shows that this parameter
could be still well estimated under these conditions.

As observed in Fig. 7b, after regularisation, the objective function became more
peaked with respect to both H and Cppy. As a result, the estimation uncertainty
decreased by making aberrant values less likely.

4.2. Framework of the proposed methods

Fig. 8 illustrates the framework of the proposed mapping methods using image
Dy y. This framework is illustrated using HOPE and REG-HOPE (regularisation
with respect to depth), but the procedure is nearly the same for ML and MAP.

First, the original method is applied so as to provide non-regularised H, Cppy,
Ccpom and Cyap maps. In this case, as indicated by the black areas on the es-
timated bathymetric map, the estimation uncertainty increases for depths higher
than around 12 m. As a result, m; and o1 can manually be set to 10 m and 1 m
respectively so that depths higher than 12 m are penalized since they are in the
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Figure 9. Relative RMSE obtained with ML (solid lines) and MAP (dashed lines) using simulated data.
For MAP, the likelihood function was regularised with respect to every parameter, setting m; to the actual
value and o; = 30% X m; (IN = 400 pixels, P = 50 runs).

distribution tail. Note that these parameters do not have to be tuned very carefully;
for example, choosing m; = 9 m and o1 = 2 m could work fine as well. Overall, a
convenient choice for m;y is a value slightly lower to the maximum depth that can
be estimated. Additionally, for REG-HOPE, the Lagrange multiplier wy for the
whole image is estimated locally in a pixel of known depth. Regularised maps for
deep water are therefore computed (Fig. 8, part A).

Second, regularised maps (for deep water) and non-regularised maps (for shallow
water) have to be combined according to the mapping procedure described in Sec-
tion 3.3.4. The values of Hinyg and Hsyup are manually chosen close to m; and do
not have to be tuned very carefully as well because the non-regularised and reg-
ularised maps for a given parameter are quite similar around m;. In Fig. 8 (part
B), the final estimated maps are computed taking Hing = 7 m and Hgyp = 9 m.

4.3. FEstimation results

4.8.1.  Simulated data

Regularisation influence on estimation results was first evaluated on simulated hy-
perspectral data. In Fig. 9, we compare the results obtained using both ML and
MAP for depths ranging from 0.20 to 30 m. Subsurface hyperspectral data were
simulated according to the procedure described in Section 3.4. For each simula-
tion (50 runs for each depth), N = 400 pixels were randomly generated to build
the statistical sample. Depth and concentrations were then estimated by ML and
MAP. For MAP, the prior distribution mean m,; of each parameter was set to its
actual value, and the standard deviation o; was set to 30% x m;.

On the one hand, one clearly sees that regularising the objective function with
respect to H made the RMSE drop from 60% to 10% for deep water (i.e., 25 m).
On the other hand, it had much fewer effects for lower depths because the initial
objective function was more peaked around its maximum. Concerning concentra-
tions, as expected, a noticeable improvement was observed for very shallow water
(i.e., 0.20 m). For example, the RMSE obtained for Cxap decreased from 40% to
13%.

These results confirm that the proposed regularisation is an interesting way to
increase estimation accuracy in limiting cases.
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Table 2. Depth estimation results (in m) obtained at various known depths (in bold) and for both images
D1 and Do.

Method 470m 6.70m 7.30m 9.30m 11.80m 14.40 m 16.80 m 19.40 m RMSE (m)

ML 4.44 6.40 5.73 8.70 13.58 39.43 47.50 65.12 21.22
MAP 4.44 6.40 5.73 8.70 12.39 15.99 16.91 19.55 0.85
HOPE 3.58 6.54 5.65 8.91 33.65 49.05 46.77 56.75 21.99
REG-
HOPE 3.58 6.54 5.65 8.91 14.25 17.23 16.07 19.72 1.53

4.3.2.  Real data

The estimation performances of regularised methods were also evaluated using the
two images presented in Section 2. In this case, both ML and HOPE were only
regularised with respect to H. Note that, unfortunately, no real data was available
to assess the regularisation contribution to improve concentration estimation in
very shallow water.

Fig. 10 (resp. Fig. 11) displays the estimated bathymetric maps of image D
(resp. image Ds) that were obtained with ML, MAP, HOPE and REG-HOPE. For
HOPE and REG-HOPE maps, a 3x3 pixel median filter was applied afterwards in
order to lower the estimation noise obtained for deep water. For these two images
and both MAP and REG-HOPE, regularised and non-regularised maps were
combined using Hing = 7 m and Hgyp = 9 m. Furthermore, regularised maps
were obtained using m; = 9 m and oy = 1 m for image Dy, and m; = 10 m
and o; = 1 m for image D».

These eight maps have to be compared with the actual bathymetric profile
presented in Fig. 2. It is worth recalling that the tide levels were different in the
two images, i.e., the actual depth was 2.60 m higher for image Ds.

First, one notes that ML and HOPE accurately estimated depth up to a
maximum depth. A shallow zone was found at the center of each image. Depth
was then increasing when going to the left side and to the right side. In the spots
where the ground truth was measured, the estimated depths were close to the
actual depths up to about 12 m for both methods (see Tab. 2).

Actually, this maximum depth value depends on current water quality (as well as
on bottom type, noise level, etc). For both ML and HOPE, these maximum depths
were around 13 m and 14 m for images Dy and Dy respectively. These limits were
different from an image to the other probably because the water quality changed
between the two dates (i.e., the water may have become clearer when image Do
was acquired).

In deeper zones, depth was clearly overestimated by both methods, since the
estimated values were higher than 25 m. As shown in Fig. 7 using simulated
data, for such deep zones, every depth value higher than the actual one is almost
equally likely, hence usual estimation methods tend to overestimate this parameter.

On the other hand, in such zones, both MAP and REG-HOPE led to consistent
results for depths up to more than 20 m (for image Ds). For both images D; and
Do, the estimated depth gradients were in the appropriate directions, especially for
deeper areas. For example, the depth gradient direction was oblique in the lower
left part and the upper right part, while it was horizontal in the lower right part.
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Figure 10. Estimated bathymetric maps of image D1 obtained with (a) ML, (b) MAP, (¢) HOPE and (d)
REG-HOPE. Black areas correspond to zones where estimated values are higher than 25 m.

Moreover, as displayed in Tab. 2, MAP and REG-HOPE led to quite lower RMSE
values (0.85 m and 1.53 m resp.) where the ground truth was measured (from depths
ranging from 4.70 to 19.40 m), thereby confirming the strong agreement observed
between the actual and estimated bathymetric profiles. These results show that,
compared with non-regularised methods, the regularisations performed using the
above HiNr, Hsup, m1 and o parameters allowed for improving depth estimation
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Figure 11. Estimated bathymetric maps of image D2 obtained with (a) ML, (b) MAP, (¢) HOPE and (d)
REG-HOPE. Black areas correspond to zones where estimated values are higher than 25 m.

in deep water.

Lastly, regularising the objective functions with respect to depth does not affect
the concentration estimation. Tab. 3 shows that the errors obtained by the original
methods and their regularised counterpart were nearly the same, since they all led
to a RMSE of 0.8 ugl~! for Cppy. Therefore, these results prove that in deep
water, regularising the objective functions can clearly improve depth estimation
performances while not affecting the concentration estimation.
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Table 3. Concentration estimation results obtained at various known depths (in bold) and
for image D1 (Cpyy in pg.l™!, Oxap in mg.l1=1). RMSE values are only provided for Cpyy
estimation.

Method Variable 4.70 m 6.70 m 11.80 m 16.80 m RMSE (ug.1™!)

ML Cpuy 2.6 2.0 1.8 1.5 0.8
CNAP 1.6 3.7 5.4 5.6 X

MAP Cpuy 2.6 2.0 1.8 1.5 0.8
CNAP 1.6 3.7 5.3 5.5 X

Cpuy 2.3 2.0 1.5 1.3 0.8

HOPE CnAP 4.0 6.1 6.1 5.5 X
REG- Cpuy 2.3 2.0 1.3 1.1 0.8
HOPE CnAP 4.0 6.1 5.9 5.4 X

5. Conclusions and perspectives

In this study, we show that regularising the objective functions of two estima-
tion methods (ML and HOPE) can greatly improve the retrieval process for some
particular depth ranges. Indeed, concentrations and depth cannot be accurately
estimated in very shallow water or in deep water respectively, because they do not
affect much the subsurface reflectance. Adding some appropriate regularisation
terms enhances the influence of these parameters. In particular, when tested on
real hyperspectral remote-sensing images, such methods regularised with respect
to depth led to accurate bathymetric maps up to 20 m for the two considered water
qualities, while non-regularised methods were accurate up to 12 m.

On the one hand, methods regularised with respect to depth can easily be imple-
mented to improve depth estimation in deep water, because there is no need for
additional data, the regularisation terms being extracted from the originally esti-
mated bathymetric maps. On the other hand, using regularisation to improve water
quality retrieval for very shallow water theoretically requires a statistically sound
database that is inherent to the considered area. Even if some of these databases
already exist (e.g., the one of Ifremer (2011) for the French coast), they are usually
unavailable in the required fullness, which may hinder the use of regularisation in
such a case. However, it is worth noting that, if no database is available, rough
approximations of concentration distributions can simply be used to avoid aber-
rant estimated values and to improve the overall estimation. Furthermore, the need
for such databases may serve as a guideline for some dedicated projects aiming at
building up such site-specific databases.

In this study, regularised methods have been evaluated in homogeneous sandy
habitats because, in its current version, ML (and therefore MAP) assumes that
the water quality and bottom type are homogeneous within a local neighbourhood
(i.e., the statistical sample). To deal with more complex bottom covers or lower
spatial resolutions, the generalization of ML and MAP to heterogeneous bottoms
is currently investigated and involves a modified likelihood function and an un-
mixing technique to provide a different estimate of bottom spectrum in each pixel
(Guillaume, Michels, and Jay 2015).

Note that the proposed regularisation approach can naturally be extended either
to multispectral data (similarly to non-regularised methods) and to other similar
estimation method in the same way. It can also be used to better estimate other
model parameters such as bottom parametrisation. Lastly, it would be interesting
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to assess regularised methods for other water quality conditions and to consider
the parameter inter-dependency within prior distributions because, in particular,
the concentrations of different parameters may vary together.
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