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We investigate the spatial distribution of inertial particles suspended in the bulk of a turbulent inhomogeneous flow. By means of direct numerical simulations of particle trajectories transported by the turbulent Kolmogorov flow, we study large and small scale mechanisms inducing inhomogeneities in the distribution of heavy particles. We discuss turbophoresis both for large and weak inertia, providing heuristic arguments for the functional form of the particle density profile. In particular, we argue and numerically confirm that the turbophoretic effect is maximal for particles of intermediate inertia. Our results indicate that small-scale fractal clustering and turbophoresis peak in different ranges in the particles' Stokes number and the separation of the two peaks increases with the flow's Reynolds number.

I. INTRODUCTION

Turbulent aerosols, dilute solutions of solid particles transported by turbulent flows, are important to the environment and to industry. From combustion processes in coal fire burners, to the dynamics of droplets in clouds, turbulent aerosols impact on our life and the earth's climate [START_REF] Hidy | Aerosols: an industrial and environmental science[END_REF][START_REF] Reeks | Transport, mixing and agglomeration of particles in turbulent flows[END_REF] . One general feature of turbulent aerosols is their 'unmixing' while transported by the flow, which is relevant to several processes including: warm-rain initiation [START_REF] Falkovich | Acceleration of rain initiation by cloud turbulence[END_REF][START_REF] Shaw | Particle-turbulence interactions in atmospheric clouds[END_REF] , planetesimal formation in the early solar system [START_REF] Weidenschilling | Dust to planetesimals: Settling and coagulation in the solar nebula[END_REF][START_REF] Tanga | Forming planetesimals in vortices[END_REF][START_REF] Bracco | Particle aggregation in a turbulent keplerian flow[END_REF] , chemical reactions and industrial processes [START_REF] Williams | Drop coagulation in cross-over pipe flows of wet steam[END_REF]9 . In recent years much attention has been gathered by the dissipative dynamics resulting from particle inertia which can induce small-scale fractal clustering also in homogeneous flows [START_REF] Falkovich | Acceleration of rain initiation by cloud turbulence[END_REF][START_REF] Shaw | Particle-turbulence interactions in atmospheric clouds[END_REF][START_REF] Balkovsky | Intermittent distribution of inertial particles in turbulent flows[END_REF][START_REF] Bec | Fractal clustering of inertial particles in random flows[END_REF][START_REF] Duncan | Clustering by mixing flows[END_REF][START_REF] Bec | Heavy particle concentration in turbulence at dissipative and inertial scales[END_REF] . This can have relevant consequences for the rate of collision, coalescence and reaction of particles. Another well known unmixing mechanism in turbulent aerosols is turbophoresis: inertial particles migrating in regions of lower turbulent diffusivity, similarly to thermophoresis [START_REF] Maxwell | On stresses in rarefied gases arising from inequalities of temperature[END_REF] , for which Brownian particles are subject to an effective drift opposite temperature gradients. Turbophoresis has been mostly studied in presence of boundaries, because as a mechanism for particle deposition in turbulent boundary layers [START_REF] Sehmel | Particle deposition from turbulent air flow[END_REF][START_REF] Brooke | Turbulent deposition and trapping of aerosols at a wall[END_REF] it finds applications both for industrial processes (for removing submicron sized particles from gas streams) and the environment (dry deposition in the atmosphere [START_REF] Caporaloni | Transfer of particles in nonisotropic air turbulence[END_REF] ).

Nonetheless, the mechanism of turbophoresis is independent of the presence of boundaries as, in principle, it only requires the presence of inhomogeneities in the flow.

In this work we investigate the phenomenology of turbophoresis in a turbulent shear flow without walls. We point out the differences between this mechanism which causes inhomogeneity at large scales and the small-scale clustering which occurs at viscous scales.

II. EQUATIONS OF MOTION AND PARAMETERS

As a paradigmatic case of inhomogeneous unbounded flow, we consider the turbulent Kolmogorov flow, obtained by sustaining the Navier-Stokes equations for the incompressible velocity field u,

∂ t u + u • ∇u = -∇p + ν∆u + F (z) , (1) 
with a sinusoidal force F (z) = F 0 cos(z/L) ê1 , where p is the pressure, ν the fluid kinematic viscosity, and ê1 denotes the unit vector along the horizontal direction. The laminar fixed point (u = U cos(z/L) ê1 , with U = L 2 F 0 /ν) becomes unstable above a critical Reynolds number [START_REF] Sivashinsky | Weak turbulence in periodic flows[END_REF] , Re = UL/ν > √ 2, and the flow eventually becomes turbulent for large Re [START_REF] Borue | Numerical study of three-dimensional kolmogorov flow at high reynolds numbers[END_REF] .

A remarkable peculiarity of monochromatic forcing is that the resulting mean velocity profile, u = U cos(z/L) ê1 , is monochromatic also in the turbulent regimes [START_REF] Borue | Numerical study of three-dimensional kolmogorov flow at high reynolds numbers[END_REF][START_REF] Musacchio | Turbulent channel without boundaries: The periodic kolmogorov flow[END_REF] . Above and in the following, the brackets • • • denote the average over (x, y) and over time, while

f ≡ 2πL 0
f dz/(2πL). Due to the change of direction of the mean flow every half wavelength, the Kolmogorov flow can be seen as an array of virtual channels flowing in alternate directions without being confined by material boundaries.

The dynamics of a small spherical particle is described by the Maxey-Riley equation [START_REF] Maxey | Equation of motion for a small rigid sphere in a nonuniform flow[END_REF] .

Here, we focus on dilute suspensions of very small particles much heavier than the fluid, whose dynamics is dominated by the Stokes drag. In this limit, the equations for the position x and velocity v of each particle simplify to

ẋ = v (2) v = - 1 τ [v -u(x, t)] (3) 
where τ = (2a 2 ρ p )/(9νρ) is the Stokes time, a and ρ p are the particle radius and density, respectively while ρ denotes the fluid density. Eqs. (2-3) assumes a Stokes flow around the particle, implying that the particle's Reynolds number must be very small:

Re p = |v -u|a/ν ≪ 1.
Particle inertia is commonly parametrized in terms of the Stokes number St = τ /τ η based on the Kolmogorov time τ η , i.e., the smallest characteristic time of a turbulent flow.

However, turbophoretic effects are expected to be determined by large-scale features of the flow, namely by the interplay between the advection and the inhomogeneities of the eddy diffusivity [START_REF] Belan | Localization-delocalization transitions in turbophoresis of inertial particles[END_REF] . We therefore introduce a particle inertia parameter S = τ /T by normalizing the particle response time τ with the large-scale eddy turnover time T = E/ǫ, defined as the ratio between the mean kinetic energy E and the energy dissipation rate ǫ. The parameter S is the analogous of τ + = τ u * 2 /ν, which is used in wall-bounded flows to parametrize turbophoresis [START_REF] Sardina | Wall accumulation and spatial localization in particle-laden wall flows[END_REF][START_REF] Marchioli | Mechanisms for particle transfer and segregation in a tur-bulent boundary layer[END_REF] in terms of the friction velocity u * . This amounts to measuring times in wall units, which control the scaling of inhomogeneities across the wall region. and Re = 990.

III. RESULTS AND DISCUSSION

A. Numerical Simulations

We performed direct numerical simulations (DNS) of Eq. ( 1) by means of a standard pseudospectral code with triple-periodic boundary conditions in a cubic domain of side (normal to the shear) and over very long integration of hundreds of large-eddy-turn-overtimes. The modulation of the density profiles closely reflects the structure of the mean flow:

L x = L y = L z = 2π
particles concentrate in the regions of maximal mean flow and minimal mean shear, away from the maxima of turbulent energy.

As it is shown in (Fig. 2), the particle density profiles are accurately fitted by:

ρ(z) = ρ 0 (1 + a(S) cos(2z/L)) (4) 
where ρ 0 = 1/L z is the mean uniform density and the only free-parameter is a(S), which accounts for the dependence on the particles' inertia. In the following we discuss a heuristic argument which gives support to the empirical formula (4).

B. Turbophoresis

A common approach to derive theoretical predictions for the dynamics of inertial particles is by modeling the velocity field as a Gaussian, short-correlated noise [START_REF] Balkovsky | Intermittent distribution of inertial particles in turbulent flows[END_REF] . With this assumption, one can write 22 a Fokker-Planck equation for the probability density P (z, v)

to find a particle in z with vertical velocity v, in which turbulence is parametrized by a space-dependent eddy diffusivity κ(z) acting on velocity and derived from Eq. (3). It is then possible, in the limit of fast relaxation of the velocity distribution [START_REF] Caporaloni | Transfer of particles in nonisotropic air turbulence[END_REF][START_REF] Belan | Localization-delocalization transitions in turbophoresis of inertial particles[END_REF] , to obtain an equation In the case of the Kolmogorov flow, the profile of the mean square vertical velocity is found to be u 2 z ∝ U 2 (1 -b cos(2z/L)), with b ≪ 1 and weakly depending on Re [START_REF] Musacchio | Turbulent channel without boundaries: The periodic kolmogorov flow[END_REF] . Using a first-order Taylor expansion in b one recovers the expression (4). It is worth remarking that the above argument relies on two assumptions. First, the correlation time of the flow is set to zero. Second, the particle Stokes time τ is assumed to be small enough to justify the fast relaxation of the velocity distribution. In this limit the amplitude of the spatial modulation of the particle density profile would not depend on S, namely a(S) = b. The latter, quantitative prediction does not hold if the flow has a finite correlation time, as in our case. However, we find that Eq. ( 4) gives the correct shape for the density profile for particles with Stokes times both shorter and longer than the correlation time of the flow, provided that the amplitude a(S) is allowed to depend on inertia.

for the marginal distribution ρ(z) = dvP (z, v), which reads ∂ t ρ(z) = ∂ z J(z),
The analogy with thermophoresis can be exploited for particles with large inertia. In this limit, the particles can be seen as a gas in equilibrium with the turbulent environment and we can interpret the spatial variations of the mean particle vertical velocity variance, v 2 z (z) , as the analogous of a space-dependent temperature field [START_REF] Caporaloni | Transfer of particles in nonisotropic air turbulence[END_REF] . Assuming the local diffusivity proportional to the temperature, i.e. κ(z) ∼ v 2 z (z) , the particle density profile is therefore expected to be ρ(z) ∝ v 2 z -1 , which is in fairly good agreement with numerical results

for large S (see Fig. 3). Moreover, we find that the particle velocity profile v 2 z has the same spatial dependence as the fluid one u 2 z , but the amplitude of the spatial modulation decreases at increasing inertia. This leads to the prediction that the amplitude a(S) in ( 4) is a decreasing function of the inertia for large S. At the heart of the arguments discussed above, there is the notion that turbophoresis drives particles away from the maxima of turbulent energy, which correspond to maxima of the eddy diffusivity. In the case of the Kolmogorov flow, the maxima of turbulent fluctuations occur where the shear of the mean flow is maximum and the mean flow vanishes, i.e., at the borders between the virtual channels. Therefore, particles are driven toward the center of the virtual channels. This is in contrast with the case of a turbulent channel (or pipe) flow, in which turbulence is intense in the bulk and vanishes in the viscous sub-layer close to the walls.

In this case turbophoresis drives the particles away from the bulk and concentrates them along the walls [START_REF] Mclaughlin | Aerosol particle deposition in numerically simulated channel flow[END_REF][START_REF] Kaftori | Particle behavior in the turbulent boundary layer. ii. velocity and distribution profiles[END_REF][START_REF] Sardina | Large scale accumulation patterns of inertial particles in wall-bounded turbulent flow[END_REF] . In this sense, the fact that turbophoresis may eventually accumulate the particles to regions of large or small mean velocity (or mean shear) is an incidental (albeit relevant for applications) consequence of the details of the particular flow considered. The overall effect of turbophoresis can be quantified by means of the rms relative deviation of the mean density profile ρ(z) from the uniform distribution ρ 0 as χ = [1/L z Lz 0 (1ρ(z)/ρ 0 ) 2 dz] 1/2 . For the specific profile (4), clearly we have χ(S) = a(S)/ √ 2. This quantity is plotted in Fig. 4 as a function of the inertia parameter. In agreement with expectations, the turbophoretic effect is not monotonic as a function of inertia. It displays a maximum at S ≃ 10 -1 . The shape of the curves is not strongly affected by changing Re even though we observe, within the statistical uncertainties, a weak dependence of the position of the maximum.

Remarkably, deviations from the uniform distribution are present also for particles whose Stokes time is much smaller than the Kolmogorov time. Arguments based on local variations of the eddy diffusivity can not be used to explain the origin of such inhomogeneities, because the particle relaxation time is shorter that the shortest eddy-turnover time of the flow. The mechanism responsible for such inhomogeneities also for St ≪ 1 is related to the weak compressibility of the particle velocity field. When St ≪ 1, expanding at first order in τ the velocity of the particle one has v = u -τ (∂ t u + u • ∇u) + o(τ ) (see e.g. Ref. [START_REF] Balkovsky | Intermittent distribution of inertial particles in turbulent flows[END_REF] ). The mean vertical profile of the divergence of the particle velocity field is

∇ • v = -τ •∇(u • ∇u) = -τ ∂ 2 z u 2 z .
The mean divergence is positive in the maxima of u 2 z and is negative in the minima, providing an explanation for the accumulation of inertial particles in the minima of u 2 z , observed at very weak inertia.

C. Small-Scale Clustering

Besides the large-scale effects discussed above, inertial particles transported in a turbulent flow display small-scale clustering. Small-scale spatial inhomogeneities originate from the dissipative dynamics in the 6-dimensional position-velocity phase space (x, v) [START_REF] Balkovsky | Intermittent distribution of inertial particles in turbulent flows[END_REF][START_REF] Bec | Fractal clustering of inertial particles in random flows[END_REF] . In particular, inertial particle motion asymptotically takes place on a (multi-)fractal set in phase space. A fractal dimension smaller than space dimension signals an enhanced probability to find particle pairs at short separation. Indeed, the probability to find particle pairs at separation below a certain r (smaller than the Kolmogorov scale) grows as r D 2 , with D 2 = 3 for uniformly distributed particles in three dimensions [START_REF] Paladin | Anomalous scaling laws in multifractal objects[END_REF] . The correlation dimension D 2 is thus commonly used as a measure of clustering. In Fig. 5 we plot the co-dimension 3 -D 2 as a function of St = τ /τ η for two values of Re. In agreement with previous results obtained in homogeneous, isotropic turbulence (HIT) [START_REF] Bec | Heavy particle concentration in turbulence at dissipative and inertial scales[END_REF] , we find that the fractal co-dimension has only a very weak dependence on Re. Moreover, we find that it is not affected by the large-scales inhomogeneities of the Kolmogorov flow 30 as apparent from Fig. 5 where published data for 

IV. CONCLUSIONS

We have investigated the phenomenon of turbophoresis and fractal clustering of heavy inertial particles in the bulk of inhomogeneous flow, by performing DNS of the dynamics of heavy particles transported by the turbulent Kolmogorov flow. The emerging scenario in the limit of large Re is the following. The distribution of particles with small inertia is characterized by a strong fractal clustering at small scales, but is weakly affected by turbophoresis. On the contrary, particles with large inertia experience strong turbophoretic accumulation at large scales while remaining uniformly distributed at small scales. The turbophoretic effect is maximum for particles with Stokes time of the order of the largescale eddy-turnover times of the turbulent flow. Conversely, small-scale fractal clustering is maximal for particles with Stokes times comparable with the Kolmogorov time.

Turbophoresis is characterized by large scale particle density profiles which are strongly correlated to the inhomogeneities of the flow. In particular, particle density is maximal in the minima of the turbulent eddy diffusivity, which for the case of the Kolmogorov flow coincides with the maxima of the mean flow. This is an important difference with what observed in wall bounded flows, where turbophoresis concentrates particles in regions of minimum mean flow close to the boundaries and demonstrates that the regions of particle accumulation depend on the details of the flow.
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 1 FIG. 1. Particle distribution in a slab of thickness 2πL/10, plotted over the corresponding streamwise component of velocity (color map, red to yellow online). Particles inertia is S = 7.9 × 10 -2
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 12 FIG. 2. Fluid velocity and particle distribution profiles at Re = 990. (a) profiles of the longitudinal velocity u x (solid line, left axis) and the fluctuations in shear-normal kinetic energy u 2 z (dashed line, right axis) of the flow. The small asymmetry in u 2 z is due to the finite statistics. (b) particlenumber density profiles ρ(z) for S = 7.9 × 10 -2 (filled circles) and S = 2.6 × 10 -3 (empty circles), compared with the functional form (4) (lines, fitted).
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 221 where the flux is J(z) = ∂ z [κ(z)ρ]. For the fluxless steady state one obtains the prediction ρ ∼ κ -1 (z) which, in analogy with thermophoresis[START_REF] López | Multiple time-scale approach for a system of brownian particles in a nonuniform temperature field[END_REF] , implies that particles concentrate in the minima of diffusivity. This behaviour is substantially different from that of a classical, passively advected scalar field θ, where the eddy-diffusivity would appear in the flux in the Fickian form J = κ(z)∂ z θ, leading to a homogeneous steady state. Standard dimensional arguments suggest that the eddy diffusivity is proportional to the mean square velocity κ(z) ∝ τ c u with τ c an appropriate correlation time), so that the above result implies ρ(z) ∝ u
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 32121 FIG. 3. Particle number density profiles ρ(z) for S = 4.1 (filled circles) at Re = 230. The particle distribution is compared the prediction ρ(z)/ρ 0 = v 2 z -1 L z / Lz 0 v 2 z -1 dz (empty circles).
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 4 FIG. 4. Rms relative deviation χ from the homogeneous distribution plotted as a function of S for Re = 230 (grey curve) and Re = 990 (black curve). The thickness of the curves reflects the statistical fluctuations around the mean value.
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 25 FIG. 5. Correlation co-dimension 3 -D 2 of particle distributions (filled symbols) and rms relative deviation from uniform distribution χ (empty symbols, same data of Fig. 4) as a function of St (filled symbols) and for Re = 230 (circles) and Re = 990 (squares). The continuous line show the comparison with the D 2 computed for a HIT case from 13 at Re λ = 185.
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